
Optimizing Single-Phase Downloads over Random
Duration Links in Mobile Networks

Amber Bhargava, Timothy Ferrell, Alex Jones, Leo Linsky, Jayashree Mohan, and Bhaskar Krishnamachari
Ming Hsieh Department of Electrical Engineering and Department of Computer Science

Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
Contact: bkrishna@usc.edu

Abstract—Short range vehicle to vehicle and device to device
communications are of growing interest due to their utility
for vehicular safety and infotainment applications as well as
for improving the capacity of cellular networks. These mobile
systems are characterized by ephemeral, stochastic links. We
consider a fundamental problem in this domain — how to
maximize the amount of useful content downloaded by a client
from a server over an encounter that lasts a random amount of
time. We assume that the distribution of link duration is known
or estimated a priori based on historical as well as real-time mea-
surements. We present MERLIN (Maximum Expected download
over Random LINks), a single-phase file request protocol that
is provably optimal. We evaluate MERLIN comprehensively via
simulations based on both ideal link duration distributions as well
as empirical distributions obtained from real vehicular mobility
traces (from Taxis in Shanghai and Buses in Chicago).

I. INTRODUCTION

In the near-future, all cars will be equipped with dedicated
short range communication (DSRC) radios allowing them to
talk to other cars on the road for safety as well as also
potentially for various infotainment applications [1], [2]. The
cellular industry is also exploring the design of device to
device (D2D) communication schemes in order to improve
network capacity [3], [4]. A common challenging problem in
these domains is organizing efficient communication between
the radio-equipped vehicles or devices which may encounter
each other for a random duration.

We consider a fundamental problem pertaining to opti-
mizing the link layer for such encounter-based communication
systems – optimizing the amount of content downloaded by
a client node from a server node. We show in this work that
statistical knowledge of the random encounter duration can be
exploited in the link layer protocol to carefully choose how
requests are made, in such a way as to maximize the efficiency
of information transfer.

One important assumption in this work that the request
from a client and its response from the server are carried out
over a single phase. In other words, the client does not con-
tinue to make requests once the responses to its initial request
are received. This single-phase assumption is motivated by
short-encounter-duration scenarios in which there is a high

switching cost for the client to make multiple requests. 1

We also assume in modeling this problem that both the
mobile client and server have a consistent estimate of the
statistics of the encounter (namely, the distribution of the
encounter duration). Though we treat the estimation of the
distribution of encounter duration as out of the scope of this
work, such an estimate could be obtained in practice based on
historic measurements as well as sensor data concerning the
location, speed and direction of the vehicles.

For many on-road applications the content to be dis-
seminated or downloaded by vehicles can be assumed to be
highly organized. For instance, consider recent traffic data
about specific map “tiles”, road condition data about a set
of specific road stretches, or even a list of currently popular
music files. In these cases the repository consists of discrete
items (that we will refer to as “files” in this paper) that are
numbered.

If the server itself is obtaining the content from the
cloud through a process of intermittent downloads, then it
may not possess the entire repository itself at the time of the
encounter with the client. Similarly, the client is assumed to
have previously downloaded a random subset of the repository
from other encounters. At the start of the encounter, we assume
that the link discovery protocol allows the client and server
node to share information with each other about the current
percentage of the repository that they hold.

Because the duration of the encounter is potentially quite
short, it is important for the client to be able to communicate
as quickly as possible the files it still needs to the server. To
compress this information, we assume that the client sends
information about ranges of missing files to the server, which
responds with files from the requested ranges that are available
at its end.

The crux of the problem we investigate in this paper is
this: because of the limited encounter duration, it may not be
possible or desirable for the client to make requests containing

1For other scenarios where such switching costs are low, it would be
possible to send requests in multiple-phases; optimizing multi-phase queries
is a harder problem which we consider out of the scope in this study, but is
a subject of our ongoing investigations.



all its needs. We model this system mathematically, taking
into account the distribution of the encounter duration, and
derive the optimal request size for the client that maximizes
the expected downloaded content.

To summarize, the following are the key contributions of
this work:

• We mathematically formulate the problem of optimizing
a client-server structured data download protocol for a
random-link-duration communication system.

• Taking into account random availability of data at both
server and client, as well as the distribution of the
encounter duration, we show how the requests from
the client should be structured and optimized in such
a way as to maximize the expected amount of content
transferred. This forms the basis of our novel protocol
we call MERLIN (Maximum Expected download over
Random LINks).

• Through numerical simulations, we investigate how op-
timal number of requests for MERLIN and its efficiency
vary as relevant problem parameters such as the encounter
distribution, the client and server availability percentages,
packet format sizes, file size, and repository size are
varied.

• We show that the proposed optimized link download
protocol outperforms alternative baselines on empirically
derived link duration distributions.

• We identify more sophisticated settings beyond the scope
of this work for which the corresponding modeling and
optimization solutions are posed as open problems to be
considered in future work.

The rest of this paper is organized as follows. In sec-
tion II, we model the problem mathematically and present the
relevant notation. In section III, we present and prove relevant
properties of the optimal solution. In section VI, we present
numerical simulations and discuss how the optimal solution
varies with various parameters. We place our contributions in
the context of related prior work in section ??, and finally,
present concluding comments including suggestions for future
work in section VII.

II. MODEL AND NOTATION

We consider a single encounter between two mobile
nodes, one a server with partial availability of content, the
other a client. The encounter time between them is modeled
as a discrete random variable T with a known cumulative
distribution function FT .

There is a set of N files, and the server has an arbitrary
subset of these available, denoted by the binary vector VS . Let
the number of non-zero elements in this vector be denoted as
nS . The client also has an arbitrary subset available initially,
denoted by the binary vector VC , with nC non-zero elements.

Each file is of size SF bytes. For simplicity, we normalize
the time steps to be such that 1 byte could be transferred in a
unit time step (i.e. we have a normalized link rate).

A transmission takes the form of packets. Each packet
has a header size of SH bytes, and a maximum data size of
SD. For some positive ρ, SF = ρSD. If ρ ≤ 1, then multiple
files (namely b 1ρc files) fit into one packet. Otherwise, multiple
packets (namely dρe packets) are needed to transmit each file.

At the beginning of the encounter, we assume that the
server advertises the number of files it has available (i.e.,
nS). We initially assume that the exact set of files available is
equally likely to be any of the possible

(
N
nS

)
configurations.

We will refer to this as the Independent File Availability (IFA)
assumption.

Let VC(tend) represent the vector of files available at
the client at the end of the response, and nC(tend) the
corresponding number of files.

In order to assign relative utility to each file, we asso-
ciated with each file i a non-negative weight wi. If all wi
are equal, this is the special case where all files are equally
important. The client’s goal is to choose a set of file ranges to
request from the server that maximize the expected, weighted
sum of all files in the client vector, which we call the total
utility VC . The weighted sum of a range’s file weights R is
denoted W (R).

As noted in the introduction, with a focus on short-
encounter-duration scenarios with significant switching costs,
we assume that the communications between client and server
are restricted to take place over a single phase. The client is
allowed one request period; after which, the server is allowed
one response period. Each transmission may consist of one or
more packets.

The client requests Rb contiguous ranges of needed files
(Rb is a design variable to be optimized). These ranges are rep-
resented by two indices. Each index requires a certain number
of bytes to represent, denoted c. Intuitively, c = O(logN).
The server responds by sending all available files in these Rb
ranges.

III. OPTIMIZING REQUESTS

Intuitively, in this problem, there is a trade-off between
the size of the request and the response. If the number of
files requested is too few, then all of those requests may be
satisfied, but there may be idle time left over in the encounter.
Alternatively, if the number of files requested is too large, then
there may not be enough time for the server to send the files
in response.

Let mr be the number of request packets. If mr =



Fig. 1. Illustration of client file availability set Vc, with a set of missing file
ranges, list of ranges sorted by size, and the corresponding utility function
UVc

d 2·Rb·c
SD
e, then max(mr − 1, 0) of the packets will be fully

packed, and the last packet will be of size sr which is 2 ·Rb ·c
(mod SD).

To map the number of ranges requested to the sum of file
weights within those ranges, we use a utility function UVc

:
R 7→ R. UVc

(Rb) outputs the summed weight per byte of the
files in the top (ranked in order of size) Rb contiguous file
ranges in the client’s file vector Vc. Note that this indicates
UVc is a monotonically increasing function in Rb.

We consider the two possible cases:

• Case 1: The client sends its request and receives all of the
files that the server has within the Rb requested ranges.
Because we assume IFA, we can model the utility of the
data received, dr1, by the following equation. Note that
this is an increasing function in Rb because U was shown
to be monotonically increasing above.

dr1 =
nS
N
· UVc

(Rb) (1)

• Case 2: The client attempts to send its request and doesn’t
receive all Rb requested ranges because the encounter
ends either during the request or response phase. Let
F (x) be the top ranked x files in our ranges. We do
this because the server will respond with the file data in
decreasing order of wi. We consider the utility of received
files, dr2, in two sub-cases: (2A): trequest <= te and no
files are received, or (2B) trequest > te and some of the
files are received.

dr2 =


0 (2A)

W (F (b te − (SH ·mr + 2 ·Rb · c)
SF

c)) (2B)

(2)

A. Claim 1:

Maximizing the expected total utility of the data down-
loaded is equivalent to maximizing total utility of files re-
quested within a given request period trequest, under the IFA
assumption.

We omit the proof of this simple claim. Essentially, it
points out that since the file availabilities at the server are all
independent and uniform, it suffices to maximize the number
of files rather than giving priority to any particular set of files.

B. Claim 2:

The way to request k file ranges so as to maximize their
total utility within a given request period trequest is to request
the top k ranges in decreasing order of W(·).

Proof of Claim 2: Consider trequest time to send a request
and that each range request has the same cost (i.e. start/end
index). Assume that we are going to request m file ranges,
but we have not chosen the top m ranges in order of total
utility. Call these ranges Ri for i = 1, 2, 3, . . .m. We assume
this is the optimal policy to maximize the utility of the entire
download (looking for a contradiction).

Because we did not request all ranges (this would give
a contradiction), then for some range Rk we requested, one
of two things is possible. If W (Rk) = W (Rl) ∀l > m, then
we can swap out Rk and Rl without a change to the expected
total weighted sum of ranges, so ranking in order of W (·) is
optimal. If this is not the case, then it must be that W (Rk) >
W (Rl) for some l > m. The cost to request ranges Ri for i =
1, 2, 3 . . . l− 1, l+1, . . .m, k is the same as i = 1, 2, 3, . . .m,
but the expected total utility of files received is less, because
W (Rk) > W (Rl). This gives us a contradiction because we
said our initial policy was optimal. Thus, choosing ranges in
order of decreasing order of W(·) is optimal. �

C. Solution

Proposition: The maximum expected total utility of the
data received from the server is given by the following
equation:

max
Rb

E [min(dr1, dr2)] (3)

Proof: Given an arbitrary value of te from the sample
space, case 1 gives the maximum expected total utility of
data received. This is the expected ceiling for case 2, which
calculates the utility of receiving some or none of the files
requested. Because te is a random variable, we must take the
expectation of the expression in order to find the expected
value. Finally, maximizing this expectation over all possible
values of Rb will give us the maximum expected utility. �

IV. THE MERLIN PROTOCOL

We propose a single-phase download request protocol,
MERLIN. By utilizing the above solution in equation (3), it



maximizes the expected downloaded data over the random du-
ration link. Key inputs to the MERLIN algorithm are the prior
distribution of the link encounter FT , the number of available
items at the server nS (which is assumed to be provided by
the server to the client via a periodically broadcasted beacon
message, which is used by prospective clients to detect the
presence of the server in their vicinity), and VC , the vector
indicating which files are already available at the client and
which ones are not.

We summarize MERLIN’s operation in the following
algorithm.

Algorithm 1 MERLIN - single phase optimal download
request protocol
Require: Inputs (FT , nS , VC)

1. Compute Rb that maximizes equation (3)
2. Client sends request packets containing Rb ranges.
3. Server responds with available files in requested ranges

V. MATHEMATICAL ANALYSIS OF MERLIN

We further analyze the solution given in equation (3),
which is at the core of the MERLIN protocol. Let S(Rb, te)
refer to the term inside the expectation of that expression, i.e.
S = max(0, [min (dr1, dr2)]). S is in fact the downloaded data
with Rb requests if the encounter duration is te. Because of the
randomness in the encounter duration, S is a random variable.
It can be expressed in simpler form (with some minor rounding
approximations) as max(0,min(α ·U(R), te−β ·R)), where
α, β are simplified constants representing problem parameters
(α = ns·SF

N , β = 2c · (1 + SH

SD
), R = Rb, U = UVC

.

It can then be shown that the cumulative distribution
function of S, FS(s) can be expressed in terms of the
distribution of the encounter time T as follows:

FS(s) =


0 s ≤ 0

FT (s+ β ·R) 0 ≤ s ≤ α · U(R)

1 s > α · U(R)

(4)

From this it can be inferred that the expected data
downloaded with R requests is:

E[S(R)] =

∫ α·U(R)

0

(1− FT (s+ βR))ds (5)

One special case in which equation (5) simplifies is that of
an exponential encounter distribution, where FT (t) = 1−e−λt.
In this case, we get:

E[S(R)] =
e−λβR · (1− e−λαU(R))

λ
(6)

Finally, in order to maximize the expected data down-
loaded, we can find the value of R at which E[S(R)] is

maximized. Equation (6) is amenable to numerical calculations
for this purpose, given a U(R) function corresponding to some
fixed client vector VC , and given other problem parameters
such as file size, mean encounter duration, server availability,
repository size, etc.

To derive a closed form expression for E[S(R)] in terms
of R, we fit a quadratic polynomial to the utility function
U(R).This realistic but tractable form for the utility function,
yields insightful, closed-form solutions to find the optimal
request number.

Figure 3 shows the variation of utility function, as the
number of requests are varied, for a fixed client availability
percentage of 35. We then obtain a best fit for the monoton-
ically increasing function U(R), which yields equation (7).
Such a fit is described in Figure 4

U(R) = −0.1073R2 + 4.8837R+ 7.2845 (7)

U(R) = 4.2282 + 4.7371(log(R)1.6054) (8)

The log fit described by equation (8) looks like a better
monotonically increasing fit for U(R), however it over esti-
mates the values of optimal request number, when compared
with the quadratic fit, which yields near exact request numbers,
as the empirical data. Though the quadratic fit is not monotonic
at higher values of request numbers, it is acceptable because
of the fact that, the optimal request number is often less than
30 (as seen from empirical data). Moreover, the log fit only
matches the utility function but is no where near the expected
data transferred E[S(R)] , as can be seen from figure 5.
Whereas the quadratic polynomial is the best fit for the utility
function and also maximizes the expected data transferred for
a given mean encounter duration.

Figure 2 illustrates the optimal number of requests re-
quired for varying encounter durations, before and after obtain-
ing the closed form equations. We observe a minute difference
in the request numbers, the reason for which can be attributed
to the assumption that R is continuous.

VI. SIMULATION-BASED EVALUATION OF MERLIN

We first evaluate MERLIN’s performance with respect to
various parameters. These include the probability distribution
of the link duration, size of the repository/files/packet headers,
and the server and client availability ratios.

We then compare our optimized solution with some
baselines using empirically-derived link duration distributions
obtained from two real vehicular mobility traces: one from
632 taxis in Beijing over 24 hours, and another from 1608
buses in Chicago over 30 hours.



(a) Before approximation

(b) After fitting a quadratic polynomial for U(R)

Fig. 2. Comparison of optimal request numbers before and after obtaining
closed form expression for Expected Data Transfer

Fig. 3. Utility as a function of request numbers

Fig. 4. Quadratic and log fit for U(R)

Fig. 5. Expected data transferred as a function of number of requests

A. Impact of Parameters on MERLIN Performance

We undertake a comprehensive set of simulations to
evaluate MERLIN and understand how its performance varies
with respect to various problem parameters.

In our simulations, the following are the default set of
values (each particular experiment varies some of the param-
eters while keeping the others fixed at the default values):

• 500 files
• 95% server availability
• 30% client availability
• 200 mean encounter duration in time units (default dis-

tribution: exponential)
• 10 file size (in time units)
• 2 header size (time units)
• 2 time needed to describe each range



(a)

(b)

Fig. 6. Percentage of Time Spent on Varying Tasks for different encounter
distributions: (a) Exponential (b) Zipf

Figure 6 shows the percentage of time spent on different
tasks as the number of requests is varied, for two different en-
counter distributions: Exponential and Zipf. It can be seen that
as the number of requests is increased the number of request
packets increases and the amount of idle time decreases. The
data transfer time initially increases then decreases indicating
the presence of a particular number of requests (neither too
small nor large) that is optimum. This figure also shows that
the Zipf distribution results in a greater efficiency.

Figure 7 shows how the optimal request size and optimal
efficiency (the ratio of expected data transferred in time units
to the total encounter duration) varies with the mean encounter
duration for exponential distribution. As may be intuitively
expected, as the mean duration of the encounter increases,
there is more time for a greater number of requests as well as
greater data transfer.

Figure 8 shows how the optimal request size and effi-
ciency vary as the header size is increased. Increasing the
header size could be viewed as an effective reduction in the
mean encounter duration; thus we would expect to see a lower
efficiency, and about the same or fewer requests.

Figures 9 and 10 help us understand how the optimal
number of requests and the corresponding efficiency vary as
the percentage availability of files at the client and at the
server are varied. As the number (percentage) of files already

Fig. 7. Optimal request size and optimal performance (normalized expected
data transferred) versus mean encounter duration for exponential distributions

Fig. 8. Optimal request size versus header size and optimal performance
versus header size



Fig. 9. Optimal request size versus client availability percentage and the
optimal performance versus client availability percentage

Fig. 10. Optimal request size versus server availability percentage and the
optimal performance versus server availability percentage

Fig. 11. Optimal request size and performance versus file size

available at the client increases, the requested ranges become
more fragmented, more requests are needed to ask for the same
number of files, incentivizing the client to send more requests,
and at the same time, there is less time spent on productive
data transfers. As the server availability increases, requests are
more productive and efficient, and therefore fewer ranges need
to be requested.

Figures 11 and 12 help us understand how the optimal
number of requests and the corresponding efficiency vary as
the size of files and number of files in the repository are varied.
As the file size increases, fewer file requests can be satisfied,
and hence the number of requests is decreased. The efficiency
initially increases due to more time spent in file transfer then
decreases as the percentage of time downloading incomplete
files increases with the file size. Increasing the repository size
makes requests more productive (each ”empty” request range
at client corresponds to more files, and also more files are
available at the server for the same availability percentage).
Hence fewer files need to be requested, and the efficiency
increases.

B. Algorithms Used in Baseline Comparisons over Real Trace
Distributions

We compare MERLIN to two other baseline algorithms
described below:



Fig. 12. Optimal request size and performance versus repository size

1) Push: In this algorithm the server sequentially sends
each item that it has to the client without a request phase from
the client.

2) Deterministic OPT: In this algorithm the shape of the
contact time distribution is not taken into account, only the
mean of the distribution. In other words, it is assumed that
the encounter duration will be deterministically equal to the
mean value, and the number of requests is chosen so as to
optimize for such a deterministic encounter duration.

C. Structure of Real Trace Distributions

As shown in figure 13, we look at two sets of empirical
link duration distributions, one from Beijing taxis, the other
from Chicago buses. The Chicago bus contact time distribution
has an exponential structure. This is consistent with the
knowledge that the buses are on scheduled routes which will
not leave many buses near each other. The Beijing Taxi dis-
tribution is also somewhat exponential; however, interestingly,
it should be noted that the distribution of longer encounters
(100 seconds or more) has an almost bimodal shape, which
represents the encounters in which two taxis are following the
same route. In the simulations below, we compare MERLIN,
Deterministic OPT and Push schemes for the distribution from
the Chicago trace, and for the distribution from the Beijing
trace.

D. Simulation: Baseline Comparisons over Real Trace Distri-
butions

In figures 14 and 15, we compare the efficiency of the
three presented algorithms as the client availability percentage
is varied, for the Chicago trace as well as for the Beijing
trace (focusing on the long encounters which show the bimodal
behavior). We observe that the pull-based approach adopted
by MERLIN is better than the push approach except in some
cases when the server availability percentage is low. This is
because when the server availability is low, client pull requests
by MERLIN are more likely to result in “misses” resulting in
lower efficiency.

In both traces, moreover, the performance of MERLIN
(which takes into account the full prior encounter distribution)
is better than that of deterministic OPT. This is because
MERLIN takes advantage of knowledge of the full distribution
of encounter, unlike deterministic OPT in which the number of
requests is determined under the assumption that the encounter
will last deterministically for the mean duration.

E. Comparison of MERLIN protocol with the Genie

We consider a pull based Genie that can both maximize
the data transfer and reduce the idle time to an extent that
no other pull based protocol can perform better than it.The
optimal number of requests required by MERLIN and the
Genies that maximize data transfer and minimize idle time is
illustrated in Figure 16. Figure 17 compares the performance
of such a Genie to the MERLIN protocol. It can be observed
that MERLIN performs very close to the best efficiency. This
also leads to the conclusion that single phase version of
MERLIN outperforms the iterative multiphase version due to
the fact that, any multiphase version will utilize more time in
requesting, which adds to the time spent in non useful data
transfer.

VII. CONCLUSION AND FUTURE WORK

We have introduced in this work a novel problem — how
to design an efficient single-phase download request protocol
for random short-duration communication links, which arise
in the context of vehicular, D2D, and other intermittently
connected mobile networks. As a solution, we have presented
MERLIN, a protocol that is provably optimal in the case
where clients make a request in the form of needed file-
ranges that the server, whose file distribution is assumed to
be independent and uniform, responds to in a single phase.
We have shown how the optimal number of requests can be
derived mathematically, and through simulations investigated
how various parameters affect MERLIN performance.



Fig. 13. Distribution of Contact Times for Beijing Taxis and Chicago Buses

(a) Chicago (b) Beijing - Long

Fig. 14. Comparison of Efficiency of different algorithms as client availability percentage is varied, for the real trace distributions

(a) Chicago (b) Beijing - Long

Fig. 15. Comparison of Efficiency of different algorithms as server availability percentage is varied, for the real trace distributions



Fig. 16. Comparison of optimal number of requests required by MERLIN
and the Genie

Fig. 17. Comparison of performance of MERLIN with a Genie that maximizes
data transfer

We believe this work opens the door to a wide range of
new and interesting investigations on the subject of optimizing
data downloads over random duration encounters.

A direction for future work is to relax various assump-
tions made in the present model. For instance, if the availabil-
ity of files is non-independent across files, then the ordering of
request-ranges may be quite different, and also the client may
”learn” from the response at each stage something about the
file availability at the server; this could introduce a tradeoff
between using the early requests to improve understanding of
the server state and using them to maximize link efficiency
(possibly leading the way to multi-armed bandit-type formu-
lations which have a similar exploration-exploitation tradeoff).

We can imagine a scenario where multiple requests are
generated by iterating over a sequence of optimally generated
single-phase requests. While each stage of the iterative algo-

rithm is optimized, it may be possible to improve the overall
performance over multiple phases further by formulating the
online problem as a stochastic dynamic program. We are
currently working on this extension.

Another direction to be explored is to change the archi-
tecture of the download process from the purely “pull”-based
scheme described to one that incorporates “push” from the
server regarding its available files. Intuitively, the latter may be
more efficient when the server availability is low. It may also
be possible to develop hybrid schemes in which the choice
of push/pull is determined at each phase depending on the
availability percentages at the client/server respectively.

In dense environments where the client may have a
number of possible servers to select from, there could also
be enhancements to the protocol that consider the optimal
selection of servers, possibly even dynamically switching
between various servers over time.

Further, while we have currently assumed that the goal is
simply to maximize the number of downloaded files, it may
be beneficial in some settings to indicate different weights or
priorities for the various files and try to maximize a suitable
weighted objective function. For instance, this may be a way
to optimize for some global objective function pertaining
to dissemination of various files with different geographical
demand distributions.

REFERENCES

[1] Hassnaa Moustafa, and Yan Zhang, Vehicular networks: techniques,
standards, and applications, Auerbach publications, 2009.

[2] U. Lee, R. Cheung, and M. Gerla, “Emerging vehicular applications,”
Vehicular Networks: From Theory to Practice, Chapman and Hall/CRC,
2009.

[3] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device-to-
device communication as an underlay to LTE-advanced networks,” IEEE
Communications Magazine, 47(12), 42-49, 2009.

[4] A. Asadi, Q. Wang, V. Mancuso,“A Survey on Device-to-Device Com-
munication in Cellular Networks,” IEEE Communications Surveys and
Tutorials, vol.16, no.4, pp.1801-1819, 2014

[5] Abbas Jamalipour, Yaozhou Ma, “Intermittently Connected Mobile Ad
Hoc Networks: from Routing to Content Distribution”, Springer, 2011.

[6] Matthias Grossglauser and David Tse, “Mobility increases the capacity
of ad-hoc wireless networks.” INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE. Vol. 3. IEEE, 2001.

[7] Zhensheng, Zhang, “Routing in intermittently connected mobile ad hoc
networks and delay tolerant networks: overview and challenges.” Com-
munications Surveys and Tutorials, IEEE, (2006): 24-37.

[8] Thrasyvoulos Spyropoulos et al., “Routing for disruption tolerant net-
works: taxonomy and design.” Wireless networks 16.8 (2010): 2349-2370.

[9] Kevin C. Lee, Uichin Lee, and Mario Gerla. “Survey of routing protocols
in vehicular ad hoc networks.” Advances in vehicular ad-hoc networks:
Developments and challenges (2010): 149-170.

[10] Anders Lindgren, Avri Doria, and Olov Schelen, “Probabilistic routing
in intermittently connected networks.” Service Assurance with Partial and
Intermittent Resources. Springer Berlin Heidelberg, 2004. 239-254.

[11] Aruna Balasubramanian, Brian Levine, and Arun Venkataramani, “DTN
routing as a resource allocation problem.” ACM SIGCOMM Computer
Communication Review 37.4 (2007): 373-384.



[12] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra, “Efficient routing in intermittently connected mobile net-
works: The single-copy case.” IEEE/ACM Transactions on Networking
(TON) 16.1 (2008): 63-76.

[13] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra, “Efficient routing in intermittently connected mobile net-
works: the multiple-copy case.” Networking, IEEE/ACM Transactions on
16.1 (2008): 77-90.

[14] Gabriel Sandulescu and Simin Nadjm-Tehrani, “Opportunistic DTN
routing with window-aware adaptive replication.” Proceedings of the 4th
Asian Conference on Internet Engineering. ACM, 2008.

[15] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden, “Cabernet: ve-
hicular content delivery using WiFi,” 14th ACM international conference
on Mobile computing and networking (MobiCom) 2008.

[16] , Elizabeth M. Daly, and Mads Haahr, “Social network analysis for rout-
ing in disconnected delay-tolerant manets.” Proceedings of the 8th ACM
international symposium on Mobile ad hoc networking and computing.
ACM, 2007.

[17] Jing Zhao, and Guohong Cao, “VADD: Vehicle-assisted data delivery
in vehicular ad hoc networks.” Vehicular Technology, IEEE Transactions
on 57.3 (2008): 1910-1922.

[18] Zhang, Yang, Jing Zhao, and Guohong Cao, “On scheduling vehicle-
roadside data access.” Proceedings of the fourth ACM international
workshop on Vehicular ad hoc networks. ACM, 2007.

[19] Yang Zhang, Jing Zhao, and Guohong Cao, “Roadcast: a popularity
aware content sharing scheme in vanets.” ACM SIGMOBILE Mobile
Computing and Communications Review 13.4 (2010): 1-14.

[20] Uichin Lee, J.S. Park, J. Yeh, G. Pau, M. Gerla, “Code torrent:
content distribution using network coding in vanet.” Proceedings of the
1st international workshop on Decentralized resource sharing in mobile
computing and networking. ACM, 2006.

[21] M. Sathiamoorthy, A. Dimakis, B. Krishnamachari, and F. Bai, “Dis-
tributed storage codes reduce latency in vehicular networks,” IEEE
INFOCOM, 2012.

[22] W Gao, Q Li, B Zhao, G Cao, “Multicasting in delay tolerant networks:
a social network perspective.” Proceedings of the tenth ACM international
symposium on Mobile ad hoc networking and computing. ACM, 2009.

[23] X. Zhuo, Q. Li, G. Cao, Y. Dai, B. Szymanski, T. La Porta, “Social-
based cooperative caching in DTNs: a contact duration aware approach,”
IEEE 8th International Conference on Mobile Adhoc and Sensor Systems
(MASS), 2011.

[24] R. Ludwig, B. Rathonyi, “Link Layer Enhancements for TCP/IP over
GSM,” IEEE INFOCOM 1999.

[25] Kota, S.L.; Hossain, E.; Fantacci, R.; Karmouch, A., “Cross-layer pro-
tocol engineering for wireless mobile networks: part 2,” Communications
Magazine, IEEE , vol.44, no.1, pp.83,84, Jan. 2006.

[26] B. Yu, and F. Bai, “ETP: Encounter Transfer Protocol for opportunistic
vehicle communication.” IEEE INFOCOM, 2011.


