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Abstract— We study a state-tracking problem in which the
background random process is Markovian with unknown real-
valued states and known transition probability densities. At
each time step the decision-maker chooses a state as an action
and accumulates some reward based on the selected state and
the actual state. If the selected state is higher than the actual
state, the actual state is fully observed in expense of over-
utilization cost. Otherwise, the decision-maker has to pay under-
utilization cost and could only observe the actual state partially
(that it is higher than the selected state). Thus, the decision-
maker faces asymmetries in both cost and observation. The
goal is to select the actions in order to maximize the total
expected discounted reward over infinite horizon. We model
this problem as a Partially Observable Markov Decision Process
and formulate it in two different ways: (i) belief-based, and (ii)
sequence-based. In the sequence-based formulation, only two
parameters matter to define the sequence of actions, the last
fully observed state and the time passed from the last observa-
tion. We prove key structural properties of the optimal policy
including a lower bound on the optimal sequence. Further, for
a specific form of processes we present an upper bound on the
optimal sequence. Both lower and upper bound sequences have
percentile threshold structure and are monotonically increasing
with respect to the last fully observed state.

I. INTRODUCTION

In many network protocols, the devices must set the
communication parameters to maximize the utilization of
the resource whose availability is a stochastic process. One
prominent example is congestion control, in which a trans-
mitter must select the transmission rate to utilize the available
bandwidth, which varies randomly due to the dynamic nature
of traffic load imposed by other users on the network [1],
[2]. Another example is in a communication system where
the transmitter must select the transmission rate in order to
maximize the number of successfully transmitted bits [3].

Structure of optimal policies has been established for
simpler related problems of optimizing transmissions over
a two-state Gilbert-Elliott channel in [3], [4]. In this work,
we consider a more general case of real-valued Markovian
channel. Our recent related work [1] is about a Bayesian
congestion control problem with a discrete-state space where
a source must select a transmission rate at each time step
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over a network with a Markovian available bandwidth such
that the less congestion occurs (less over-utilization cost)
and more information about the actual bandwidth reveals.
In this example, the bandwidth maps to the actual state of
the background random process and the transmission rate
maps to the selected state.

In this paper we consider a generalized version of the
problem where the actual state of the background Markovian
random process could be any real value in a defined range.
We assume that the transition probability densities for the
background process are known but the actual state is not fully
observable. The goal it to select a state as an action at each
time step in order to maximize the total expected discounted
reward over infinite horizon. The reward accumulated at each
time step is a piecewise linear function of the difference
between the selected and the actual states. If the selected
state is higher than the actual state, the decision-maker gets
full observation about the actual state which is useful for
future decision, but he has to pay an over-utilization penalty.
The decision-maker may want to behave conservatively and
select a lower state. But in this case he gets only partial
observation about the state, that it is higher than the selected
action. In this case, he has to pay under-utilization cost
which is usually less than the over-utilization cost. Therefore,
the decision-maker faces a trade-off between accumulating
higher immediate reward and getting more information about
the actual state.

We model this problem as a Partially Observable Markov
Decision Process (POMDP) problem since the decision-
maker does not have full observation about the actual state.
This POMDP problem does not have an efficiently com-
putable solution [5], i.e. the optimal policy which could
provide the solution of the POMDP problem is not com-
putationally tractable. We present key structural properties
of the optimal policy as well as a new formulation of the
problem based on the sequence of the actions. We show that
the optimal policy can be perfectly characterized by only two
parameters: (i) the last fully observed actual state (whenever
the selected state is higher than the actual state, we get full
observation), and (ii) the time steps passed since the last
full observation. Therefore, instead of looking for the best
action at each time step maximizing the expected reward-to-
go, we can look for the best action sequence for each last
fully observed state which will be followed up to the time
step where the action is higher than the actual state. At this
point the actual state is fully observed, namely the last fully
observed state resets to a new value. After this point, we will
continue with the optimal sequence corresponding to the new



fully observed state. To the best of our knowledge, this work
is the first to represent the sequence-based formulation.

We prove that each optimal sequence is lower bounded
by the sequence of actions generated by the myopic policy
starting from the same last fully observed state. The myopic
policy at each time step selects an action which achieves the
supremum of the immediate expected reward, ignoring its
impact on the future reward. We also show that if transition
probability densities preserve the First Order Stochastic
Dominance (FOSD) on Probability Distribution Functions
(PDF), the myopic policy is monotonically increasing with
respect to the last fully observed state. In other words,
for the higher last fully observed states the whole myopic
sequence will be higher than the one starting from a lower
last fully observed state. We show that the myopic policy has
a percentile threshold structure for all transition probability
densities. The percentile threshold structure means that the
selected state is equal to the lowest state above a given
percentile of the PDFs. Further, we consider a specific
form of processes defined as Independent Increment Markov
Chain (IIMC) (See Section VI for definition and [2] for more
details). For these processes, we derive an upper bound on
the optimal sequences with the assumption of zero under-
utilization cost. We show that the upper-bound sequence also
has a percentile threshold structure and follows the same
monotonicity property.

II. PROBLEM FORMULATION

We consider a discrete-time continuous-state Markovian
process whose state is denoted by B;. The transition prob-
ability densities are assumed to be known but the actual
state of the background Markovian process is unknown. At
each time step, the decision-maker selects a state, as an
action, based on the history of observations and accumulates
a reward as a piecewise linear function of the selected state
and the actual state B;.

The goal is to select the sequential actions which maximize
the total expected discounted reward accumulated over the
infinite horizon. We formulate our decision-making problem
within a POMDP-based framework defined as follows:

o State: The actual state of the Markov process B; at
time step t, can be any real number in the range of
M = [m, M], i.e. the state space.

e State transition: The transition probability densities of
the actual states over time are shown Vm < x,y < M
by

p(zly) := P(B; = x|Bi—1 = v).

o Action: At each time step, we choose an action r; from
the action space which is equivalent to the state space
M.

e Observed information: The observed information at
time step ¢ is defined by the event o;(r;) € O which
will be useful for the decision at the next time step. The
possible observations corresponding to the action 7; is
as follows:

- oy(ry) = {By = i},Vi € [m,r) is the event of fully
observing the actual state B;. This corresponds to the
selection of the state higher than B,.
- 0oi(ry) = {B > r¢} is the event of partial observing
that B, is larger than or equal to the selected state.

e Reward: The immediate reward earned at time step ¢ is
defined as follows:

B, — Cy(ry — B
R(Btﬂ“t)Z qby (t t)
qT’t*Cl(Bt*Tt)

if r, > B,

1
ithSBh ()

where (), and C} are the over-utilization and the under-
utilization cost coefficients, respectively, and q is the
gain unit.

III. RELATED WORK

We review some recent works in the literature dealing with
similar problmes. Johnston and Krishnamurthy [4] consider
the problem of minimizing the transmission energy and
latency associated with transmitting a file across a Gilbert
Elliott fading channel, formulate it as a POMDP, identify a
threshold policy for it, and analyze it for various parameter
settings. Laourine and Tong [3], consider betting on Gilbert
Elliott Channels with three possible choices of actions, and
shows that a threshold-type policy consisting of one, two,
or three thresholds depending on the parameters, is optimal.
Wu and Krishnamachari [6] study the optimal transmission
policy for a Gillbert-Elliot channel with unknown statistics.

This problem is also known as Newsvendor problem with
partially observed perishable inventory levels, in the context
of operation management research. The newsvendor problem
maps the demand to the background random process and the
inventory level (how many items to store in order to satisfy
the demand) to the action [7]. Most of the works done in the
inventory management literature, e.g. [8], [9], assume that the
demand process is independent and identically distributed
(i.i.d) at different time steps. With this assumption, the
optimal policy is exactly equal to the myopic policy. But
here we assume that the background process is Markovian;
thus the myopic policy provides only a lower bound on the
optimal policy.

Bensoussan et al. [10] consider a Newsvendor problem
with the assumption of Markovian demand process. They
use the un-normalized beliefs to prove the existence of the
optimal policy and show that the myopic policy provides
a lower bound on the actions selected by optimal policy.
In this paper, in contrast to their work, we introduced
a sequence-based formulation and show that the optimal
sequence is lower bounded by the sequence generated by
the myopic policy. Further, by investigating a specific form
of the transition probability densities, called IIMC, we derive
an upper bound for the optimal sequence which also has a
percentile threshold structure similar to the myopic sequence.

IV. TWO EQUIVALENT VALUE ITERATIONS

We can represent our decision-making problem in two
different ways. (i) Belief-based: We define our Prior Belief
Distribution (PBD) as the probability density function (PDF)



of our beliefs about the states, shown by f;(z), at each time
step and try to maximize the expected discounted reward-
to-go corresponding to the PDF. (ii) Sequence-based: We
formulate the problem based on the action sequences starting
from each possible fully observed state and try to find the
best sequence to maximize the total expected discounted
reward. We consider both formulations and show that they
are equivalent.

A. Belief-Based Value Iteration

In the belief-based formulation, the decision-maker keeps
a belief about the probability distribution of the state space
given all past observations, denoted by f;(x) where z € M
indicates the actual state, and selects the action based on the
PBD. It can be shown that the belief is a sufficient statistic
of the complete observation history (see e.g., [11]).

The PBD updating for the next time step, upon the selected
action 7, and the observation, is given Yz € M by:

fn]y T, [fi](a)p(z|a)da  if ry < a4
p(x]xy) if ry >

where 7T, is a non-linear operation on a PBD f, as follows:

frr1(z) = { (2)

Tfl(e) {0 if v <r

r €r)= f(x) 1 >

T Fa)da ifz>r

The immediate expected reward, achieved by selecting the

action 7, and based on the PBD f; is obtained by taking
expectation of (1), as follows:

3)

M
R(fy;re) = /: fi(@)R(x, ry)dx

M
= / fe(@)[qre — Ci(z — r)]dx
Tt )
+ fi(x)[gx — Cy(ry — x)]dx. 4)
i=m
The goal is to maximize the total expected discounted
reward over all admissible policies 7, given by

max J7(fo) = maxE[Y_ S'R(Bir)lfol, ()
t=0

where 0 < B < 1 denotes the discount factor and fy is
the initial PBD. J™(fy) is the total expected discounted
reward accumulated over the infinite horizon under policy
7 and starting in the initial PBD fy. The policy 7 specifies
a sequence of functions 71, s, ..., where m; maps a PBD f;
to an action at time step ¢, i.e., 7, = m(f;). The optimal
policy denoted by m°P! is a policy which maximizes (5).
This problem may be solved using the following fixed point
equations:

V(fe) =sup V(fe;re), 6)

V(feire) = R(fiim) + B / V(plarl) i)y

m

M M
+ BV ( / T,, [ (@)p(z]a)da) / Jo(w0)dae,

where sup is the notation for the supremum. The existence
of the optimal policy for the above value iteration is proved
in [10]. A policy 7°* is optimal if for t = 1,2, ...; 7P (f,)
achieves the maximum in (6), denoted by:

r{"(fi) = argmax V(fy;r). (7)

B. Sequence-Based Value Iteration

In the sequence-based formulation, instead of the action
for each PBD, the decision-maker makes his decision about
the whole action sequence starting from any fully observed
state. We can formulate the problem in this way because the
optimal policy can also be perfectly characterized by only
two parameters; (i) the last fully observed state, namely sy,
and (ii) the time steps passed since the last observation, say
tr. In other words, for each s, there exists an optimal se-
quence which can be followed up to the nest full observation
where the action is higher than the actual state and sz will
be reset to the new full observed state.

Now let us denote the sequence of actions starting from
state ¢ by a(i,.) = {a(i,1),a(s,2),...} where a(i,tr) is
the action selected at ¢; time steps passed from the last
fully observed state ¢. An example of action sequences taken
by an arbitrary policy and a sample path of the Markovian
random process is shown in Fig. 1. Let the policy follows
the shifted version of the action sequence a(0,.) after any
full observation, i.e. if the state ¢ is fully observed, the policy
will follow the action sequence of a(0,.) 4. Let assume the
actual state at t = 0O is fully observed. Therefore, the action
sequence corresponding to the initial point (s, = 2) which
is a(0,.) + 2 is followed up to a point where the action
sequence exceeds the sample path. At this point (t = 6)
the actual state is fully observed and the sequence will
be reset to the actual state (s = 3.25). After this point,
the sequence corresponding to the new fully observed state
a(3.25,.) = a(0,.) + 3.25 is followed. At the reset point the
over-utilization cost occurs and at the other time steps the
under-utilization costs have to be paid.
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State

g
.____"___-n----r
s
] ___.tr’ - =Action sequence a(0,.)
L —+—A sample path

# Reset points

r” i i —e—Selected actions
1 2 3 4 5 6 7 8 9 10 "

Fig. 1. An example of executing an arbitrary policy on a sample path of
the Markovian process.

The goal of the decision-maker is to find the best policy of
sequences in order to maximize the total expected discounted
reward. The supremum of the total expected discounted
reward collected from the last fully observed state sy, = ¢ is



given by:

W(Z) = sup W(i;a<i>'))v ()
a(i,tr)€E[m, M| Vi,

. . > a(ite) t .

W(i;a(i,.)) = Z / Pi;Z(i,lthfl),de
trp=17I1=m

tr—1 B
X [Z 67-71(((1 + Ol)a‘(i77-) - CZB(Za T))

=1

+ 87N (q 4 Cu)j — Cualistn)) + BEW ()], (9)

where the term inside [.] given in (9) is the expected dis-
counted reward accumulated conditioned on the occurrence
of the following event: no reset (i.e. full observation) at
time steps 1,2, ...,t;, — 1 passed from the last fully observed
state s;, = ¢ and following the action sequence of a(i, 1 :
tr) ={a(i,1),...,a(i,tr)} and reset to the actual state j at
tr,. The probability of occurrence of this event denoted by
P;,Z(z',l:tL—l),j is given by (10) for m < 4,5 < M and is 0
otherwise.

Note that B(i,7) is the mean of the actual state at time
step 7 passed from the last fully observed state ¢ without any
reset before 7, given by:

B M
B(ivT) :/ ’ )xf)iq,—a(i,l:r—l),mda:'

W (4) can also be computed recursively by substituting ¢ with
7 in (8). The optimal sequence achieved by the above value
iteration is given by:

a?(i,.) = arg  sup

a(i,.)€[m,M]

W(ia(i, ). (D

The actions of this optimal sequence is equivalent to the
optimal actions obtained by the belief-based value iteration
given in (7), stated in the following proposition.

Proposition 1: There exist deterministic functions of sy,
last fully observed state, and ¢, time passed since observing
the actual state, that determines the action selected by the
optimal policy. In other words, the sequence achieving the
supremum in (8) is equivalent to the sequence of the actions
achieving the supremum in (6).

Proof: The solutions of the two value iterations given
in (6) and (8) are equivalent since each pair of (sr,tr)
corresponds to a specific PBD. The optimal policy for the
belief-based formulation at each time step selects the action
which achieves the supremum in (6) based on the PBD at
that time step. For ¢;, = 1 passed from sz, the PBD is equal
to f:ftl (z) = p(z|sr). Note that we use the subscript of s,
and t;, for PBD to show that this PBD corresponds to the
case of passing ¢ time steps from the last fully observed
state s;, with no reset and we use the superscript opt for
PBD to show that it is generated after selecting the optimal
actions in the previous time steps. Now at the time step %,
if we already know the optimal actions for the time steps
T =1,2,...,tr, — 1 passed from sy, we can compute the

corresponding PBD as follows:

M
@) = [ Ty e (@bl

for x € [m,M] and O otherwise and find the optimal
action based on this PBD. Therefore, the optimal sequence
found based on sy, and 7, corresponds to the optimal policy
introduced in (7). Thus for any s;, € M,

rP [P = aP (s, T), VT = 1,2,

O

V. STRUCTURAL PROPERTIES OF MYOPIC AND OPTIMAL
POLICIES

In this section, we present some key properties of the
myopic and optimal policies for both the belief-based and
the sequence-based formulations. We show that any property
which holds for the actions in the belief-based formulation
is also valid for the sequences in the sequence-based for-
mulation with some constraints on the transition probability
densities.

A. Belief-Based Formulation: Properties of Myopic and Op-
timal actions

In the belief-based formulation, we can derive the myopic
action which maximizes the immediate expected reward
given in (4) and has a percentile threshold structure, for any
PBD f, as follows.

; . " q+C
myOplC — f . —
r (f) = inf{r e M z:mf(x)dx 7(]_'_6,[_’_0“}
_ + C
= F~! T . 12
(q—i—Cl—i—Cu (12)

where F~1(y) = inf,{F(z) > y} is Inverse Cumulative
Distribution Function (ICDF), and F'(z) is Cumulative Dis-
tribution Function (CDF) of the states. And the optimal
action is bounded by the myopic action from below (See

[2D).
Ff) 2 (),

Now let us present an ordering of the myopic actions based
on the ordering of PBDs defined below.

Definition 1: (First Order Stochastic Dominance, [12])
Let fi,fo € B be any two PBDs. Then f; First Order
Stochastically dominates fy (or f; is FOSD greater than
f2), denoted as f1 >, fo, if for all r, Fy(r) < Fy(r) or
equivalently,

(13)

fi(x)dz > fa(z)dz.

This ordering Will be preservedsz)? the updated PBD of the
myopic policy at the next time step if the transition probabil-
ity density has the FOSD-preserving property defined below.

Definition 2: (FOSD-preserving transition probability
density) The transition probability density p(x|y) is
FOSD-preserving if for any f1 >; fa,

M M

f1)p(zly)dy > F2(y)p(z]y)dy.

y= y=m
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t
Pz',a(m:t—l),j

The ordering of the myopic actions are given in the
following lemma which is needed to prove the properties of
the myopic and the optimal sequences in the next subsection.

Lemma 1: If f1 and f5 are two PBDs such that f; > fo:

T;nyo;mic > r;nyopic’ (14)
Tnvoric[f1] 25 Tyyvonie [ 2], (15)

where r"YP'¢ = pmyopic(f,) is the myopic action corre-

spondlng to f; fori=1,2.

Proof: Obviously, by definition of FOSD-ordering, the
myopic actions for f; and f> obtained from (12) have the
relationship given in (14). Now to prove (15) we have:

M fM fi(z)dz
T myopic dr = =
/FT pmoric [f1] (z)dx fx]\ir?y”’” fi(x)da

Jot, Fola M
> —T :/ T myopic[ fo] (x)dx.
frznyopu‘ fg( )dl‘ T=r 2
since f pmonic fi(z)dx = f%yopu f2(x)dz and this com-
pletes the proof by Definition i O
Note that from (15) and FOSD-preserving property of the
transition probability densities, the updated PBDs generated
based on the previous myopic actions and also the corre-
sponding myopic action will follow similar FOSD-orderings.

B. Sequence-Based Formulation: Properties of Myopic and
Optimal sequences

In the sequence-based formulation, solving the value it-
eration to get the optimal action sequences is intractable.
Instead, one simple sequence is the myopic sequence which
can be derived from (12), Vi € M, as follows:

T

pit

myopic | ; 1
a (7'7 tL) i,amyopic(i 1:4r), de

= inf{r € M:
j=m
9+ G
q+Ci+Cy

Note that to compute the ¢r-th action of the myopic
sequence we should have computed the previous actions of
the sequence. Now we present an ordering of the myopic
sequences in the following proposition.

Proposition 2: For FOSD-preserving transition probabil-
ity densities, we have the following properties for the myopic
sequences with different last fully observed states:

), Vi > 1.

a™P (i, tr) > @™ (G L), Vi > g, Vi,

which shows that the myopic sequence for the higher fully
observed states is above the one for the lower fully observed
states.

The proof could be achievable by induction on ¢ and
using Lemma 1. Now let us present the relationship between

M M M
/l;l—a(i,tl) \/ltz_a(i,tQ) /ll—a(i,l)

p(ll‘i)-np(lt—lut—Q) (l |lt 1)dll dlt 2dlt 1 (10)

the optimal and the myopic sequences in the following
theorem.

Theorem 1: The optimal sequence is lower bounded by
the myopic sequence starting from the same fully observed
state sy..

CLOpt(SL, tL) 2 amyopic(sI” tL)7 VtL.

The proof of the theorem is achievable using the following
lemma.

Lemma 2: For FOSD-preserving transition probability
densities, starting from the initial PBD fj, the following
relationships between the optimal and the myopic actions
and the corresponding updated PBDs hold:

> e (16)
T;}pt Z r;nyopw7 (17)

where 7' and f]"Y°P*° are updated PBDs based on the
optimal and myopic actions at previous time steps, 72P* and
roPt for 7 = 1,2, ...,t — 1, respectively.

Proof: We deﬁne a new set of actions 7,° which
achieve the percentile threshold given in (12) on f;” " Let us
use induction to prove the above inequalities (16) and (17).
To get (17) we will prove that:

T;)pt Z Tm,,o Z r

myopic
t t .

(18)
The first inequality in (18) is achievable by (13). Now we
use induction to prove (16) and the second inequality of
(18). For the base of ¢ = 1 by the assumption we have
OPt — pmyOPic — 0 this the second inequality in (18) for
t =1 holds as an equality.
Now by assuming they are valid for ¢t — 1, for ¢t we get:

Tyove 771 25 Tomo f21 26 Tmuonie f{2477. - (19)
The first inequality comes from the fact that T, f >,
T.,f,¥Yr1 > r9. The second inequality is achieved by
(15), in Lemma 1. By applying FOSD-preserving transition
probability densities to the PBDs in (19), we obtain (16),
and from (14) we get the second inequality of (18). O

VI. UPPER BOUND ON OPTIMAL SEQUENCE

Beside the myopic sequence which provides a lower bound
on the optimal sequence, we can derive a sequence as an
upper-bound on the optimal sequence under zero under-
utilization cost for a specific form of transition probability
densities defined below.

Definition 3: (IIMC Process) The transition probability
densities with the property of Independent Increment Markov
Chain (IIMC) for the state space M = R, satisfies the
following Vy € M:

p(zly) = p(z + aly + a) Yo, z,y € R.



First we recall the following proposition which presents
an upper bound on the optimal action from any PBD for our
continuous-state problem. Later we will use this proposition
to achieve the upper bound on the optimal sequences.

Proposition 3: (From [2]) For IIMC processes and C; =
0, the optimal action is bounded from above by an action,
denoted by 7“?, which is a function of 3 and the coefficients
in the reward function, as follows:

ub -1 q+ U

N =F (q+Cu+U
where U = %(rh —7l) and 7! = sup{z : f(x) # 0} and
r" = inf{z : f(x) # 0} are the lowest and the highest states
with non-zero probability densities, respectively.
The upper bound 7** also has a percentile threshold structure
with an extra term of U in the numerator and the denominator
of the threshold.

Now let us present the upper bound on the optimal
sequence which is achievable from the above proposition.
For IIMC processes and C; = 0, the upper-bound sequences
denoted by aVB(i,.), Vi € M are given by:

) (20)

T

aVB(i,ty) = inf{r € [r!,r"] : / P;ZUB(m:tL))jdj =

j=r!
qg+U
m}, Vtr > 1.
where U 1is the same as what is defined in (20) and
rP = sup{j : P;,ZUB(i,l:tL),j # 0} and 7! = inf{j
PZZUB(i,lth),j # 0}. Therefore we have the following

theorem for the upper bound on the optimal sequence.
Theorem 2: The sequence aV” is an upper bound on the
optimal sequence, i.e. for any sz,

aOpt(SL,tL) S aUB(sL,tL), VtL.
This upper bound sequence has the ordering property as
follows.
Corollary 1: The sequence aV? for FOSD-preserving
transition probability densities, follows the monotonicity
property with respect to the last fully observed state, i.e.,

a"Pi,tr) > a"P(j,ty), Vi > j, Vi
We skip the proofs of the above theorem and corollary due
to their similarities to Theorem 1 and Proposition 2.

VII. SUMMARY AND CONCLUSION

We have considered the tracking problem of real-valued
Markovian random processes in which the goal is to select
the best action sequences starting any full observation in
order to get the supremum of the total expected discounted
reward accumulated over an infinite horizon. We have mod-
eled this decision-making problem as a POMDP in two
different formulations and derived some key properties for
the myopic and optimal policies.

We have shown that the actions can be defined with only
two parameters: the last fully observed state and the time
steps passed since the last observation. Therefore, we can
present the optimal policy with the sequences starting from
any fully observed state. We have proven that the whole

optimal sequence is lower bounded by the myopic sequence
starting from the same fully observed state.

We have presented some properties for myopic policy such
as its percentile threshold structure, and its ordering under
FOSD-preserving transition probability densities. Further, for
IIMC processes, with zero under-utilization cost, we have
derived an upper bound on the optimal sequence which also
has a percentile threshold structure. As a future work, we will
work on deriving the upper bound and an approximation for
the optimal sequence for the general form of transition prob-
ability densities with similar percentile threshold structure.
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