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Abstract—We consider the problem of energy-efficient
transmission in multi-flow multihop cooperative wireless
networks. Although the performance gains of cooperative
approaches are well known, the combinatorial nature
of these schemes makes it difficult to design efficient
polynomial-time algorithms for joint routing, scheduling
and power control. This becomes more so when there is
more than one flow in the network. It has been conjectured
by many authors, in the literature, that the multiflow
problem in cooperative networks is an NP-hard problem.
In this paper, we formulate the problem, as a combinatorial
optimization problem, for a general setting of k-flows, and
formally prove that the problem not only NP-hard but it is
o(n1/7−ε) inapproxmiable. To our knowledge, the results in
this paper provide the first such inapproxmiablity proof in
the context of multiflow cooperative wireless networks. We
further prove that for a special case of k = 1 the solution is
a simple path, and offer a polynomial time algorithm for
jointly optimizing routing, scheduling and power control.

I. INTRODUCTION

In a wireless network, a transmit signal intended for
one node is received not only by that node but also by
other nodes. In a traditional point-to-point system, where
there is only one intended recipient, this innate property
of the wireless propagation channel can be a drawback,
as the signal constitutes undesired interference in all
nodes but the intended recipient. However, this effect
also implies that a packet can be transmitted to multiple
nodes simultaneously without additional energy expen-
diture. Exploiting this broadcast advantage, broadcast,
multicast and multihop unicast systems can be designed
to work cooperatively and thereby achieve potential
performance gains. As such, cooperative transmission in
wireless networks has attracted a lot of interest not only
from the research community in recent years [1], [2], [4],
[5], [6], [7], [8] but also from industry in the form of first
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practical cooperative mobile ad-hoc network systems [9].
The majority of the work in the cooperative literature
has so far focused on the single flow problem, though
recently there has been an increased interest in consider-
ing multiflow settings in cooperative networks [12], [13],
[14], [15], [16].

A key problem in such cooperative networks is rout-
ing and resource allocation, i.e., the question of which
nodes should participate in the transmission of data,
and when, and with how much power they should be
transmitting. The situation is further complicated by the
fact that the routing and resource allocation depends on
the type of cooperation and other details of the trans-
mission/reception strategies of the nodes. We consider
in this paper a time-slotted system in which the nodes
that have received and decoded the packet are allowed to
re-transmit it in future slots. During reception, nodes add
up the signal power (energy accumulation, EA) received
from multiple sources. Details of EA, and possible
implementations have been extensively discussed in prior
work [2], [4], [5], [13].

We focus on the problem of minimum-energy multi-
flow cooperative transmission in this work, where there
are k source-destination pairs, with the source node
wanting to send a packet to its respective destination
nodes, in a multihop wireless network. Other nodes
in the network, that are neither the source nor the
destination, may act as relays to help pass on the message
through multiple hops. The transmission is completed
when all the destination nodes have successfully received
their corresponding messages. It has been noted in the
literature ([8], [17]) that a key tradeoff in cooperative
settings is between the total energy consumption1 and
the total delay measured in terms of the number of
slots needed for all destination nodes in the network
to receive the message. Therefore, we take delay into
consideration and focus on the case where there is a
delay constraint, whereby the destination node(s) should

1As we consider fixed time slot durations, we use the words energy
and power interchangeably in this paper.
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receive the message within some pre-specified delay
constraint. We therefore formulate the problem of per-
forming this transmission in such a way that the total
transmission energy over all transmitting nodes is min-
imized, while meeting a desired delay constraint on the
maximum number of slots that may be used to complete
the transmission. The design variables in this problem
determine which nodes should transmit, when, and with
what power.

We furthermore assume that the nodes are memory-
less, i.e., accumulation at the receiver is restricted to
transmissions from multiple nodes in the present time
slot, while signals from previous timeslots are discarded.
This assumption is justified ([8], [17]) by the limited
storage capability of nodes in ad-hoc networks, as well as
the additional energy consumption nodes have to expand
in order to stay in an active reception mode when they
overhear weak signals in preceding timeslots.

The main contribution of our work is as follows: It
has been conjectured in the literature that the problem
of jointly computing schedules, routing, and power allo-
cation for multiple flows in cooperative networks is NP-
hard [15], [16], [14]. In this paper we formulate the joint
problem of scheduling, routing and power allocation in
a multiflow cooperative network setting and formally
prove that not only it is NP-hard, but it is also o(n1/7−ε)
inapproximable. (i.e. unless P = NP , it is not possible
to develop a polynomial time algorithm for this problem
that can obtain a solution that is strictly better than
a logarithmic-factor of the optimum in all cases). We
are not aware of prior work on multiflow cooperative
networks that shows such inapproximability results. We
further prove that for a special case of k = 1, the
solution is a simple path and offer an optimal polynomial
time algorithm for joint routing, scheduling and power
control.

The rest of this paper is organized as follows: In
section II we provide a mathematical formulation of
the problem. In section III we consider the special
case of k = 1 and prove the solution is a simple
path and can be found optimally in polynomial time.
The inapproximablity results are presented in section IV
using reduction from minimum graph coloring problem.
The paper is concluded in section V.

II. PROBLEM FORMULATION

Consider a network, G, with a total of n nodes,
I = {1, .., n}. Assume we have r source nodes, labeled
S = {s1, s2, ..., sr}, and r corresponding destination
nodes, D = {d1, d2, ..., dr}. The source-destination
nodes can be thought of as pairs, {(sk, dk)}r

k=1, all with

the same delay constraint T . The goal is to deliver a
unicast message from each source to its corresponding
destination, possibly using other nodes in the network
as relays. The objective is to do so using the minimum
amount of sum transmit power and within the delay
constraint.

We consider a cooperative wireless setting with EA
and consider signal-to-intereference-plus-noise (SINR)
threshold model, [13], [2], [11], [10]. That is, in order
for node i to be able to decode message k at time t, the
following inequality needs to be satisfied:

∑
j∈sk(t)

pjthji

∑
u/∈sk(t)

puthui + N
≥ θ. (1)

Here sk(t) is the set of nodes transmitting the message k
at time t, hij is a constant between 0 and 1 representing
the channel gain between node i and j, and N and θ
are constants representing the noise and the decoding
threshold respectively.

Equation (1) can be re-written as

n∑

j=1

hjip
k
jt − θ

r∑

q=1
q #=k

n∑

u=1

huip
q
ut − θN ≥ 0, (2)

where pk
it is the power used by node i at time t to

transmit message k.
The system is memoryless, meaning although we are

allowed to accumulate the same message from multiple
sources during each time slot, we cannot accumulate over
time. The relays are half-duplex, meaning they cannot
transmit and receive simultaneously. The relays cannot
transmit more than one message at the same time either.

In order to apply ideas driven by the rich literature
on multicommodity flows [18] to our problem, we need
to somehow introduce the notion of delay constraint
into the multicommodity setting. What follows is a
transformation of our network graph that would allow for
the multicommodity flow technique to be applied, while
observing the delay constraint: For a delay constraint
T , map the given network to a layered graph with T
layers as shown in Figure 1. Place a copy of all the
nodes in the network on each of the layers. Connect
each node, on each layer, to its corresponding copy on its
neighboring layers with an edge weight of 0. Also create
directed edges between each node, on each layer k, and
the nodes on the next layer k + 1, with edge weights
representing the amount of power required to transmit
the message from the node on the top level to the node
on the bottom level, as a whole. Notice that there is no
edge between the nodes on the same level. Call the new
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graph G′. Assign the nodes corresponding to the source
nodes of G on level 1 of G′ as source nodes in G′ and
the destination nodes on level T of G′, corresponding to
destination nodes in G, as destinations in G′, as shown in
the figure. Similar transformations have been used in the
literature in the context of multiflow transmission [15].

Without loss of generality, we assume unit length time
slots. The nodes who want to transmit are to do so at
the beginning of each time slot, and the decoding (by
nodes who receive enough information during that time
slot) will happen by the end of that time slot. Let zk

it
be an indicator binary variable that indicates whether or
not node i decodes the message k during time slot t, as
per inequality in equation (1). In other words, we define
zk
it to be 1, if node i decodes message k during time

slot t, and 0 otherwise. Let pk
it be the transmit power

used by node i at each time t to transmit message k. We
define another binary variable xk

it, that is 1 if node i is
allowed to transmit message k at time t, and 0 otherwise.
A node is allowed to transmit during a particular time
slot, if it has already decoded that message in previous
time slots, and it’s not receiving or transmitting any other
messages during that time slot. Notice that being allowed
to transmit does not necessarily mean that a transmission
actually occurs. To take care of actual transmissions,
let us define vk

it to be a binary variable that is 1 if
node i transmits message k at time t, and 0 otherwise.
The problem can then be formalized as a combinatorial
optimization problem:

min Ptotal =
∑T

t=1

∑n
i=1

∑r
k=1 pk

it (3)

s.t.
1. pk

it ≥ 0, ∀i, t, k
2. xk

dkT+1 = 1, ∀k
3. xk

it+1 ≤ zk
it + xk

it, ∀i, t
4. (−M)(1 − zk

it) ≤ yk
it, ∀i, t

5. pk
it ≤ Mvk

it, ∀i, t
6.

∑r
k=1

(
vk
it + zk

it

)
≤ 1, ∀i, t

7. vk
it ≤ xk

it, ∀i, t, k
8. xk

sk1 = zk
sk1 = 1,∀k

9. xk
i1 = zk

i1 = 0,∀i ∈ I\{sk}
10. xk

it ∈ {0, 1}
11. zk

it ∈ {0, 1}
12. vk

it ∈ {0, 1}.

Here yk
it =

∑n
j=1 hjipk

jt − θ
∑r

q=1
q #=k

∑n
u=1 huip

q
ut − θN ,

M is a large positive constant, and the constraints have
the following interpretations:

1) No negative power is allowed.
2) Every node in the destination set is required to

have decoded the data by the end of time slot T .

3) If a node has not decoded a message by the end
of time slot t, that node is not allowed to transmit
that message at time t + 1.

4) zk
ti is forced to be 0 if message k is not decoded

in time slot t.
5) pk

it is forced to be 0, if node i is not transmitting
message k at time t (i.e. if vk

it = 0).
6) A node cannot transmit and receive at the same

time and can only transmit or receive a single
message at each time slot.

7) vk
it is forced to be 0, node i is not allowed to

transmit message k at time t (i.e. if xk
it = 0).

8) Only sources have the message at the beginning.
9) No one else has the message at the beginning.

10) x, z and v are binary variables.
We call this optimization problem MCUE, for multiflow
cooperative unicast with Energy Accumulation.

Level 1 Level 2 Level 3 Level T

s1

s2

sr

d1

d2

dr

Fig. 1: Applying the multicommodity flow technique for
unicast cast

III. SPECIAL CASE OF k = 1

In this section we consider MCUE for the special case
of k = 1.

Theorem III.1 The optimal solution for MCUE is a
simple path for k = 1, but not necessarily so for k > 2.

Proof: The claim can be proved by induction on
T : For delay T = 1, the claim is trivially true, as the
optimal solution is direct transmission from the source,
s, to the given destination, d. Let us assume the claim
is true for T = t − 1. To complete the proof, we need
to show the claim holds for T = t. Pick any node in
the network as the desired destination d. If the message
can be transmitted from source s to d with minimum
energy in a time frame less than t, then an optimal simple
path exists by the induction assumption. So consider
the case when it takes exactly T = t steps to turn
on d. The system is memoryless, so d must decode by
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accumulating the energy transmitted from a set of nodes,
v, at time t. This can be represented as

∑
vi∈v

pvithdvi
≥ θ.

We observe that there must exist a node vo ∈ v whose
channel to d is equal or better than all the other nodes
in v. Therefore, given hdvo

≥ hdvi
,∀vi ∈ v\{vo} then∑

vi∈v
pvithdvo

≥
∑
vi∈v

pvithdvi
≥ θ. In other words, if we

add the power from all nodes in v and transmit instead
from vo, our solution cannot be worse. vo must have
received the message by time t−1, to be able to transmit
the message to d at time t. We know by the induction
assumption that the optimal simple path solution exists
from source to any node to deliver the message within
t− 1 time frame. Thus, for T = t, there exists a simple
path solution between s and d, which is optimum.

Considering the above theorem, the MCUE problem
formulation (for the special case of k = 1) reduces to:

min Ptotal =
∑T

t=1

∑n
i=1 pit (4)

s.t. 1. pit ≥ 0, ∀i, t
2. xdT+1 = 1
3. −M(1 − xit+1) ≤

n∑
j=1

hjipjt − θN, ∀i, t

4. pit ≤ Mxit, ∀i, t
5. xs1 = 1
6. xi1 = 0,∀i &= s
7. xit ∈ {0, 1}

This can be solved optimally in polynomial time using
dynamic programming. Let C(i, t) be the minimum cost
it takes for source node s to turn on i, possibly using
relays, within at most t time slots. Then we can write:

C(i, t) = min
j∈Nr(i)

[C(j, t − 1) + wji] (5)

with C(s, t) = 0, for all t and C(i, 1) = wsi, where
Nr(i) is the set that contains i and its neighboring nodes
that have a non-zero channel to i, wji represents the
power it takes for j to turn on i using direct transmission.
Thus the solution to (4) is given by C(d, T ) and its
computation incurs a running time of O(n3).

IV. HARDNESS

For k = 1, we proved in Theorem III.1, that the
optimal solution is a simple path. For k > 2, we can
consider the following counter-example to argue that the
solution is not necessarily a single-path. Consider the
scenario shown in Figure 2, where T = 3, where the
edge weights are equal and the edges shown in gray show
strong interference. The red nodes cannot by themselves
transmit the message to d2, as it causes interference for
d1 and d3 preventing them from being able to decode
the data. However, they can cooperate with each other,

by each sending with half power to get the message to
d2 without causing too much interference for the other
destinations.

s3

s2

s1 d1

d2

d3

Fig. 2: An example of k > 2, with T = 3, where the optimal
solution is not a single path.

To investigate the complexity of MCUE, let us start
by looking at a sub-problem. Imagine a one hop setting
of k source nodes and their corresponding k destination
nodes, with no relay nodes. Due to interference, not
all sources can transmit simultaneously. The task is
to schedule the sources appropriately, so that everyone
can get their message delivered to their corresponding
destination within a time delay T . The problem is to
find the minimum such T . Let us call this problem
MOSP, for multi-source one-hop scheduling problem2.
It is important to note that MCUE is at least as hard as
MOSP. Thus, any hardness results obtained for MOSP
imply hardness of MCUE.

In this section, we derive inapproximablity results for
MOSP by showing that any instance of minimum graph
coloring problem [18] can be reduced to an instance of
MOSP.

Lemma IV.1 MOSP is o(n1/7−ε) inapproximable, for
any ε > 0.

Proof: Given an instance G(V, E), |V | = n, of the
minimum graph coloring, we construct a bipartite graph
G′, with the bi-partition X and Y with |X| = |Y | = n.
For each node vi ∈ G, we place two nodes ui ∈ X and
u′

i ∈ Y and connect them with an edge (ui, u′
i). Also for

every edge in G, eij = {vi, vj}, place two edges (ui, u′
j)

and (uj , u′
i) in G′. We assign ui and u′

i to be a source
and destination pair respectively for all i. We set equal
edge weights for all the edges in G′ and set θ > 1 to
get an instance of MOSP.

A simple example is shown in Figure 3. Notice that
the gray edges in the figure represent interference, and
by setting θ > 1, a message can be successfully decoded
if and only if there is no interference at that node.

This in turn means two sources in G′ can simultane-
ously transmit if and only if there is no edge in between

2This is essentially the problem considered in [20], though no proof
of complexity is given in that paper.
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them in G. Thus, the set of nodes that are transmitting
simultaneously in G′ correspond to an independent set in
G. Consequently, the optimal solution to MOSP is equal
to the minimum graph coloring of G, which is known
to be o(n1/7−ε) inapproximable [19].

u3

u4

u1

u2

u3

u4

u2

u1 u′
1

u′
2

u′
3

u′
4

G G′

Fig. 3: Example construction of G′, for a given G.

The following theorem follows by noticing that MOSP
is a special case of MCUE.

Theorem IV.1 MCUE is o(n1/7−ε) inapproximable,for
any ε > 0.

Notice that the inapproximability result, given by
Theorem IV.1, is stronger than, and implies, the NP-
hardness result. In other words, it implies that not only
finding the optimal solution is NP-hard but finding a
polynomial time approximation algorithm that approxi-
mates the optimal solution to MCUE with a factor of
o(n1/7−ε) is also NP-hard.

V. CONCLUSION

We formulated the problem of minimum energy co-
operative transmission in a delay constrained multiflow
multihop wireless network, as a combinatorial optimiza-
tion problem, for a general setting of k-flows and for-
mally proved that the problem not only NP-hard but it is
o(n1/7−ε) inapproxmiable. To our knowledge, the results
in this paper provide the first such inapproxmiablity
proof in the context of multiflow cooperative wireless
networks. We further proved that for a special case
of k = 1, the solution is a simple path and offered
an optimal polynomial time algorithm for joint routing,
scheduling and power control. It is interesting to note
that although the minimum graph coloring problem is
NP-hard, the fractional graph coloring can be solved in
polynomial time. That presents an interesting venue for
future work and for designing efficient heuristics for this
problem.
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