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Abstract—Consensus, or state machine replication, is critical
for the deployment of distributed battlefield systems. Battlefield
networks operate in environments with unpredictable wireless
connectivity which lead to sparse networks and frequent parti-
tioning, and this makes deploying centralized architectures where
nodes require a connection to a remote server unsuitable. The
Extended Virtual Synchrony (EVS) model provides membership
views which enables a network to reach consensus even after
experiencing a series of partitions and mergers. If a node wants
to propose state transitions that require nodes that are not
currently in its membership view, then the node needs to wait
until it reconnects with those nodes. The time the node has
to wait to reconnect to the other nodes introduces consensus
delays in the network. In this work, we evaluate consensus
latency by focusing on these queued state transition proposals
due to both network partition characteristics and distributed
application/mission design. The key findings of our results show
that consensus delay is least affected by network partitioning
when the network splits at a rate equal to or less than 1/4 the
rate in which partitions merge. Our evaluation results provide
application and mission designers guidelines on the tradeoffs
between several network characteristics and desired consensus
latency properties.

Index Terms—Consensus, Ad-Hoc Network, Latency, Peer-to-
Peer Network, Partitioning

I. INTRODUCTION

Over the past few decades, an extensive collection of
military applications have been developed and tested pre-
dominantly using the client-server architecture, wherein each
device in the battlefield coordinates with a centralized server
to perform its actions. Such an architectural pattern eases man-
agement complexity for application developers ensuring high
availability and predictability in mission-critical applications.

In centralized applications, network connectivity to a server
is critical. A server may crash or even be compromised by
a malicious entity. Such issues lead to a single point-of-
failure which is highly undesirable for military applications.
If a group of nodes disconnect from the central server during
a mission, the fraction of nodes should be able to con-
tinue coordinating and sharing information with one another.
Decentralized architectures mitigate the need for a central
server while paving the way for a self-managing application
infrastructure for mission-critical applications. A fundamental
building block of a decentralized application is a distributed

This work was supported by Boeing Research and Technology.

consensus protocol, which allows the nodes in the network to
collectively agree on a state of the system before performing
any action.

For a distributed consensus protocol to agree on a system
state, each node in the network has to participate in the
consensus process. In typical distributed consensus algorithms,
a sufficient number of nodes has to agree on a perceived
system state to collectively make a decision. When achieving
consensus in a battlefield scenario, nodes may leave or join
the network due to the unpredictable nature of the wireless en-
vironment or mission itself. The intermittent wireless connec-
tivity threatens the stability of the consensus process and may
lead to different sets of nodes orphaned in inconsistent states.
Achieving consensus in an intermittent network is, therefore, a
challenging problem in decentralized applications. Battlefield
environments rely on tactical networks which often do not
provide ubiquitous connection to a cloud infrastructure like
commercial distributed systems. Typical consensus protocols
used in commercial, civilian deployments such as Paxos [1]
and Raft [2] would fail if deployed in the battlefield. More
specifically, these consensus protocols require a majority of
nodes, or a quorom, to be connected in order to reach con-
sensus. This would cause non-majority network partitions to
block. Therefore, the underlying distributed consensus proto-
col in a battlefield network must support dynamic membership
views, an abstraction where processes (or nodes) organize
themselves into multicast groups to facilitate communication,
in order to handle network partitions as they arise. Within
a membership view, a reliable multicast service can be used
with an ordered delivery protocol built on top to provide the
foundation for reaching consensus on a system state.

The future battlefield is expected to be populated by much
more autonomous systems including teams of autonomous
ground and air vehicles. Certain mission objectives may
require a specific subset of nodes with certain characteris-
tics such as UAVs with particular capabilities or units with
sufficient resources to carry out complex tasks like collab-
orative reconnaissance. Also, once these collaborative tasks
are dispatched, the subset of pertinent nodes may encounter
various network splits and mergers while accomplishing task
objectives due to harsh communication environments and/or
employing a divide and conquer strategy. While dynamic
group memberships can offer flexibility, adopting this feature



inherently presents challenges to developing a distributed ap-
plication which can guarantee reliable consensus in situations
like these. To mitigate these kinds of issues, the first step to
guaranteeing reliable consensus is to prevent conflicting state
transitions in the face of network partitions. One solution is to
adopt a protocol where a node that wants to propose a state
transition be aware of the current partition membership. If the
state transition requires specific nodes not currently present in
said node’s partition, the node can queue the proposal until
the required nodes join its membership view. Adopting this
partition aware protocol will inevitably introduce consensus
delays in the network when nodes wait to reconnect with
nodes outside of their partition to propose state transitions.
To introduce stability in consensus delays, a mission can be
designed such that teams attempt to rendezvous and reconnect
by a target time deadline when the teams purposely split
up or the communication environment causes the network to
partition.

Key Findings: In this work, we investigate how expected
network partitioning behaviors, namely the rate in which the
network splits and merges, affect the latency of state transi-
tions in a system. From our evaluation results, we observe
that consensus latency is least affected by partitions when a
network exhibits split rates less than or equal to 1/4 the rate
of mergers. Also, our results show that when nodes generate
transactions (Tx) at a rate of 1Tx/s and the application design
behavior generates transactions with a ≤ 10% probability
that they are queued due to partition, the network size does
not affect the average delay of transactions due to partitions.
Our characterization results in this work provide application
developers and mission designers guidelines on the tradeoffs
of network characteristics and desired consensus latencies.

II. BACKGROUND AND EVALUATION FOCUS

A. Consensus in the Battlefield

With the increasing demand of decentralized deployments in
tactical applications, autonomous coordination and distributed
decision making are key features for deploying future bat-
tlefield systems. Distributed consensus algorithms are critical
for achieving deterministic outcomes within a group without
a central coordinator. For example, a number of autonomous
UAVs equipped with different sensors may need to decide
on allocating roles and coordinating flight paths to ensure
multiple targets of interest are tracked. Another example
includes a mission objective which may separate a set of
autonomous platforms into multiple teams which can carry
out the mission even if the teams cannot communicate among
one another. Achieving consensus is notoriously difficult in
partitioning networks. This can intuitively be seen because
reaching agreement requires knowledge of the needs of other
nodes. Quantifying the time it takes to reach consensus, while
needed for ensuring timeliness in mission development, is
many times uncertain due to the unstable nature of connectivity
among nodes in tactical deployments. However, missions
can be designed to maintain certain bounds of intermittent

Fig. 1. Illustration of a network partitioning and creating several, independent
group membership views.

connectivity. Thus, it is of interest to study consensus latencies
in intermittent networks.

B. Background

Tactical networks are sparsely connected and frequently
encounter network partitions like illustrated in Fig. 1. Extended
Virtual Synchrony (EVS) by Moser et. al [3] provides a
model for managing group membership views where a set of
processes (e.g., network nodes) can form groups and processes
can join and leave these groups. EVS requires that messages
sent by a process in a group be delivered reliably to all
members within a group. That is, in any partition (such as the
three partitions on the right side of Fig. 1), a message is only
considered delivered if all processes in their respective groups
receive that message. The EVS model also guarantees total
ordering of messages within a group membership view, and
preserves causality of messages across an entire network after
experiencing network splits and mergers. When a networked
system implements the components of the EVS model, a
distributed application can successfully achieve consensus
(i.e., state machine replication) even in the face of network
splits and mergers.

Within a network partition, state machine replication (SMR)
under the EVS model can be abstracted as follows. Nodes in
the partition can reliably send ordered messages among one
another to propose state updates. The state machine replicator
uses the ordered messages to generate a log of transactions
(Tx) and ensures that every non-faulty node sees the same log
of transactions. A distributed application uses the log as an
input to compute the current state of a system locally. In other
words, nodes can propose transactions to be written to this log.
This work focuses on transactions, not the messages required
to create the log. The state machine replicator can be broken
down into three basic building blocks as illustrated in Fig. 2:
the group membership algorithm to manage partition views, a
group multicast mechanism to send messages to all partition
members, and a transaction ordering mechanism. This SMR
abstraction will be used to simplify our system model.

A distributed application built on top of the EVS-based state
machine replicator proposes transactions by sending messages



to all the members in the view using the group multicast
mechanism. This is pictured in Fig. 2. When a transaction
is finalized, it is passed to the distributed application in the
same, ordered fashion at all nodes within a membership view.
The group membership algorithm establishes the multicast
groups and provides the distributed application updates on the
membership view so the application is always aware of the
current member list before it generates a transaction proposal.

Evaluation Focus: Nodes may want to propose new trans-
actions which require specific nodes to be present. If they are
currently not in the partition, the node will need to queue the
transaction proposal in a non-FIFO queue (see ”Tx Queue”
object in Fig. 2) until it joins a membership view with all
the required nodes. This work aims to evaluate how the
characteristics of a partitioning network and the design of a
distributed application affect the consensus latency of a system
specifically due to these queued transactions. We accomplish
this by measuring the time between a transaction entering the
”Tx Queue” in Fig. 2 to the time it gets delivered to the
distributed application running locally at each node.

Evaluation of consensus algorithms in the face of partition-
ing networks is not well studied in the literature. The authors
of the BlockBench framework in [4] evaluate blockchain
consensus algorithms and present throughput and latency re-
sults. Similarly, Androulaki et al. [5] evaluate the Hyperledger
Fabric blockchain platform and present the consensus latency
for various workloads. Unlike [4] and [5], our work evaluates
consensus latency in the face of network partitions. Urban et
al. [6] present a novel leader-based Paxos consensus algorithm
and evaluate it in partitioning networks by crashing multiple
processes. Our work is similar to [6], but we do not consider
a particular consensus algorithm.

III. SYSTEM MODEL

We consider a network of nodes that have prior knowledge
of all members in the global set of nodes Π. All nodes run
a group membership algorithm such as the one defined by
Cachin et. al in [7]. At any node, the membership view V =
(id,M) is a tuple that contains a unique partition identifier
id (such as a hash) and a set M consisting of the members
of view id. Multiple views can exist at any instant of time
(i.e., partitions). We assume all nodes in a membership view
can communicate among themselves according to the EVS
model via an arbitrary networking protocol as the networking
protocol is not within the scope of this paper. Each message
sent by a node is used to propose a new transaction. Any
partition in the network at any time runs an instance of a
state machine replicator and comes to consensus on a state by
processing a log of transactions that are consistent across all
nodes within a partition.

Transactions are proposed by any node with i.i.d. Poisson
processes, and transactions arriving at any node in the entire
network is modeled by a Poisson process with total rate λTx.
When a transaction arrives at any node, the probability of the
event that the transaction requires a random subset of nodes
not all present in the node’s current partition is pTx

queue. That is,
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Fig. 2. Diagram of abstract building blocks of a distributed application built
on top of Extended Virtual Synchrony (EVS) based state machine replication
(SMR).

pTx
queue is the probability with which the transaction is placed

into that node’s pending transaction queue. Network splits (i.e.,
the splitting of a randomly selected partition) and network
mergers (i.e., the merge of two randomly selected partitions)
are modeled as Poisson processes with rate λsplit and λmerge,
respectively.

The partition status of the network can be modeled as
an M/M/1/N queue with an arrival rate of λsplit, service
rate of λmerge, and finite buffer size equal to the network
size N . That is, if the buffer is completely full of network
split event arrivals, then the network consists of N partitions.
Under this model, the average percentage of time the net-
work will be partitioned can be represented accordingly as
ρ = λsplit/λmerge. This means that the average lifetime of
the network being partitioned, E[Tp], can be modeled as the
expected busy time of a M/M/1/N queue, which is expressed
as E[Tp] = 1−(1−ρ)/(1−ρN+1). As long as λsplit < λmerge,
the system will be stable. That is, the network will merge
back into a single partition within a bounded time duration.
Any battlefield network should be designed to always attempt
to eventually reconnect, so we assume the network is always
stable.



IV. SIMULATION SETUP AND JUSTIFICATION

To better study the characteristics of consensus delays, a
network simulation tool written in Python is designed using
the well known SimPy process-based discrete-event simulation
framework [8]. Each node is not independently simulated, but
rather the evolution of the network as a whole is simulated
for reduced computational complexity. If each node is inde-
pendently simulated, SimPy will create as many processes as
there are nodes in the simulator causing unnecessary overhead.
Instead, three processes are created, each generating events
with exponentially distributed time intervals at different rates:
a network transaction generator with rate λTx, a network split
generator with rate λsplit, and a network merge generator
with rate λmerge. Each simulation run is initialized with a
partition table. When a network split or merge event arrives,
the partition table is updated accordingly to reflect the current
partition status of the network.

When a transaction event arrives, the simulator chooses a
random node in the network to propose a transaction. All
transactions that arrive have a probability pTx

queue with which
the transaction requires a random subset of nodes with at least
one node outside of the chosen node’s current partition. This
probability is set prior to simulation runs and stays constant
throughout the run. The probability captures the behavior of
the application logic and mission. An example of such a
behavior is the local control logic at an autonomous node
limiting the frequency in which the node attempts to dial nodes
outside of its partition. Another example would be a mission
design exhibiting a certain frequency of nodes attempting to
dial other nodes outside of their partitions. If a transaction that
arrives does require nodes outside of the current partition, the
simulator will generate a random subset of nodes with at least
one outside node and place the transaction into a queue along
with a SimPy environment timestamp.

When a network merge event occurs, the simulator will
pick two partitions at random and merge the two into a single
partition. After the merge, the simulator will search through
the transaction queues of all the nodes in the newly created
partition and evaluate if any transaction proposals are valid. If
valid, the transaction will be appended to the distributed log,
a timestamp will be taken of the SimPy environment, and the
delay of this transaction will be stored for analysis. If there is
only a single partition in the network, then the merge event is
ignored.

When any network split event arrives, the simulator will
select a random partition in the network with at least two nodes
and split that partition with each new partition containing a
mutually exclusive random subset of nodes from the original
partition. If all partitions are of size one (i.e., the number of
partitions is equal to N , then the arrival of a split event is
ignored (hence the queue model with a finite buffer).

In this system, the average delay of queued transactions will
be lower bounded by E[Tp], which is a function of the rate at
which the network partitions λsplit. We study the consensus
latency behaviors via simulations by particularly varying the
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Fig. 3. Average delay of transactions that were queued due to a network
partition as a function of the network split rate. Point labels indicate the
corresponding λsplit and the horizontal axis is log scaled.

λsplit rate of the network. For all simulation results in Section
V, we fix the merge rate at λmerge = 1/60 (equivalent to
an average of one network merge per minute). The merge
rate is chosen purely for illustrative purposes. The actual split
and merge rates can vary depending on the application, and
our simulation results in the next section shed light on the
relationship of consensus latency with respect to the ratio
between the two rates. More specifically, our results show
certain bounds on partition-related consensus delays when the
split to merge ratio can be estimated. Nonetheless, merge rates
faster than 1/60 would indicate that a network will encounter
partitions with an average lifetime less than 60 seconds. At a
merge rate this fast, it is best to deploy a consensus algorithm
that will block in the face of partitions rather than trying to
adapt to fast changing membership views which can cause
large network overhead, especially in wireless settings.

Generally speaking, network delays tend to increase with
network size. However, simulating consensus latencies that
result from communication delays is difficult and often does
not accurately reflect networking delays of a real system.
In addition, the actual latency of consensus relies heavily
on the consensus algorithm utilized such as the two-phase
commit algorithm [9] or practical Byzantine fault-tolerant
algorithm (pBFT) [10]. Therefore, we do not include the
network delays in our simulations, and we focus on consensus
latencies introduced by queued transactions due to a network
undergoing a series of splits and mergers.

V. SIMULATION RESULTS

In all figures in this section, a single point is generated by
simulating across a total time of 86400 seconds, or 24 hours.
The bars in all of the simulation result graphs in this section
represent the standard error.

Figure 3: The first simulation results is a graph of the aver-
age delay of transactions that were queued due to a network
partition as a function of the network split rate. To be more
precise, the average delay here is calculated strictly using the
delays experienced by transactions queued at a node. It does
not average across the total number of transactions that arrived
in a simulation run. In this plot, it can be seen that as the split
rate comes closer to the system’s expected merge rate, queued
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transactions will incur exponentially increasing average delays.
This result motivates, as a rule of thumb, distributed battlefield
applications should be constructed so that network partitions
occur at a rate of at most 1/4 of the network merge rate
in order to optimize for low, stable delays. However, if a
mission expects longer durations of network partitions, then
an application can expect exponentially increasing consensus
latencies. The behavior of this exponential growth is captured
in the figure.

Figure 4: In this set of simulations, we investigate the
effects of the network size on the average delay of queued
transactions. We fix pTx

queue to 0.1 and run simulations with
different network sizes and split rates. The results show that
at split rates equal to 1

4λmerge or less, the average delay of
transactions is unaffected by network size. It can be seen
that the average delay is higher with larger split rates, which
is as expected after the results from Figure 3. However, at
sufficiently high split rates, the average delay of transactions
starts growing with network size. Our simulation results for
this graph shows that battlefield applications, such as those
involving autonomous UAV teams, should be designed to have
split rates of at most 1

4λmerge to minimize additional queued
transaction delays due to network size. That is, large networks
should be designed to not split the network (e.g., divide and
conquer tactics) too frequently to prevent the network size
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Figure 5: The local application logic at a node and the

mission objectives may dictate the frequency in which a single
node will create transactions that require nodes outside of
the current local partition. To capture these system effects,
we investigate the effect of this frequency on the average
queued transaction delays by simulating several pTx

queue values.
We discovered that for sufficiently large split rates such as
λsplit ≥ 1

4λmerge, larger pTx
queue values actually increase the

average delay. This can be seen by the divergence of the
average delays as pTx

queue increases. At pTx
queue = 0.1, we

saw the average delay unaffected by the network size (see
Figure 4). However, the results in these simulation runs show
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that network size begins to affect consensus latency when
the frequency of queued transactions is increased. This effect
persists even with λsplit = 1

4λmerge, which is the suggested
threshold of the split rate for minimizing consensus latency. To
be safe, if the pTx

queue of the autonomous system is larger than
0.1, designers should prioritize lowering the system’s expected
λsplit beyond the suggested split rate threshold.

Figures 6,7, and 8: A distributed application may want to
support large delays introduced by partitions. We thus study
the distribution of delays of queued transaction at various split
rates, λsplit = [ 1

120 ,
1

240 ,
1

600 ], by plotting the histogram of all
delays in a single simulation run. While the average of queued
transactions for λsplit = 1

120 is 209.4 seconds, Fig. 6 shows
that the tail of the distribution stretches as far as transactions
with delays of up to ∼ 1400 seconds, or ∼ 23 minutes, which
may be undesirable for short mission durations. The split rates
of 1

240 and 1
600 show similar distributions of delays further

motivating the design rule of maintaining the relationship of
λsplit ≤ 1

4λmerge.

VI. CONCLUSION

There is a strong demand for the deployment of more
autonomous, decentralized systems in the battlefield. Design-
ing consensus algorithms for tactical networks which are
expected to experience frequent partitioning events is un-
doubtedly challenging. This work provides a state machine
replication abstraction which allows for the evaluation of per-
transaction consensus delays as a result of nodes waiting to
reconnect with other nodes. The evaluation results in this
work provide mission developers a better understanding of the
tradeoff characteristics of network partition rates and transac-
tional consensus delays. While our results show that systems
which expect split rates of ≤ 1

4λmerge are least affected by
partitioning events and network size, mission designers can
plan more network splits if the objectives can tolerate the
exponentially increasing transaction delays and variance of
transaction delays.
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