
1

Distributionally Robust Radio Frequency
Localization

Nachikethas A. Jagadeesan and Bhaskar Krishnamachari

Abstract—We consider the problem of estimating the location
of an RF-device using observations such as received signal
strengths, generated according to an uncertain distribution from
a set of transmitters with known locations. We present a distri-
butionally robust formulation of the localization problem that
explicitly takes into account the uncertainty in the distribution
that generates the observations. We identify the structure of
the robust solution and demonstrate how to construct the
optimization problem so that it is easily computed, and always
yields the optimal solution. We show that the robust estimate
outperforms traditional methods in the presence of modeling
errors, while remaining close to the traditional estimate when the
modeling is exact. This suggests that the formulation presented
here is an attractive option in applications where we use a model
that may not be an exact fit to our environment or if changes in
our environment have induced errors in an empirically derived
model.

Index Terms—Indoor environments, Algorithm design and
analysis, Estimation, Optimization, Bayes methods.

I . I N T R O D U C T I O N

The problem of consistently and accurately estimating the
location of a wireless device in an indoor environment, merits
significant scientific attention. In addition to the rich set of
research challenges that this problem affords, there exists a
plethora of applications that benefit from advances in solving
this important problem [1]–[3]. These include indoor location
based smartphone applications and services, search and rescue
operations, geo-fencing, and asset tracking, to name a few.
Localization services that utilize received signal strength (RSS)
measurements are particularly attractive, since they impose
no additional hardware requirements on the wireless devices,
while remaining sufficiently accurate for many applications.
Consequently, advances in localization algorithms based on
RSS measurements can be rolled out easily as a software
upgrade for a variety of wireless devices.

The literature on RSS based localization is rich and varied.
Many works focus on the software systems and infrastructure
required to enable localization services, while others focus on
the design of algorithms that estimate the device location [4]–
[10]. Underlying each of these works is a model that explains
how the RSS observations vary with the device location. These
models may be either empirically derived, as in the case of
fingerprinting based methods, or an analytical model such as
the log-normal path loss model may be used. In general, these
models can be represented as a distribution of observations,
fO|R (o|r), where o is the vector of observations and r is the
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device location. Adopting a Bayesian view, this distribution
of observations may be used to derive a posterior belief of
the device location, fR|O (r|o). Most localization algorithms
may be viewed as methods that derive a location estimate from
this posterior distribution [11]. However, the accuracy of the
location estimates returned by these methods, as measured by
various metrics such as the mean squared error (MSE), expected
distance error (EDE), likelihood, etc., depends crucially on how
well the chosen model approximates the actual distribution of
the RSS observations.

While most works employ the services of a model to
obtain the distribution of observations, fO|R (o|r), not enough
attention is given to the issue of how well the location
estimate performs when the actual distribution deviates from
that predicted by the model. This issue persists even when
this distribution is empirically derived. Empirically derived
distributions are sensitive to small changes in the environment
and moreover, such distributions are often non-stationary, and
hence change depending on the time of the day. This mismatch,
between the distribution used to obtain the location estimate
and the actual distribution generating the observations, results
in subpar performance of localization algorithms. The perfor-
mance guarantees of a localization algorithm is only valid as
long as the model, upon which the algorithm is based, accurately
tracks reality. Consequently, there is a need for an approach that
explicitly takes into account the inherent ambiguity in modeling
the environment, specifically the distribution of observations,
fO|R (o|r).

In this paper, we address these deficiencies by explicitly
specifying the ambiguity in the distribution of observations,
and deriving a location estimate that is resilient to such
uncertainties. Our approach is applicable to both model-based
methods, where the distribution fO|R (o|r) is taken from a
known family such as the log-normal path-loss model [12],
and data-driven approaches such as fingerprinting [4], [7], [13],
where the distribution fO|R (o|r) is empirically constructed
using observation data from each location. Uncertainty in the
distribution of observations, fO|R (o|r), results in an uncertain
posterior, fR|O (r|o). We demonstrate how to construct an
uncertainty set that contains all possible posterior distributions
that we may wish to consider, and further show how to derive the
robust location estimate. This robust formulation demonstrates
better performance compared to the traditional approaches
that do not take into account ambiguities in the underlying
distribution. Moreover, even in the case where the distribution
predicted by the model is accurate, the robust formulation
tracks the performance of traditional localization methods very
closely. In other words, the robust formulation presented here
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gains increased resilience to inaccuracies in the model, while
giving up very little performance compared to when the model
is exactly true. This makes the robust formulation a very useful
tool to deploy whenever we do not have perfect knowledge of
the environment. Furthermore, the uncertainty set construction
takes into account the confidence that we have in the model.
The uncertainty set can be made more or less stringent in the
distributions that it admits, depending on how close we think the
model is to the true distribution. Moreover, the proposed robust
formulation is computationally feasible and, as a consequence
of the data parallelism inherent in the construction, its run
time performance improves considerably when run in multi-
core or multi-processor environments. In summary, our main
contributions are:
• We describe a distributionally robust formulation of

the indoor localization problem, that takes into account
uncertainty in the distribution of observations, fO|R (o|r).

• We derive and illustrate the structure of the robust solution,
and further demonstrate how to construct the optimization
problem in form that is computationally feasible and easily
computed using standard software tools.

• We demonstrate that the robust formulation performs better
than traditional methods when there are errors in the
distribution of observations given by the model. In case
when the model distribution is accurate, we show that
the robust estimate closely tracks the performance of
traditional methods.

The rest of this paper is organized as follows. In Section II,
we review the existing literature on robust indoor localization,
and place the current formulation in the context of various
robustness targets and existing works in this direction. We
introduce the formal problem statement in Section III. The
construction of the uncertainty set is discussed in Section IV.
Section V explores the structure of the robust solution. We
formulate the problem in an easily computable form in
Section VI, and discuss guidelines on choosing the various
parameters of the robust formulation. We compare the robust
formulation with traditional methods in Section VII. We discuss
some future directions in Section VIII, and we conclude in
Section IX.

I I . R E L AT E D W O R K

In this section, we give a brief overview of robust opti-
mization methods and review the literature on robust localiza-
tion. In general, robust methods aim to maintain satisfactory
performance in the face of small variations from the model
assumptions [14]. In this approach, we first specify an appropri-
ate uncertainty set that captures the possible model variations
that we wish to consider. The robust solution maximizes its
performance with respect to the worst possible model contained
within this uncertainty set [15]. The heart of the problem lies
in choosing a set that sufficiently models the complexities of
the problem at hand while remaining computationally tractable.

Recent years saw a dramatic increase in both the availability
of data and the computational capability needed to process
that data. Robust optimization methods have adapted to this
trend by designing uncertainty sets that better utilize the data

at hand [16], [17]. In this paper, we make use of these methods
to develop data-driven distributionally robust solutions for
the problem of indoor localization. While not addressing the
problem of indoor localization, robust optimization methods
have been employed in a similar setting [18], where objectives
such as minimizing the energy consumption was considered
under distance uncertainty.

Many indoor positioning systems base their location esti-
mation on a model-based probabilistic description of location-
dependent observations such as received signal strength (RSS)
measurements obtained from transmitters located in the build-
ing [2]–[10], [13]. To estimate the receiver location using RSS
measurements, we make use of a distribution that explains how
the observation vector changes with location. Such a distribution
may be derived using a model, such as the commonly used
log-normal path loss model [5], [8], [19]–[23], or it may be
empirically estimated using signal strength data collected at
each location [4], [7], [13], [24]. Invariably, such a distribution
makes assumptions about the observations and the environment
that may not strictly hold in practice, giving rise to the need
for robust solutions. We may develop different robust solutions
depending on the uncertainties we wish to be robust against.
We list below three common robustness targets that are most
relevant to the indoor localization problem:

Robustness to Outliers: In this regime, we wish to be robust
to arbitrary variation of a small subset of our observations.
Such variation may be intentional as in the case of an
attack mounted against the localization infrastructure. Thus
this notion also confers some security properties. Specifi-
cally, this robustness target protects the localization system
against arbitrary tampering of a subset of observations.
The literature on robust indoor localization has focused
mostly on this robustness target [25]–[33].

Robustness to Parameter Uncertainty: In this regime, we
wish to be robust to small variations in the model param-
eters. In the context of indoor localization, this paradigm
commonly assumes that the family that the distribution
of the observation vectors belongs to is known. For
instance, it is often assumed that the indoor received signal
strength measurements have a log-normal distribution [34].
Consequently, we may wish to be robust to perturbations
to the mean and variance of these observations. Another
network parameter that is often a source of uncertainty
is the location of the transmitters or anchors. In a model
based approach to the indoor localization problem, it
is assumed that we know the location of the devices
that transmit a signal which is detected by the receiver.
Some works [35]–[40] tackle the problem of developing
algorithms that take into account the uncertainty in the
location of some of these transmitters, also referred to as
anchor nodes. The robust algorithms proposed in these
works differ depending on the assumptions on the origin
of the uncertainty in the transmitter locations. Thus, they
address a specific source of uncertainty in contrast to the
more general notion of distributional robustness presented
in this paper.

Distributional Robustness: In this regime, we aim to be
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Uncertain distribu-
tion, fO|R (o|r)

Observation vector, o

Prior distribution, fR(r)

Bayes’ Theorem Estimates µ0, Σ0

Uncertain posterior,
fR|O (r|o)

Parameters γ1, γ2
Uncertainty set,
F (S,µ0,Σ0, γ1, γ2)

Robust estimate (r̂),

arg min
r′∈S

max
f∈F

Ef [g (‖r′ −R‖)]

Fig. 1. Illustration of key steps involved in the construction of the uncertainty set and the computation of the robust estimate. The uncertainty in the posterior
distribution, fR|O (r|o), stems from the uncertainty about the distribution of the observations, fO|R (o|r). This uncertain posterior is used to derive the
initial estimates µ0 and Σ0. These estimates, along with the parameters γ1 and γ2, determine the uncertainty set used to derive the robust estimate.

robust to changes in the underlying distribution of our
observation vector. We specify an appropriate class of
distributions for our posterior belief of the location, and
then optimize over the worst case distribution from that
class. Note that this is a generalization of robustness to
parameter uncertainty. Indeed, being robust to parameter
uncertainty is equivalent to specifying that our distribution
set includes only distributions of a specified form (say, the
Normal distribution), but with the distribution parameters
(say, the mean and variance) taking values from within a
specified set.

In this paper we aim for distributional robustness, and to
the best of our knowledge, this work is the first to address
distributionally robust indoor localization. Various calibration-
free localization systems employ an alternate approach to deal
with an uncertain distribution of observations. Crowd-sourcing
based systems [41], [42] build and maintain a database of
crowd-sourced observations which can be used to obtain an
empirical estimate of the distribution of observations at each
location. Other approaches [5], [43], [44], which may combine
data from multiple sensors [45], are similar in spirit in that they
incrementally build and update a signal map or model of the
environment, which may be then used to estimate the unknown
model parameters or unknown node locations. For instance, a
recent work [46] uses a Gaussian-mixture distribution to model
the observations and develops algorithms to simultaneously
estimate the unknown sensor locations and noise parameters in
an online manner. These works are also related to simultaneous
location and mapping (SLAM) algorithms [47], [48], which
rely on the knowledge of the motion of a robot to map the
environment. Another class of works [49]–[51] often make use
of a small transmitter (tag) on the device whose location is to
be estimated, which can communicate with a set of anchors
whose locations are known. Recently, such designs have been
shown [52] to perform very well, being able to track even
small fast moving objects.

The distributional robustness paradigm presented in this
paper is complementary to these efforts. While we present this

work in the context of localization using RSS observations for
ease of exposition, it is applicable to any localization system
that utilizes a statistical model, either empirically constructed
or model-based, for the observational data, and it is agnostic
to the manner in which the data is collected or maintained.

The robustness paradigm presented in this paper is related
to the notion of misspecified models [53]. The fields of robust
statistics and estimation theory under model misspecification
both share the same goal of tackling the uncertain nature of
the true distribution underlying the observational data. Under
misspecified estimation theory, the distribution of observations
is derived from a parametric family of distributions that may
differ from the true family. The misspecified model may be cho-
sen because of its analytical or computational tractability [53],
and the impact of this mismatch is analyzed, including the
derivation of bounds on the mean squared error, similar to
the Cramér–Rao Bound [54]. In contrast, robust estimation
methods are explicitly designed to give good performance over
a large class of distributions for the observational data, at the
cost of a slightly increased computational complexity. They
minimize the error incurred by the estimate for all distributions
within the specified uncertainty set, thereby explicitly bounding
the performance impact of modelling errors.

I I I . P R O B L E M S TAT E M E N T

We focus our attention in this paper to the commonly
considered case of 2D localization. However, the robust
formulation presented here and the theoretical results carry
over to the case when the space of interest is three dimensional.
We begin by formulating indoor localization as a Bayesian
optimization problem [11], which allows us to introduce our
robustness requirements in a simple and natural manner.

Let S ⊆ Rd, where d ∈ {2, 3} be the space of interest in
which localization is to be performed. We assume that S is
convex, closed, and bounded. Let the location of the receiver
(the node whose location is to be estimated) be denoted as
r ∈ S. Using a Bayesian viewpoint, we assume that this
location is a random vector with some prior distribution fR(r).
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This prior distribution is used to represent knowledge about
the possible position obtained, for instance, from previous
location estimates or knowledge of the corresponding user’s
mobility characteristics in the space; in the absence of any
prior knowledge, it could be set to be uniform over S. Let
o ∈ RN represent the location dependent observation data that
was collected. As an example, o could represent the received
signal strength values from transmitters whose locations are
known. Mathematically, we only require that the observation
vector is drawn from a distribution that depends on the receiver
location r: fO|R (o|r). In case of RSS measurements, this
distribution characterizes the stochastic radio propagation
characteristics of the environment and the location of the
transmitters. Note that this distribution could be expressed
in the form of a standard fading model whose parameters are
fitted with observed data, such as the well-known simple path
loss model with log-normal fading [34].

Using the conditional distribution of the observed vector and
the prior over R, we obtain the posterior distribution over the
receiver locations using Bayes’ rule:

fR|O (r|o) =
fO|R(o|r)fR(r)∫

r∈S fO|R (o|r) fR(r) dr
. (1)

Traditionally, algorithms for localization are methods that derive
a location estimate from the above posterior distribution. In
this view, a localization algorithm A is a mapping from
• the observation vector o,
• the prior distribution over the location, fR(r),
• the conditional distribution over o, fO|R (o|r),

to a location estimate r̂. Consequently, the usefulness of this
location estimate is intimately tied to the validity of the derived
posterior distribution. Our objective in this paper is to obtain a
location estimate that accounts for ambiguity in this posterior.
Such ambiguity might stem from either uncertainty about the
prior or from uncertainty about the conditional distribution of
the observation vector, or both. In this paper, our focus is on
dealing with uncertainty about the conditional distribution of
the observation vector, leaving the investigation of other cases
for future work.

A. Distributionally Robust Formulation

Our uncertainty about the posterior distribution is specified
by constructing a set of possible posterior distributions, denoted
by F . Given an estimate, say r̂, of the true location, we incur
a cost that is assumed to depend only of the Euclidean distance
between r̂ and the true location r. Denote the cost function
as g (‖r − r̂‖). We assume that g : R≥0 7→ R≥0 is a non-
decreasing continuous function.

In the classical non-robust formulation, we construct a single
posterior distribution function using Bayes’ rule as given in
equation (1). This posterior, say fR|O(r|o), is used to derive
a location estimate r̂ that solves the optimization problem

r̂ = arg min
r′∈S

Ef [g (‖r′ −R‖)] , (2)

where the expectation is over R ∼ fR|O(r|o) and S is our
space of interest.

In the distributionally robust formulation, we minimize the
cost of our estimate over the worst possible posterior distribution
in F . The worst possible distribution in F is the distribution in
F which yields the highest cost in expectation. In other words,
it is the distribution in F that maximizes Ef [g (‖r′ −R‖)].
Throughout this paper, we shall also refer to this as the worst
case distribution. This robust formulation can be expressed as

r̂ = arg min
r′∈S

max
f∈F

Ef [g (‖r′ −R‖)] . (3)

The key to solving this robust formulation efficiently is to find
an appropriate uncertainty set F that is not overly conservative
while still providing satsifactory robustness guarantees. We
discuss this issue in the following section.

I V. U N C E R TA I N T Y S E T C O N S T R U C T I O N

We define our uncertainty set F to be the class of distribu-
tions that have the mean and the covariance matrix to be close to
our best estimate of our mean and covariance of R. Denote this
estimate of the mean µ0, and the estimate of the covariance Σ0.
This estimate of the mean and covariance may be derived by
utilizing the collected observation data. For a choice of tunable
parameters, γ1 ≥ 0 and γ2 ≥ 1, that express our confidence
about the estimated mean and covariance, consider the set of
distributions, F (S,µ0,Σ0, γ1, γ2), such that each distribution
function f ∈ F satisfies

P (R ∈ S) = 1, (4a)

(Ef [R]− µ0)
>

Σ−10 (Ef [R]− µ0) ≤ γ1, (4b)

Ef
[
(R− µ0) (R− µ0)

>
]
� γ2Σ0. (4c)

These constraints define a set of distributions that satisfy the
following properties: (i) The mean lies within an ellipsoid of
size γ1 centered at µ0, and (ii) the covariance matrix lies within
a positive semi-definite cone defined by the matrix inequality. It
has been shown that such a construction of the uncertainty set
often results in computationally tractable optimization problems
that can be solved using mature, widely available software
packages [17], [55]. Moreover, this construction is conceptually
simple while still encompassing a rich collection of interesting
uncertainty sets [55] and naturally incorporating the use of all
the available data [16].

The initial estimate of the mean, µ0, and the covariance,
Σ0, is crucial to the above formulation. These may be derived
using the available observation data. In the following section
we illustrate how to incorporate our observation data in
the uncertainty set construction. In addition, we identify the
properties of the robust solution and simplify the above problem
to a form that is easily solved using a software solver.

A. Initial Estimate for Uncertainty Sets

Typically localization systems collect observations that de-
pend on location and then describe this relationship either using
an analytical model or using an empirically derived distribution.
Such descriptions are used to construct the distribution of the
observations, fO|R (o|r). Thus the source of uncertainty in
the posterior, fR|O (r|o), may be viewed as stemming from
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uncertainty about the conditional distribution of the observation
vector, fO|R (o|r).

Given an uncertainty set containing possible distributions
for fO|R (o|r), we can conceptually derive an uncertainty set
for the posterior by applying Bayes’ rule for each candidate
distribution for fO|R (o|r). However, such a naïve approach is
not computationally feasible since the uncertainty sets are not
necessarily finite. Thus, we use a model-derived or empirically
estimated distribution for fO|R (o|r) to derive the estimates
µ0 and Σ0. For RSS data, the log-normal model may be
used. Denote this model-derived or empirically estimated
distribution as f̂O|R (o|r). Using this distribution, we can
derive a candidate posterior using Bayes’ rule. Denote this
derived posterior distribution as f̂R|O (r|o). Then,

µ0 = Ef̂ [R] , (5)

Σ0 = Ef̂
[
(R− µ0) (R− µ0)

>
]
. (6)

The estimates given above, along with a choice of the param-
eters γ1 ≥ 0 and γ2 ≥ 1, completes the description of our
uncertainty set, F (S,µ0,Σ0, γ1, γ2), for the posterior. Note
that the initial estimates presented in equations (5),(6) are
the MMSE estimate and its covariance, under the derived
posterior distribution, f̂R|O (r|o). Thus the uncertainty set
can be viewed as a representation of our confidence in the
assumptions under which the MMSE estimate was derived.
Specifically, it represents our confidence in the derived posterior
distribution, f̂R|O (r|o), and hence in the MMSE estimate
derived from this distribution. The parameters γ1 ≥ 0 and
γ2 ≥ 1, allow us to constrain the distributions admitted inside
the uncertainty set, thereby limiting how far the robust estimate
is allowed to stray from the MMSE estimate.

V. S O L U T I O N S T R U C T U R E

In this section we investigate the structure of the solution
to the inner moment problem maxf∈F Ef [g (‖r′ −R‖)], for
sufficiently large values of the parameters γ1 and γ2, leaving
the discussion on the impact of γ1 and γ2 for the subsequent
section. The following formulation is inspired by Scarf’s
classical result in inventory theory [56]. We show that for
any given candidate location r′, the distribution that yields the
maximum cost, in other words the worst case distribution, will
have positive support only on the boundary of our space, ∂S .
This is formalized in the following theorem.

Theorem 1. For any r′ ∈ S and a non-decreasing continuous
cost function g : R≥0 7→ R≥0, there exists r∗ ∈ ∂S such that

max
f∈F

Ef [g (‖r′ −R‖)] ≤ g (‖r′ − r∗‖) . (7)

Proof. See Appendix B

Theorem 1 indicates that attempting to maximize our
expected cost, Ef [g (‖r′ −R‖)], pushes the support of the
resulting distribution f closer to the boundary of our space S .
Furthermore, since our space of interest S is convex and in
R2 or R3, we can efficiently approximate S using a convex
polyhedron [57], [58]. Using such an approximation allows us
to further simplify the structure of the worst case distribution.

Let Ŝ be our convex polyhedron approximation of S . For any
point r′ ∈ Ŝ , the point in Ŝ that is farthest from r′ is one of
the vertices of Ŝ . Consequently, for a convex polyhedron Ŝ in
R2 or R3, we have the following refinement of Theorem 1.

Theorem 2. If Ŝ is a convex polyhedron in R2 or R3, then
for each r′ ∈ Ŝ, there exists a vertex v ∈ Ŝ such that

max
f∈F

Ef [g (‖r′ −R‖)] ≤ g (‖r′ − v‖) . (8)

Proof. See Appendix C

Theorem 1 indicates that the worst case distribution has
support only on the boundary of our space. Moreover, in case
we employ a convex polyhedron approximation for our space
of interest, Theorem 2 suggests that we only need to consider
distributions that have support on the vertices. However, it
is worth noting that is not guaranteed that these bounds are
attained by a distribution within F for all values of γ1 and γ2.

For instance, consider the scenario where we attempt to sim-
plify the inner moment problem, maxf∈F Ef [g (‖r′ −R‖)],
by reducing our search space to include only those distributions
within F that have support only on the vertices of Ŝ. There
always exists such distributions that can satisfy constraint (4b)
for any choice of µ0 and γ1. However, the same cannot be said
for constraint (4c). Considering only distributions with support
on the vertices of Ŝ effectively imposes a lower bound on the
covariance matrix of R, and hence the parameters γ2 and Σ0

needs to be chosen with some care. We will revisit this issue
of parameter selection in the following section.

V I . S I M P L I F I E D F O R M U L AT I O N

We now turn our attention to the issue of simplifying our
optimization problem (3) to a form that is easily computed using
standard software tools. Assume that S is a convex polygon. If
the original space is convex but not a polygon, we can always
find a convex polygon approximation with a desired level of
accuracy [57]. We then discretize the distributions within F by
allowing them to have support only on a discrete grid-like set of
locations, say V , within S . This imposes nearly no compromises
since we can get arbitrarily close to the continuous setting by
making our grid progressively finer. The vertices of S are
always included in V . This ensures that the convex hull of V
always returns S, conv(V ) = S.

This reduction of the uncertainty set to include only discrete
distributions allows for us to write our optimization problem in
a simpler manner. Let V = {ri}ni=1 represent the locations of
the grid points within S . The vector p represents a distribution
over this set of grid points. Define

Ai = (ri − µ0)(ri − µ0)
> (9)

Bi =

[
Σ0 (ri − µ0)

(ri − µ0)
>

γ1

]
, (10)

for all i ∈ {1, 2, . . . , n}. For each candidate location r ∈ S , let
gr represent the cost vector for that location, (gr)i = g(‖r −
ri‖) for all i ∈ {1, 2, . . . , n}. Then for each candidate location



6

10 20 30 40 50
x

0

20

40

60

80

y
2 = 4

0

r0

r

0.015

0.045

0.075

0.105

0.135

0.165

(a)

10 20 30 40 50
x

0

20

40

60

80

y

2 = 16
0

r0

r

0.004

0.012

0.020

0.028

0.036

0.044

0.052

(b)

10 20 30 40 50
x

0

20

40

60

80

y

2 = 64
0

r0

r

0.0025

0.0075

0.0125

0.0175

0.0225

0.0275

0.0325

(c)

10 20 30 40 50
x

0

20

40

60

80

y

2 = 128
0

r0

r

0.004

0.012

0.020

0.028

0.036

0.044

0.052

0.060

(d)

Fig. 2. An illustration of the posterior distribution corresponding to the robust estimate (r̂), for various values of the parameter γ2. The MMSE estimate (µ0)
and the actual receiver location (r0) are shown as well. As predicted by Theorems 1 and 2, the worst-case distribution is pushed towards the boundary and
vertices of the rectangular 60 m by 80 m space.

r, the inner moment problem in (3) can be represented by the
following semi-definite program (SDP) [59]:

maximize g>r p (11a)

subject to
n∑
i=1

piAi � γ2Σ0, (11b)

n∑
i=1

piBi � 0, (11c)

n∑
i=1

pi = 1, (11d)

pi ≥ 0 for all i ∈ {1, 2, . . . , n}. (11e)

The solution to the above optimization problem gives us
the worst-case distribution corresponding to the candidate
location r. Note that, for any given r, the above inner moment
problem (11) is a SDP that can be solved efficiently both
in theory and practice [60]. As we typically deal with a
finite number of possible location estimates, we can potentially
enumerate the solution of problem (11) for all possible location
estimates and then choose the best among them. Thus the
problem remains computationally feasible in its current form.

Moreover, as the optimization at the candidate locations are
independent of each other, we can further accelerate the process
using parallel or distributed computing.

Alternately, we can formulate the inner moment problem (11)
in its dual form and use the fact that the minimization operations
may be performed jointly. This yields the following SDP
formulation to obtain the robust location estimate:

minimize
Z1,Z2,ν,r,α

α (12a)

subject to r ∈ S, (12b)
Z1, Z2 � 0, (12c)
γ2 tr(Σ0Z1) + ν ≤ α, (12d)
tr(AiZ1)− tr(BiZ2) + ν − (gr)i ≥ 0, (12e)

for all i ∈ {1, 2, . . . , n}. The SDP formulation given
above (12) can be solved easily using a standard solver
such as CVXPY [61] or Convex.jl [62]. This dual form has
the advantage that we can obtain both the robust estimate
and the corresponding posterior distribution, through the dual
variables of SDP (12), using a single optimization program. An
illustration of the same is given in Figure 2 for various values
of the parameter γ2. As can be seen in the aforementioned
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figure, different choices of the parameter γ2 yields very different
solutions. For large values of γ2, the support of the posterior
get progressively closer to the vertices of S. This raises the
question of how we should choose these parameters for a
particular problem at hand. More fundamentally, we need to
know the range of parameters for which we are guaranteed
that an optimal solution exists. We explore this topic below.

µ0

−2 −1 0 1 2

1

2

Fig. 3. An illustration of valid parameter selection. Assume that we restrict p to
have support only on the vertices. Say we have an initial estimate µ0 = (0, 1).
Then the covariance matrix Ep

[
(R− µ0) (R− µ0)>

]
is lower bounded

by
[
2 0
0 1

]
for small values of γ1. In particular, the problem (3) is infeasible

for the choice of parameters γ1 = 1, γ2 = 1.5, and Σ0 = I
2

, where I is the
identity matrix. The optimization becomes feasible if Σ0 = 2I .

A. Parameter Selection

In this section, we investigate the issue of how to choose
the parameters involved in the construction of our uncertainty
set F (S,µ0,Σ0, γ1, γ2), which consequently determines the
optimization problem (12) that generates the robust estimate.
As indicated in Section IV-A, the mean µ0 and the covariance
matrix Σ0 of the posterior distribution fR|O(o|r) is obtained
either using a model such as the log-distance path loss
model [12] or using an empirically estimated distribution
f̂O|R (o|r). It remains to be shown that the low complexity
formulation (12) always yields an optimal solution for any
choice of γ1 ≥ 0 and γ2 ≥ 1.

Recall that each distribution in our uncertainty set F must
satisfy the constraints (4a), (4b), and (4c). In the low com-
plexity formulations (11) and (12), our search space involves
distributions that have support on a discrete set of locations
within S. Since all locations with positive support lie in S,
constraint (4a) is always satisfied. Since S is a closed, and
convex polygon in R2 or R3, any point in its interior can
be represented as a convex combination of its vertices [58].
In other words, for any choice of µ0 in the interior of S,
there exists a distribution p such that Ep[R] = µ0. Thus the
constraint (4b) is satisfied strictly for any choice of γ1 > 0.
In addition, algorithms to compute convex hulls of a finite set
of points in R2 and R3 are well known in the literature [63],
[64], so this distribution can be explicitly computed if need be.

The satisfiability of the final constraint (4c) is sensitive to
our choice of Σ0 and our choice of V , the discretization of
S. To illustrate this, consider the example given in Figure 3.
Assume that we force the distribution p to have positive support

only on the vertices of S. Then for a sufficiently small value
of γ1, constraint (4b) determines p, which in turn determines
the covariance matrix Σ̂ = Ep

[
(R− µ0) (R− µ0)

>
]
. Thus,

if we happen to choose an initial estimate Σ0 ≺ Σ̂, then our
optimization problem (12) is infeasible for some values of γ2 ≥
1. In summary, restricting p to have support only on the vertices
effectively imposes a lower bound on the covariance matrix
which needs to be taken into consideration while choosing the
γ2 and Σ0.

A similar situation holds, albeit to a significantly lesser
degree, when we discretize S to V . As might be expected, the
lower bound on the covariance matrix is now determined by
the points in V closest to µ0. Indeed, as we make V finer the
lower bound becomes progressively loose and it disappears
entirely when there exists a location in V that coincides with
µ0. This can always be ensured while constructing V . Hence
the constraint (4c) is satisfied strictly for any choice of γ2 > 1.
Thus, by this construction of the uncertainty set, we see that
Slater’s condition holds for the primal problem (11), and hence
strong duality holds [59]. Consequently, for any choice of µ0

in the interior of S, the optimum of the dual problem (12) is
attained.

Algorithm: robust location estimation
input : prior distribution fR(r)

observation vector o
distribution of observations f̂O|R (o|r)
cost function g
space of interest S
parameter γ1 > 0
parameter γ2 > 1
number of grid points n

output : robust location estimate r̂
begin

compute f̂R|O (r|o) . via (1)
compute µ0 . via (5)
compute Σ0 . via (6)
V ← Discretize(S, n− 1) ∪ µ0

compute {Ai}ni=1 . via (9)
compute {Bi}ni=1 . via (10)
construct and solve dual SDP . via (12)
return r̂

end

Fig. 4. A summary of the steps required to compute the robust estimate using
the simplified dual formulation

B. Computational Complexity

In our formulation, the robust location estimate is obtained
as the solution to a semi-definite program. Consequently, our
formulation is computationally tractable, both in theory and in
practice [60], [65]. The complexity of the SDP is determined
by its size [66], and in our formulation the size of the SDPs
(11) and (12) is proportional to the size of the uncertainty set
of distributions. This size of the uncertainty set is determined
by the size of our space S. In our simplified formulation,
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the size of our space can be measured by the number of
grid points within S, namely n. Thus, as we make our grid
progressively finer by increasing n, we increase the number
of distributions supported by our uncertainty set. This has the
effect of increasing the time required to compute the robust
estimate. To capture this scaling behaviour, we only need
to specify the computational complexity of solving the SDP
formulation (12). Note that the size of the matrices Ai, Bi for
i ∈ {1, . . . , n}, Z1, and Z2 is determined by the dimension
of our space. Since our space S will lie in R2 or R3, this is
a constant. Recall that we assume S to be a convex polygon.
Let t denote the number of faces of S. Then the SDP (12)
can be solved in O(n1.5t3) operations [66]. To obtain the
robust estimate using formulation (11), note that we need to
solve n such inner moment problems, each corresponding to
a candidate location. Each of these inner moment problems
can be solved in O(n1.5) time, independent of each other. The
solution to each such problem returns the cost, g>r p, and the
robust estimate is the location that yields the least cost. This
approach lends itself very well to a distributed implementation,
such as MapReduce [67]. In a distributed implementation, the
mobile device might communicate its observation data to a
localization server which computes the location estimate using a
pool of worker nodes and then communicates the estimate back
to the device. Such an implementation reduces the computation
time while incurring a communication overhead.

So far we have discussed the complexity of solving the
SDPs (11) and (12) to obtain the robust estimate. In construct-
ing the uncertainty set used in these SDPs, we need to obtain
initial estimates for the location, µ0, and the covariance matrix,
Σ0. As indicated in Section IV, these estimates are computed
using a model-derived or an empirically estimated distribution
of observations, fO|R (o|r). We may use the services of
estimators, such as MMSE, to obtain these initial estimates.
The computational complexity of the robust estimate, presented
in the preceding paragraph, is incurred in addition to this cost
of finding the initial estimates. This presents us with a trade-
off between robustness and computational complexity, as one
could simply use the initial estimates if robustness was not a
concern. In this regard, the choice of implementing the robust
formulation presented here should be made depending on the
application needs, and the level of uncertainty in modelling
the environment.

V I I . E VA L U AT I O N

In this section, we investigate the performance of the robust
estimate compared to the MMSE estimator under simulations
and real world experiments.

Firstly, we consider the wireless setting that corresponds to
large-scale fading or shadowing. In this setting, the observations,
corresponding to the average received power level at a given
location, are drawn from a log-normal distribution [12]. In
this case, we set the MMSE estimator to correctly assume the
distribution of observations. The observations arriving from
different transmitters may be correlated with each other. We
consider both settings corresponding to correlated observations,
and when the observations are independent and identically
distributed (IID).

Secondly, we consider the wireless setting that corresponds
to small-scale fading. In this setting, the signal strength at
a location fluctuates about the average value according to a
Rayleigh distribution [12]. In this case, the MMSE estimator
ignores the fluctuations about the mean power level.

Thirdly, we incorporate the non-stationary behavior exhibited
by signal strength measurements [68]. In this setting, the
variance of the observations changes depending on the time
of the day. A higher variance is used to model observations
generated during working hours (daytime), while a lower
variance is used for nighttime observations.

Finally, we evaluate the performance of the robust estimate
under a real world setting. We collect 802.11 received signal
strength observations in an indoor office environment under
two scenarios, namely, daytime and nighttime. The daytime
observations correspond to a setting with relatively high
variance, while the nighttime observations correspond to a
relatively low variance setting. In all of these cases, the initial
estimates for the uncertainty set are obtained using the model
assumed by the MMSE estimator.

A. Large-Scale Fading

Say {l1, l2, . . . , lm} (m > 2) are the known positions of (m)
wireless transmitters. We assume each transmitter is located on a
planar surface given by S = [0, l]×[0, b] where l, b ∈ R>0. The
locations of the transmitters are given by the two dimensional
vector li = (xi, yi) ∈ S ∀i ∈ {1, 2, . . . ,m}. We wish to
estimate the receiver locations, given by the vector r = (x, y),
from the received signal strengths. For a given transmitter-
receiver pair, say i, the relationship between the received signal
power (P ir) and the transmitted signal power (P it ) may be
modelled by the simplified path loss model

P ir = P itK

[
d0
di

]η
Wi, (13)

where the distance between the receiver and the ith transmitter
is given by di (r) =

√
(x− xi)2 + (y − yi)2, and Wi repre-

sents our noise that is log-normally distributed with zero mean
and variance σ2. In log scale, the path loss model is given by

P ir |dBm = P it |dBm +K|dB − 10η log10

[
di
d0

]
+Wi|dB, (14)

where K is a constant given by the gains of the receiver
and transmit antennas and possibly the frequency of trans-
mission. d0 is a reference distance, taken to be 1m. In this
setting, our estimation problem may be restated as follows.
We are given measurements of the receiver signal strengths{
P 1
r , P

2
r , . . . , P

m
r

}
from which we are to estimate the receiver

location r. Thus, our observation vector O may be written as

Oi = P ir |dBm − P it |dBm −K|dB = Wi|dB − 10η log10

[
di
d0

]
,

for all i ∈ {1, . . . , N}. In other words, the distribution of each
observation is given by Oi ∼ N

(
−10η ln [di (r)] , σ2

)
.

For the setting where the received observations are IID,
the distribution of the observation vector fO|R(o|r) can be
obtained from the above by taking the product of all the
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Fig. 5. Performance of the MMSE and Robust estimates on increasing noise variance. For this illustration, a log-normal fading model was used to generate the
observations in a rectangular 60 m by 80 m space using identical parameters as that used in Figure 2. In Plot 5a, the observations are drawn in an IID manner.
This corresponds to the best case scenario for MMSE. Note that in this case the performance of the robust estimate tracks that of the MMSE estimator very
closely. In Plot 5b, the observations are correlated with each other. We see that the robust estimate performs much better than MMSE in this case.

marginal observation pdfs. To evaluate the setting where the
observations may be correlated, we transform the observation
vector that was obtained above. Under the IID assumption, the
covariance matrix of O|R is given by

Σ̃ = EfO|R

[
(O − ō) (O − ō)

>
]

(15)

= σ2I, (16)

where I is the identity matrix, and ō = EfO|R [O]. Using a
transformation matrix C, we can transform the observation
vector as O∗ = CO. This yields the updated covariance matrix,
Σ̃∗ = σ2CC>. The transformed observations are now jointly
normal with covariance Σ̃∗. We would like the transformation
matrix to encode the property that the observations coming
from transmitters that are closer to each other are likely to be
more correlated compared to a pair that is spaced farther apart.
This can be achieved by setting Cij = 1

1+βdij
, where dij is the

distance between the transmitters i and j, and β is a parameter
that can be used to tune the strength of the induced correlations.
In this manner, we can evaluate the robust formulation under
the setting of correlated observations. The specific values of
the parameters used in the evaluation are given below.

The dimensions of the area of interest (S) was 60 m ×
80 m. Sixteen transmitters were chosen randomly and 64 RSSI
readings were taken for each transmitter at 300 distinct receiver
locations. The transmit power was kept constant at 16 dBm.
The model parameters are a path loss of K = 39.13 dB at
reference distance d0 = 1 m, and path loss exponent η = 3.93.
The robust estimator uses the cost function corresponding to the
MSE, g (‖r − r̂‖) = ‖r − r̂‖2. The parameters of the robust
estimator are, γ1 = 8 and γ2 = 8. The value of β was chosen
to be 4. The prior distribution was assumed to be uniform
over S which corresponds to the case where we have no prior
knowledge of device location.

In Figure 5, the MMSE estimator correctly fits a log-normal
distribution over the received power levels, which is used

to generate the initial estimates, µ0,Σ0, used by the robust
estimator. In this setting, the MMSE estimator is expected to be
the best performing estimator as measured by the RMSE metric.
This behavior is shown in Figure 5. However, it is notable that
the robust estimate does not deviate too far from the MMSE
estimate, with the mean RMSE of the robust estimate being at
most 0.2 m above that of the MMSE estimate.
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Fig. 6. Performance of the MMSE and Robust estimates on increasing noise
variance. For this illustration, a Rayleigh fading model was used to generate the
observations in a rectangular 60 m by 80 m space using identical parameters
as that used in Figure 5. The observations are correlated. In this plot, the
MMSE estimator incorrectly assumes that the observations are drawn from a
log-normal distribution. The robust estimate consistently performs better than
the MMSE estimator here.

B. Small-Scale Fading

Consider the setting where the signal strength at any given
location is the result of superposition of different multi path
components, none of which is dominant. Then, the in-phase
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and the quadrature-phase component of the received signal is
the sum of many random components and is well approximated
by a normal distribution using the central limit theorem [12].
Consequently, the absolute amplitude of the received signal
follows a Rayleigh distribution. The squared amplitude, and
hence the power, follows an exponential distribution.

Let the mean received signal power, for a given transmitter-
receiver pair, say i, be given by P ir . Note that this local mean,
P ir , follows a log-normal distribution as given in equation (13).
The received signal power, say P̃ ir , fluctuates around this average
value according to a exponential distribution,

P̃ ir = P irZi (17)

where Zi ∼ Exp(1). The distribution of the received power, P̃ ir ,
is a product of a log-normal random variable, corresponding
to the mean power level, and an exponential random variable,
corresponding to fluctuations about this mean.

In Figure 6, the MMSE estimator effectively ignores these
fluctuations about the mean value. The MMSE estimator fits a
log-normal distribution over the received power levels, ignoring
the fluctuations due to small scale fading. This incorrect
distribution used by the MMSE estimator is used to generate
the initial estimates, µ0,Σ0, used by the robust estimator. As
can be seen in Figure 6, the robust estimator outperforms the
MMSE estimator in this case, which demonstrates its usefulness
in the presence of modeling errors.

C. Non-Stationary Behavior

It is well known that signal strength measurements in indoor
environments exhibit non-stationary behavior [68]. Specifically,
the variability exhibited by the signal strength measurements
varies depending on the time of the day. During daytime, the
presence of an increased number of people indoors creates a
dynamic environment that results in increased variability for
the signal strength measurements. This effect is reduced during
the evening and nighttime.

To evaluate the robust formulation under this setting, we
generate two sets of observations using the small-scale fading
model. The ratio of the standard deviation of the two sets of
observations is given by σ1

σ2
= θ, where θ is a parameter. For

the illustration in Figure 7, we choose θ = 2. The smaller
standard deviation is given by σ2 = σ

√
2

1+θ2 , where σ is
a parameter we can use to vary the overall variance of the
combined set of observations. This parameter σ is used as the
standard deviation of the log-normal model used by the MMSE
estimator and thus to generate the initial estimates for the robust
formulation. The performance of the robust formulation, and the
MMSE estimator is shown in Figure 7. The robust formulation
performs better in this setting as well, further strengthening
the case for its adoption when the model is not known exactly.

Figures 6 and 7 show that the robust estimator initially
improves its performance on increasing the noise variance.
The performance degrades on continuing to increase the
variance. In the above simulations the initial estimates, µ0,Σ0,
were obtained assuming a log-normal fading model for the
observations. At low variances, the covariance matrix is small,
and hence the robust estimator is constrained by the covariance
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Fig. 7. Performance of the MMSE and Robust estimates on increasing
noise variance. For this illustration, a Rayleigh fading model with different
noise variances for the mean power was used to simulate the non-stationary
behavior of signal strength measurements. The observations were generated
in a rectangular 60 m by 80 m space using identical parameters as that
used in Figure 6. The observations are correlated. In this plot, the MMSE
estimator incorrectly assumes that the observations are drawn from a log-
normal distribution with standard deviation σ. The robust estimate consistently
performs better than the MMSE estimator here.

matrix Σ0 which forms a tight upper bound on the covariance
of the worst case distribution. While the robust estimate still
performs better than MMSE in this regime, the uncertainty
set (4) is limited by the upper bound (4c). As the variance
increases, the upper bound becomes progressively loose which
results in the uncertainty set admitting more distributions,
which in turn increases the performance of the estimator. This
behaviour continues until it is counteracted by the fact that the
increasing noise variance distorts the observations too much
and the initial estimate µ0 degrades, resulting in an increase
in the error of the robust estimate.

D. Real World Experiments

We evaluated our robust formulation using real world data.
The data was collected from a 4 m×2 m space inside an office
environment. The space was divided into eight 1 m × 1 m
squares and signal strength samples were collected from the
center of each square. Two hundred and fifty signal strength
readings were collected for the sixteen strongest access points
detected using the WiFi card on a laptop running Linux. Not
all access points were in line of sight of the WiFi card, and
the closest access point is about six to eight meters away.
The beacon interval for each access point was approximately
100 ms. The signal strength measurements were taken 400 ms
apart. Two sets of data were collected, one at night time, when
the office was empty, and the other during the day, when there
was regular movement of people within the office. As shown
in Figure 9, the measurements taken at night show that the
observed signal strengths are highly concentrated around the
mean. The measurements taken during daytime show more
variability.

Thirty percent of the collected data was randomly chosen
for evaluating algorithm performance. The remaining data was
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used to compute the mean signal strength and its standard
deviation for each access point at each measurement location.
The computed mean and standard deviation were used to fit a
normal distribution for the observations (in log-scale) at each
measurement location, from which the MMSE estimates and
the initial estimates for the robust formulation were derived.
This approach to obtaining the MMSE estimates is similar to
data-driven methods such as fingerprinting [4], [7], [13], where
the mean signal strength at each location is used to obtain the
location estimate. The parameters of the robust estimator are,
γ1 = 1 and γ2 = 1. The performance of the robust estimator
on this real dataset is shown in Figure 8. The results shown
that the robust estimate outperforms the MMSE estimate in
both the daytime and the nighttime datasets. The performance
increase is more pronounced in the daytime, which is expected
since the observations display more variability during daytime.
This echos the trend seen in the simulation results.

V I I I . D I S C U S S I O N

The robust formulation presented in this paper defines an
uncertainty set of posterior distributions, fR|O (r|o), from
which we derive the robust estimate. As illustrated in Figure 1,
the uncertainty in the posterior distribution fundamentally
stems from uncertainty about the distribution of observations,
fO|R (o|r). This suggests an alternate approach. Namely, we
may consider defining an uncertainty set of the distribution
of observations, and then derive a robust estimate using this
new uncertainty set. Note that while both of these approaches
aim to quantify the uncertainty stemming from the distribution
of observations, they do so in different ways. In the approach
adopted hitherto, we derive a candidate posterior distribution
which is used to construct an uncertainty set of posterior distribu-
tions, fR|O (r|o). On the other hand, in this section we explore
an alternate formulation that attempts to directly specify an
uncertainty set for the distribution of observations, fO|R (o|r).
The key challenge in this approach lies in translating the
uncertainty constraints to the posterior distribution.

Specifically, consider the situation where we define a set of
distributions similar to the definition in equation (4). Assume
that we have collected a set of observations, {o1,o2, . . . ,om},
from a particular unknown location in S . Then empirical mean
and covariance matrix of the observations may be computed
for that location,

µ̂ =
1

m

m∑
i=1

oi, (18)

Σ̂ =
1

m− 1

m∑
i=1

(oi − µ̂)(oi − µ̂)
>
. (19)

This empirical mean and covariance matrix may be used as
the initial estimates to construct an uncertainty set similar to
equation (4), but for the distribution of observations, fO|R (o|r).
However, without further assumptions, it is unclear how these
uncertainty constraints for fO|R (o|r) can be translated to de-
fine an uncertainty set for the posterior distribution, fR|O (r|o).
One possible way forward is to further assume that the relevant
distributions have a certain functional form. Specifically, assume
that the observations are generated from a certain family of

distributions, such as the log-normal family. By choosing
an appropriate conjugate prior, we can fix the family of
the posterior distributions. The constraints on the mean and
covariance matrix of the distribution of observations can be
translated to constraints on the mean and covariance matrix of
the posterior.

This approach has the disadvantage that we are fixing the
family of distributions of the prior, and hence that of the
posterior, a priori. Depending on our prior knowledge of
the location, or lack thereof, such an assumption may not
be appropriate. More work needs to be done to investigate
the feasibility and performance of such an approach, and
to compare it with the robust formulation presented in this
paper. The uncertainty set construction in Section IV has
the appealing feature of being conceptually close to how
localization algorithms are designed and implemented currently.
Current methods specify a single model for observation vector
and do not impose any restriction on the choice of the prior.
These features are retained in the current robust formulation.

As we have seen in Section II, there are many works in
the localization literature that have attempted to account for
uncertainty in various parameters of the localization system.
Consider the works that account for uncertainty in location of
the transmitters or anchor nodes [35]–[40]. The distribution
of observations, fO|R (o|r), at any location depends on the
location of the transmitters. Consequently, if there is uncertainty
in the location of the transmitters, then the distribution of
observations is also uncertain. As we have seen already, we
can use the formulation presented here in this case to obtain a
robust estimate. Another way of accounting for this uncertainty
is to model the uncertain parameter, in this case the transmitter
location, as a random vector following some known distribution.
This is the approach adopted by almost all of the works
dealing with uncertain transmitter locations in localization
systems [35]–[40]. This is a highly common and valid approach
to modelling uncertainty that is used beyond transmitter location
uncertainty [69] or even indoor localization [70].

The key difference between the aforementioned works and
the formulation presented in this paper is that, while these
works aim to appropriately model the uncertainty, in this
paper we aim to be robust to the uncertainty. These aims
are complementary. Explicitly designing for robustness can
help reduce the complexity of the model, while a well thought
out model aids in designing the uncertainty set for robustness.
Moreover, the robustness formulation presented here is general
and is applicable to any model.

To illustrate the difference between these goals, let us
consider an example, namely [35]. In this work, the authors
consider the case when all the transmitter locations are modelled
by a Gaussian distribution with known mean and variance, and
the observations are assumed to follow a normal distribution
with a known mean value and a random variance. Specifically,
the inverse variance of the observations is assumed follow
a known Wishart distribution. Under these assumptions, the
authors derive the posterior distribution of the receiver and
describe an algorithm to navigate the complexities of the
posterior distribution to obtain the MMSE or the maximum
a posteriori (MAP) estimate. This approach is correct, up
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Fig. 8. Performance of the MMSE and Robust estimates on a real dataset. In this experiment, two sets of observations were collected from a a rectangular 4 m
by 2 m space in an indoor office environment. Plot 8a shows the performance of the robust estimate on observations taken during the night when there was
little movement in the environment. Plot 8b shows the performance of the robust estimate on observations taken during the daytime, when there were regular
movement of people inside the office. The parameters of the robust estimator was unchanged between both cases. We see that the robust estimate performs
better than MMSE both cases. The increase in performance improves during daytime.
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Fig. 9. Illustration of the empirically estimated distribution of O using signal strength measurements (in dBm ) taken at different locations. Each subplot
refers to the distribution of signal strength from a unique access point. The left subplot refer to measurements taken at night, while the right subplot refer to
measurements taken during daytime.

to a modelling error. For instance, it is unclear how the
performance would change if the observations followed a
multimodal distribution instead of a Gaussian. It is precisely this
error in modelling that we tackle using the robust formulation
presented here. By specifying the uncertainty set as given in (4),
we weaken our dependence on the derived posterior distribution.
Note that the dependence on a model is not completely absent.
Specifically, we rely only on the first and second moments
of the resulting posterior distribution, while the guarantees
presented in [35] and similar works [36]–[40] depends on the
correctness of the full posterior distribution. Consequently, the
robust formulation presented here complements these modelling
efforts, aiming to cushion the impact of errors in modelling.

In Section VI, we discussed how to select the parameters,
γ1 and γ2, such that the resulting optimization problem always

returns an optimal solution. Ideally, we would like to derive
our parameters from the received observations in a manner
that yields a probabilistic guarantee that our solution is robust
with respect to the true posterior distribution. For instance,
if we construct the distribution of observations, fO|R (o|r),
empirically from a large data set, then we are reasonably
justified in choosing γ1 close to 0, and γ2 close to 1. However,
further work is needed to fully characterize this dependence.
To this end, a first step is to obtain a confidence region for
the mean and the covariance matrix of R, based solely on the
received set of observations. Finally, we aim to choose our
initial estimates µ0 and Σ0, and the parameters γ1 and γ2,
using the received set of observations in a manner that will
guarantee that the true posterior distribution lies within the
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uncertainty set F (S,µ0,Σ0, γ1, γ2), with high probability.
In [17], under a different problem setting, the authors specify

the how to obtain the parameters of the uncertainty set from
historical data, such that the true distribution lies within the
constructed set with high probability. Specifically, the authors
consider problems of the form

minimize
x∈X

max
f∈F

Ef [h(x, ξ)] (20)

where X is a convex set of feasible solutions, ξ is some random
vector of parameters, h(x, ξ) is a cost function that is convex
in x and concave in ξ, and F is the set of distributions of ξ. In
this setting, it is assumed that one has access to an independent
set of samples {ξ1, ξ2, . . . , ξm} generated according to an
unknown distribution. This set of samples is used to construct
the set F such that it contains the unknown distribution of ξ
with high probability.

The current work differs from the above primarily in that we
construct the uncertainty set F for the posterior distribution,
fR|O (r|o), and not the distribution of observations, fO|R (o|r).
Consequently, as illustrated in Figure 1, our estimates of the
mean and covariance matrix involved in the construction of F
are not the empirical mean and covariance matrix of the received
set of observations, but that of R derived from the observations
with the help of a model. The problem of obtaining performance
guarantees for the robust estimate under this setting remains
an area of future work.

I X . C O N C L U S I O N

We have introduced a distributionally robust approach to the
problem of indoor localization based on RSS observations,
that explicitly takes into account the inherent uncertainty
in the distribution of observations. We have identified the
structure of the robust solution and illustrated how the solution
changes on varying the parameters. We have demonstrated
how to construct the problem such that it is easily computed
using standard software tools and always returns an optimal
solution. We have evaluated our robust solution under realistic
channel fading models. Our results show that the robust
solution outperforms the traditional approach in the presence
of modeling errors, while remaining close to the traditional
estimate when the modeling is exact. Our results suggests that
the robust formulation presented here is well suited for settings
where the environment is highly variable, such as an office
building or an indoor mall. To the best of our knowledge, this
is the first work that addresses distributionally robust indoor
localization.

A P P E N D I X A
D E R I V I N G T H E D U A L

Note that the matrices Ai and Bi are symmetric for all
i ∈ {1, 2, . . . , n}. The Lagrangian associated with the primal

problem (11) is given by

L(p, Z1, Z2, ν,λ) =

n∑
i=1

pi tr(AiZ1)− γ2 tr(Σ0Z1)

−
n∑
i=1

pi tr(BiZ2) +

n∑
i=1

νpi

−
n∑
i=1

pi(gr)i −
n∑
i=1

λipi − ν. (21)

Grouping together the terms with the variable coefficients yields

L(p, Z1, Z2, ν,λ) =

n∑
i=1

pi [tr(AiZ1)− tr(BiZ2) + ν − λi

− (gr)i]− γ2 tr(Σ0Z1)− ν. (22)

The dual function is given by

h(Z1, Z2, ν,λ) = inf
p
L(p, Z1, Z2, ν,λ). (23)

Consequently we need

tr(AiZ1)− tr(BiZ2) + ν − λi − (gr)i = 0, (24)

for all i ∈ {1, 2, . . . , n}, to ensure that the dual function lies
above−∞. In addition, the dual variables Z1, Z2 are symmetric,
and λi ≥ 0 for all i ∈ {1, 2, . . . , n}. Thus the dual program
can be expressed as

minimize α (25a)
subject to Z1, Z2 � 0, (25b)

γ2 tr(Σ0Z1) + ν ≤ α, (25c)
tr(AiZ1)− tr(BiZ2) + ν − (gr)i ≥ 0, (25d)

for all i ∈ {1, 2, . . . , n}.

A P P E N D I X B
P R O O F O F T H E O R E M 1

Let r∗ = arg maxr∈S g (‖r′ − r‖). Since S is closed and
bounded, r∗ exists. Assume that no point on the boundary
attains the maximum cost c∗ = g (‖r∗ − r′‖). Fix a value of
r∗ that lies in the interior of S and attains c∗. Consider the
ray z(λ) = r′ + λ(r∗ − r′) where λ ≥ 0. Since S is convex,
z(λ) ∈ S for all λ ∈ [0, 1]. Since r∗ lies in the interior of
S there exists a λ′ > 1 such that z(λ′) lies in the interior of
S. Since S is closed and bounded, the ray must intersect the
boundary for some value of λ greater than λ′. In other words,
we can find a λ̂ > λ′ > 1 such that the ray z(λ) intersects the
boundary ∂S at r̂ = z(λ̂) ∈ ∂S. Then,

‖r̂ − r′‖ = λ̂‖r∗ − r′‖ > ‖r∗ − r′‖. (26)

Since the cost function g is non-decreasing,

g (‖r̂ − r′‖) ≥ g (‖r∗ − r′‖) = c∗. (27)

Since c∗ is the maximum cost by definition, we must have
g (‖r̂ − r′‖) = c∗, which contradicts our initial assumption that
no point on the boundary attains the maximum cost c∗. Thus
there exists r∗ ∈ ∂S such that r∗ = arg maxr∈S g (‖r′ − r‖).
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For any posterior distribution f ∈ F ,

Ef [g (‖r′ −R‖)] =

∫
r∈S

g (‖r′ − r‖) fR|O(r|o) dr (28)

≤ g (‖r′ − r∗‖)
∫

r∈S

fR|O(r|o) dr (29)

= g (‖r′ − r∗‖) . (30)

A P P E N D I X C
P R O O F O F T H E O R E M 2

It follows from Theorem 1 that the upper bound is attained
by a point r∗ ∈ ∂Ŝ such that r∗ = arg maxr∈Ŝ g (‖r′ − r‖).
Since the function g is non-decreasing, r∗ = arg maxr∈Ŝ ‖r′−
r‖. Hence, it remains to be shown that the maximum of
‖r′ − r‖ over r ∈ Ŝ is attained by a vertex of Ŝ.

Let V̂ = {v1, . . . ,vn} be the set of vertices of Ŝ. Then
Ŝ may be represented as the convex hull of its vertices,
conv(V̂ ) = Ŝ. In other words, for any r ∈ Ŝ there exists
{λi}ni=1 such that r =

∑n
i=1 λivi, where λi ∈ [0, 1] for all

i ∈ {1, 2, . . . , n} and
∑n
i=1 λi = 1. Fix some r′ ∈ Ŝ. Then

for any r ∈ Ŝ, we have

‖r′ − r‖ =

∥∥∥∥∥r′ −
n∑
i=1

λivi

∥∥∥∥∥ (31a)

=

∥∥∥∥∥
n∑
i=1

λi (r′ − vi)

∥∥∥∥∥ (31b)

≤
n∑
i=1

λi ‖r′ − vi‖ (31c)

≤ ‖r′ − vj‖ , (31d)

where (31c) follows from the Cauchy-Schwarz inequality,
and vj = arg max1≤i≤n ‖r′ − vi‖. Clearly the upper bound
in (31d) is attained by setting λj = 1 and λi = 0 for all i 6= j,
i ∈ {1, . . . , n}. In other words, the maximum of ‖r′ − r‖ over
r ∈ Ŝ is attained by setting r to be an appropriate vertex of
Ŝ.
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