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ABSTRACT  

Building emergencies are big threats to the safety of building occupants and 

first responders. When emergencies occur, unfamiliar environments are difficult and 

dangerous for first responders to search and rescue, sometimes leading to secondary 

casualties. One way to reduce such hazards is to provide first responders with timely 

access to accurate location information. Despite its importance, access to the location 

information at emergency scenes is far from being automated and efficient. This 

paper identifies a set of requirements for indoor localization during emergency 

response operations through a nationwide survey, and proposes an environment-

aware sequence-based localization algorithm that is free of signal path loss models or 

collection of prior data, and mitigates signal multipath effects. The algorithm enables 

efficient on-scene ad-hoc sensor network deployment and optimizes sensing space 

division by strategically selecting sensor node locations. Building information is 

integrated, in order to enable building-specific space divisions and to support context-

based visualization of localization results. Proposed algorithm is evaluated through a 

building-size simulation. Room-level accuracy of up to 87.3% was reported, and up 

to 15.0% of deployment effort was reduced compared with using randomly selected 

sensor locations. The algorithm also showed good computational speed, with 

negligible time required for refreshing location estimation results in simulation.  

 

INTRODUCTION 

Building emergencies, including flooding, building collapses, terrorist attacks 

and especially structure fires, are big threats to the safety of building occupants and 

first responders. For example, public fire departments across the U.S. attended 

484,500 fires in buildings in 2011, which caused 2,460 deaths and 15,635 injuries 

(Karter 2012). When emergencies occur, unfamiliar environments are difficult and 

dangerous for first responders to search and rescue, sometimes leading to secondary 

casualties. With the increasing number of complex buildings, and less live-fire 

training, first responders are twice as likely to die inside structures as they were 20 

years ago, and the leading cause of these line-of-duty deaths is getting lost, being 

trapped or disoriented (Brouwer 2007). One way to reduce such hazards is to provide 

firefighters with timely access to accurate location information. It is also of critical 

importance for an incident commander to know the locations of deployed first 

responders in real time, so that decision-making process is faster and more informed.
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When an emergency happens, first response teams are sent to carry out search and 

rescue operations. In most cases, searching for occupants is a manual process, which 

could be prohibited by fires, smoke or structural damage. Reducing the time spent on 

searching for occupants has great potential to reduce chances of fatalities and injuries. 

 

LITERATURE REVIEW 

Regardless of the high value of location information for building emergency 

response operations, current access to location information mainly relies on manual 

blind search by first responders. There are a few indoor localization solutions 

proposed in literature, but none has been widely adopted. Chandra-Sekaran et al. 

(2009a; 2009b) proposed a system to locate doctors and patients carrying radio nodes 

in outdoor/indoor emergencies. Monte Carlo and unscented Kalman filter techniques 

were used for location estimation. Accuracies between 5 to 10 m in simulation were 

reported. A system proposed by Duckworth et al. (2007) required no existing 

infrastructure or pre-characterization of the area of operation. The system relied on an 

ad-hoc network built on transmitters carried by both first responders in a building and 

vehicles outside the building. Cavanaugh et al. (2010) reported up to sub-meter 

accuracy with their system. The system required a considerable investment for on-site 

deployment of localization system-equipped vehicles. Rantakokko et al. (2011) 

proposed a system that integrated foot-mounted inertial sensors and Ultra Wide Band 

(UWB) sensors to support first responders. Field tests reported accuracy of 1 to 4 m. 

The system suffered from heading drifts. Akcan and Evrendilek (2012) proposed a 

system that utilized UWB technology. Directional localization was enabled in static 

networks. Reported accuracy through simulations was up to 6 m, depending on the 

node density. Another UWB-based system was proposed by Lo et al. (2008). It used 

a time difference of arrival (TDOA)-based algorithm for 3D location estimation, and 

reported accuracy of 1 to 2 m in field tests. The system required a significant 

deployment effort for a sensing network, and could not locate building occupants that 

had no access to mobile units. Kaya et al. (2007) used a backward ray-tracing 

algorithm to analyze angle of arrival (AOA), time of arrival (TOA) and signal power 

for locating first responders wearing beacons. Using multiple receivers, they were 

able to cover 80% of a building and achieve an accuracy of within 10 m. 

There are also a few commercial solutions. Stemming from research 

sponsored by the Department of Homeland Security, SPIE’s (Mapar 2010) solution, 

named “GLANSER”, combined various technologies including global positioning 

system (GPS), IMU, UWB, Doppler radar, as well as a magnetometer, compass, 

pedometer, and altimeter inside a tiny wearable electronic unit. The algorithm was 

not disclosed, but an accuracy of 3 m was claimed in field tests. Exit Technologies 

(E2010) provided another solution that used handheld devices using low-frequency 

radios. A distressed first responder attempting reorientation or self-rescue could send 

out signals with a handheld device. Signals could then guide other first responders to 

the transmitting device. No details of the algorithm or accuracy were disclosed. 

 

REQUIREMENT ANALYSIS FOR INDOOR LOCALIZATION 

Most of the above solutions are highlighted by either their high accuracy or 

their independence from existing infrastructure. However, it remains unclear what 
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level of accuracy is sufficient to support emergency responses. Although a higher 

accuracy is desired, it may require a more sophisticated sensing network or additional 

prior data input. Independence from existing infrastructure is desired as it increases 

the robustness of a solution. However, robustness is also impacted by other factors, 

such as resistance to heat. These challenges are imposed by emergency scenes and 

require further examination. Prior research rarely discussed requirements other than 

accuracy and robustness. However, other requirements, such as computational speed, 

may be important to the success of emergency response operations.  

To investigate indoor localization requirements for emergency response 

operations, an online survey was carried out. A list of eleven possible requirements 

was used in the survey (Table 1). The list was generated based on extensive 

discussions with first responders from the Los Angeles Fire Department (LAFD). A 

total of 1151 survey invitation emails were sent to first responders across the U.S. A 

total of 197 valid responses were received, which supported a ±6.8% confidence 

interval at a 95% confidence level. Participants had on average 25.7 years of 

experience, with all ranking levels from firefighters to fire chiefs.  

 

Survey Results 

Based on survey results, the requirements were organized in a descending 

order according to their importance in participants’ point of view (Table 1).  

 

Table 1: Importance of Indoor Localization Requirements 

Rank Requirement % of Total Responses 

1 Accuracy of location information 90.4% 

2 Ease of deploying the solution on scene 83.8% 

3 Resistance to heat, water and other physical damages 67.0% 

4 Speed of calculating and presenting location information 66.0% 

5 Size and weight of devices attached to first responders and 

occupants 58.9% 

6 Purchase and maintenance costs 38.7% 

7 Independence from building infrastructure (e.g. installed 

equipment) and building power supplies 22.8% 

8 Independence from prior data collection (e.g. building 

layouts, and survey of radio features) 14.2% 

9 Scalability of the solution to cover large numbers of people 14.2% 

10 Ease of assembling the solution before dispatch 14.2% 

11 Independence from on-scene data input (e.g. a few known 

locations inputted by first responders) 13.7% 

 

Survey results showed that the most important requirements were: accuracy, 

ease of on-scene deployment, robustness (resistance to heat, water and other physical 

damages), computational speed (speed of calculating and presenting location 

information), and size and weight of devices. All of these five requirements were 

considered important by more than half of the total responders, which was 

remarkably higher than the percentage of all other requirements (13.7% to 38.7%). 

Accuracy was the foremost important, and participants indicated that room-level 
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accuracy was more desired than meter-level, floor-level or building-level accuracies. 

As measure of ease of on-scene deployment, participants reported that a maximum of 

135 seconds was allowed to be spent on on-scene deployment. In terms of 

computational speed, an appropriate time reported by participants for data 

processing/location computation varied from 5 to 180 seconds, with an average of 

40.34 seconds. Resistance to physical damages, and size and weight of devices are 

related to hardware, and therefore they are not in the scope of this paper. 

 

EASBL ALGORITHM 

Review of Sequence-Based Localization Algorithm 

Sequence-Based Localization (SBL) is a range-free indoor localization 

algorithm (Yedavalli et al. 2005; Yedavalli and Krishnamachari 2008). It has a 

number of advantages that make it a desirable algorithm for satisfying the 

aforementioned indoor localization requirements. These advantages include 

capability of providing high accuracy, requiring low number of reference nodes, free 

of pre-data collection, and capability of mitigating multipath and fading effects. 

At the heart of the SBL algorithm is the division of a 2D space into distinct 

regions. Consider a 2D space that consists of n reference nodes. For any two 

reference nodes, draw a perpendicular bisector to the line joining them. For n 

reference nodes, there are a total of ( 1) / 2n n  pairs and hence ( 1) / 2n n

perpendicular bisectors, dividing the space into a number of regions. For each region, 

an ordered sequence of reference nodes’ ranks based on their distances to the region 

is defined as a location sequence of that region. Then, RSSI values of all reference 

nodes received by a target node are used to form the target node’s location sequence. 

The centroid of a region whose location sequence is “nearest to” the target node 

location sequence is used as an estimated location of the target node. The nearness 

can be determined by e.g. Euclidean distance. The reference nodes and target nodes 

can be any type of radio frequency sensors that can communicate with each other. 

 

Design of Environment-Aware Sequence-Based Localization Algorithm 

Success of the SBL algorithm relies on the success of space division, which is 

essentially determined by the deployment of reference nodes. At emergency response 

scenes an ad-hoc sensor network must be quickly set up. There are a few challenges 

that must be addressed. Use of fewer reference nodes is crucial, as fast deployment is 

desired. In addition, SBL provides coordinate-level estimation. However, locations 

within the same region are not necessarily within the same room. This leads to a false 

room-level estimation. In other words, even when a coordinate-level accuracy is high, 

room-level accuracy may be low. Lastly, building elements such as walls impact 

accuracy and should be taken into consideration. 

An Environment-Aware Sequence-Based Localization (EASBL) algorithm is 

proposed to address these challenges. EASBL measures the quality of space division 

with “breakaway area” bap . In SBL, the centroid of a region is used as an estimated 

location of a target node anywhere within that region. However, part of the region 

may be in a room different than the centroid, causing false room-level estimations. 

This part of the region is defined as a “breakaway area”. A smaller bap within the 

sensing area indicates better space division and hence a higher room-level accuracy.  
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On-scene deployment effort is represented by the total number of reference 

nodes n , and by the difficulty in deploying each reference node. The difficulty in 

deploying reference node i is measured by penalty ,1ic i n  . There are two kinds of 

reference nodes: (1) hallway nodes (placed at hallway close to doors) are easy to 

deploy, and ic
 
is set to be 1; (2) room-center nodes (placed at centers of rooms) 

require more effort to deploy, and ic is set to be 2. By using these candidate locations 

that do not need exact coordinates to be recorded or communicated, an incident 

commander can easily provide deployment commands to the first responses, and first 

responders can easily place the nodes and execute the commands.  

Optimal ad-hoc sensing network deployment solution is one that minimizes 

the breakaway area and the penalty of all deployed nodes. From the computational 

point of view, this problem can be mathematically abstracted and expressed as: There 

are m candidate locations chosen based on building layout, and m reference nodes. 

Each candidate location (1 )i i m   can hold up to one node for deployment penalty 

ic . Each node can be deployed at either one of the candidate locations or none of 

them (unused). For a given sensing area and given deployment of all nodes, a 

coverage penalty bap  can be calculated based on the sensor locations and building 

layout. The objective is to minimize the total penalty (TP): 
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where e is a coefficient balancing importance between the space division quality and 

the on-scene deployment effort, and ijk  is a binary variable that denotes whether a 

node j is deployed at candidate location i or not. Heuristics can be used for finding 

the optimal solution. As a widely used heuristic, a genetic algorithm is used in this 

paper. Other heuristics, such as simulated annealing and Tabu search, will be 

evaluated in future research. 

Building information is used in three essential and critical ways in EASBL: (1) 

it is used to identify candidate locations for node deployment; (2) it lays the basis of 

calculating bap  for a particular space division; (3) annotations such as room numbers 

can be used to facilitate quick recognition of a specific location for node deployment. 

 

Simulation Setup and Scenarios 

A C# script was written to implement EASBL. The script was compiled as a 

dynamic link library (DLL) file, and integrated into Autodesk Revit as an add-on. 

The add-on takes user input, extracts building geometries, performs space division 

optimization, and computes target locations. It then visualizes the estimated locations 

on floor plans. A simulation tool was programmed to simulate different localization 
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scenarios. It generates a number of targets in a sensing area and implements both a 

Random Placement SBL (RPSBL) and EASBL algorithms. It simulates the following 

signal propagation model (Rappaport 1996): 
0

1

( ) 10 log( ) ( )
P

p

L d L d WAF p 


    , 

where ( )L d is path loss of signal strength (dB) in distance d (m), 0L is reference signal 

strength loss in 1 m,  is path loss exponent, WAF is wall attenuation factor, p is 

number of walls, and  is a Gaussian term in log-normal fading. The values of 0L , 

and WAF used in simulation were 55.0 dB, 4.7 and 2.0 dB, respectively. 

The fourth floor of the Ronald Tutor Hall (RTH) building on the University of 

Southern California campus was used as a simulation test bed. Two building fire 

scenarios with different scales were simulated. Both scenarios were designed based 

on suggestions from a number of first responders, and were verified by two battalion 

chiefs from the LAFD. In scenario 1 ((a)      (b) 

Figure 1a), two single offices (red) were on fire. Occupants in both offices, 

all neighboring single offices, and offices and conference room that were across the 

hallway and had doors open to the hallway (orange) need to be evacuated. Due to the 

spreading smoke, visibility in the hallway outside the offices (cyan) was low, 

resulting in an increased risk to first responders. The sensing area is color-coded in 

(a)      (b) 

Figure 1a with a size of 221 m
2
. In scenario 2 ((a)    

  (b) 

Figure 1b), a fire started in one lab and soon spread to a lab across the 

hallway (red). All labs on the east side of the floor were shut down for fire attack and 

search & rescue (orange 错误!未找到引用源。). Visibility in the hallway was low 

due to smoke (cyan). The sensing area is color-coded in 错误!未找到引用源。 with 

a size of 729 m
2
. 

 

      
(a)      (b) 

Figure 1: Simulation Scenarios 

Simulation Results 

In the simulation, a total of 50 targets (first responders and occupants) were 

randomly generated in the sensing area. Each scenario was simulated five times to 

offset the impact of randomness of target generation, and the simulation results were 

averaged. In addition, when running the genetic algorithm, every individual in the 

first generation was considered a random sample resulting from RPSBL, as their 

attributes were not impacted by crossover or mutation processes. All these first-

generation individuals were averaged to get the results for RPSBL. Simulation results 

for both algorithms are presented in Table 2 for comparison. 
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The following four conclusions could be drawn based on these results. First, 

breakaway areas with EASBL were significantly lower than that with RPSBL in both 

scenarios, indicating a larger possibility of correct room-level estimation using the 

EASBL. Second, the total number of reference nodes to be deployed was generally 

comparable between two algorithms; however, a larger portion of reference nodes 

had to be deployed at room centers with RPSBL, which pointed to a larger 

deployment effort. When the reference nodes were weighted with deployment penalty

ic , the total deployment effort with EASBL was 15.0% and 11.4% less than RPSBL 

in scenario 1 and scenario 2, respectively. Third, EASBL yielded both higher 

coordinate level accuracy and room level accuracy than RPSBL, with an overall 

improvement by 35.98% and 18.27%, respectively. Lastly, it was noticed that, after 

space division optimization was done, refreshing localization results took negligible 

amount of computational time with both algorithms, which was significantly less than 

40.34 seconds, the maximum time allowed by survey participants. 

 

Table 2: Indoor Localization Simulation Results 
  RPSBL EASBL 

Scenario 1 Breakaway area (%) 24.8 7.7 

Sensor node 

deployment penalty 

Room-center  9.2 7.3 

Hallway 2.3 3.0 

Average meter level accuracy (m) 2.43 1.52 

Average room level accuracy (%) 71.5 82.1 

Scenario 2 Breakaway area (%) 19.3 9.2 

Sensor node 

deployment penalty 

Room-center 10.3 8.4 

Hallway 3.1 4.2 

Average meter level accuracy (m) 2.46 1.81 

Average room level accuracy (%) 76.3 87.3 

 

CONCLUSIONS 

This paper identified a set of requirements for indoor localization at building 

emergency scenes. An EASBL algorithm was proposed to satisfy algorithm-related 

requirements. Results from a building-size simulation indicated that EASBL, while 

maintaining the advantages of SBL, was capable of addressing the challenges SBL 

had under emergency situations. The EASBL could serve to reduce on-scene 

deployment efforts and increase room-level accuracy, as desired by first responders 

when they carried out emergency response operations. In addition, since refreshing 

localization results could be done instantly in simulation, it suggested that the 

EASBL algorithm had a satisfying computational speed. 

To further improve and evaluate the performance of EASBL, future research 

will be carried out to assess the impact of two parameters, including coefficient e and 

penalty ic , on the optimization results and consequently on the localization accuracy 

and on-scene deployment effort. Parameter values of signal path loss models used in 

simulation also have impact on the evaluation results, hence deserving further 

examination. More importantly, the authors plan to perform real-world experiments, 

so that more comprehensive evaluation of the EASBL algorithm against all 

requirements including hardware-related ones can be carried out.  
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