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Abstract—The publish-subscribe messaging scheme has proven
to be an effective real-time communication abstraction for IoT
applications; by decoupling sensors from actuators, it helps to
ease deployment of such systems. However, many IoT applications
consume data from various sources before they take an action,
but they are not always interested in the raw data itself but
rather a refined, computationally processed version of it. Network
bandwidth and device energy are wasted when the computation
is performed at end-points that are constrained devices. To
address this issue, we advocate for an extension of the tradi-
tional publish-subscribe approach, a new messaging paradigm
we refer to as publish-process-subscribe. We present Noctua, a
framework that enables a publish-process-subscribe architecture
for IoT applications. Through a real-system implementation in
JavaScript based on Node.js, we demonstrate and evaluate how
Noctua can help IoT developers by enabling more efficient use
of network resources and reduces the strain on edge devices by
delivering to them more meaningful data. We illustrate Noctua’s
capability through application examples including aggregating
multiple sensor flows and providing radio signal-strength-based
localization as a real-time service. We also incorporate role-based
authorization and access mechanisms within Noctua to provide
fine-grained support for privacy by facilitating the deployment
of application-specific anonymization and filtering of raw data
streams in a customized, differentiated manner for different sets
of users.

I. INTRODUCTION

As IoT devices continue to be adopted and their appli-
cations grow, there has been an increasingly diverse group
of developers engaging with them. These developers have
access to a variety of tools which remove the need for them
to have extensive training or a background in hardware or
software [1], [2]. In addition to the low cost of IoT devices,
we believe this level of accessibility to people from a variety
of backgrounds has contributed to the widespread adoption
of such devices. People are now able to interact with and
customize the experiences they have with their environments
in ways never thought possible.

IoT devices have become much more powerful than the
small embedded devices, or motes, typical of wireless sensor
networks. Some IoT devices feature multi-core processors,
embedded GPUs, tons of RAM, etc. While the hardware has
improved, the fundamental limitations of the wireless medium
over which these devices communicate has not changed. There
is still great value in reducing the communication overhead of
an application so that it can operate as efficiently as possible.
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To that end, tools and frameworks that help developers create
efficient applications from the start are valuable.

A paradigm that has been gaining in prominence to s
mupport the rapid development and deployment of real-time
IoT applications is publish-subscribe implemented in protocols
such as MQTT [3]. The benefit of the publish-subscribe
approach is that it allows for fast and robust implementation of
real-time many-to-many communications. It allows for asyn-
chrony and is forgiving when faced with lossy and dynamic
connectivity. However, the basic publish-subscribe paradigm
doesn’t provide mechanisms to enable efficient in-network
computation that could be used to reduce bandwidth utilization
and improve privacy.

To meet some of these major challenges associated with
IoT systems, we advocate for an extension of the traditional
publish-subscribe approach that we refer to as publish-process-
subscribe, which allows for the en-route processing of data.
There are several advantages and applications of the publish-
process-subscribe paradigm:

e Sensor Data Analytics, Fusion and Aggregation: By al-
lowing for en-route computation, data flowing from one
or more publishers can be combined and processed to-
gether using data-analytics algorithms such as estimation
and prediction and other machine learning algorithms to
provide a more meaningful stream of refined, analyzed
data for a subscriber.

o Bandwidth, Latency, Energy Improvement: Related to the
above point, by processing raw data within the network,
the total amount of data that is streamed can be re-
duced, improving bandwidth utilization. By performing
data computations at a more powerful server en-route
rather than compute-constrained and energy-constrained
end points, the latency and energy expenditure associated
with data computation could be reduced.

e Privacy: A raw data stream from one publisher could
be processed through an anonymizing filter. Now, access
controls could be set up via the broker so that certain
authorized subscribers can have access to the raw data,
while others are provided access only to the anonymized
version.

o Computation for Automated Control: Computation spec-
ified over streaming published data could also be used to
generate processed streams intended to control particular



actuators. This could be useful when there is limited
computation at the client side.

o Virtual Sensors: To simplify application design, data from
physical sensors may first be transformed into a virtual
sensor. This would allow for changing and upgrading
physical sensors in a deployment over time while pro-
viding the same abstraction to higher layer applications.

In this paper we describe an implementation of the publish-
process-subscribe paradigm in the form of Noctua, a publish-
subscribe broker that provides for flexible computation so that
a client can subscribe to a processed version of published raw
data from one or more publishing devices. Noctua is written
in JavaScript and powered by Node.js. We demonstrate that
this system enables the efficient use of network resources for
a wide range of IoT applications. We also show how Noctua
facilitates the automated implementation of a role-based access
control mechanism to provide security and privacy for real-
time IoT streams.

II. PUBLISH-SUBSCRIBE AND MQTT

The publish-subscribe communication paradigm lends itself
well to the producer/consumer abstraction common in many
IoT applications. Unlike the more common and intuitive
request-response communication scheme, publish-subscribe
messaging has the ability to decouple devices in both time
and space [4]. Before going into more detail about publish-
subscribe messaging, we will first provide an explanation of
request-response messaging to better explain the advantages
of publish-subscribe for IoT systems.

A. Request-Response Messaging

The request-response communication scheme is what we
use when we retrieve a webpage from the Internet. As the
client, we send an HTTP message to a web server that is
waiting for a request to arrive. The web server is associated
with a port at some IP address, either already known or
retrieved through a DNS lookup. This address is used to route
the request. The server processes the request and sends back
the appropriate response, at which point the interaction ends.
For additional content, this process is repeated multiple times.
If a client wants to check if some content has changed, he or
she would need to poll the server by sending more requests.
This is a very inefficient method. We’ll see in the following
section how publish-subscribe messaging provides a better
method for accomplishing this.

B. Publish-Subscribe Messaging

In contrast to request-response messaging, publish-subscribe
messaging enables clients to specify interest in certain in-
formation. This interest is expressed through a subscription.
When data relevant to that subscription is published, all
subscribers will automatically receive an update containing the
data. There are different variations of publish-subscribe but in
this paper we will focus on the topic-based version, the type
used by the MQTT protocol. Topics are names used to refer

to certain data. We’ll discuss MQTT further in the following
section.

Whereas a request-response system has clients and servers,
a publish-subscribe system typically consists of publishers,
subscribers, and a broker. The broker is an analogue to a
server in this messaging scheme. Brokers are responsible for
accepting and keeping track of subscriptions and relaying new
data to the interested parties as it becomes available. Publishers
are the source of data in this system. They send updates to the
broker on the topics they are associated with. Subscribers, on
the other hand, consume this information, specifically from
the topics they have interest in.

C. MQTT (Message Queue Telemetry Transport)

MQTT is an application-layer protocol for publish-subscribe
messaging [3]. It is simple and lightweight making it a popular
choice for IoT applications. MQTT uses TCP as its transport
layer protocol but there is a variant, MQTT-SN (previously
MQTT-S) [5], designed to run over UDP. Figure 1 provides
an illustration of how data flows through an MQTT broker.

In MQTT, topics are specified as strings and provide a way
for applications to refer to data they’re interested in. An exam-
ple of a topic is “car/temp”. Slashes have a special meaning
in MQTT. They are referred to as topic level separators and
are used to specify a hierarchical structure to the data. This is
taken into consideration when a subscriber uses a wildcard in
their subscription. So for example, if a subscriber subscribes
to “car/#”, they will receive any data published to topics
beginning with “car/”, such as “car/temp” and “car/speed”.

MQTT defines about a dozen message types. A few of par-
ticular interest are CONNECT, SUBSCRIBE, and PUBLISH.
CONNECT messages are used when clients first establish a
connection to an MQTT broker. If authentication is enforced,
clients will be required to provide their login credentials in
this message. The SUBSCRIBE message is used by clients to
tell the broker which topics they are interested in. Finally,
PUBLISH messages are used by clients, in particular data
sources, to send updates to the relevant topics.

There are three QoS, or Quality of Service, levels supported
by MQTT. These QoS levels, namely O, 1, and 2, provide
different end-to-end message delivery guarantees. QoS O en-
sures that a receiver gets a published message at most once;
QoS 1 ensures at least once; and QoS 2 guarantees exactly
once. These QoS levels require different amounts of traffic
to satisfy their guarantees, with QoS 0 using the least, just
a single MQTT message. QoS 1 requires a minimum of two
messages while QoS 2 requires a minimum of four messages.

III. NOCTUA SYSTEM DESIGN

Noctua is essentially a publish-subscribe broker that has
been augmented with computational capabilities. This com-
putational component provides IoT software developers with
a framework that makes it easier to develop more efficient
applications. In the following subsections, we will provide an
overview of the Noctua architecture, discuss its implementa-
tion, and show a simple example of how it can be used.
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Fig. 2. Noctua Architecture

A. Architecture

At the core of Noctua is the Broker, as shown in Figure
2. The Broker is responsible for relaying messages to their
subscribers, so by default it has access to the all of the data
that may be relevant to an application. The Compute Engine
uses this data to process any macros that are registered with
it. We use the term macro to refer to the computation that
an application is asking Noctua to perform on its behalf. A
macro consists of one or more references to the data it depends
on as well as some code representing the calculations to be
performed. Macros can be created and even updated anytime
during the operation of the system without disruption. An
example macro will be shown in the following subsection.
Macros are provided with an expressive syntax for accessing
current and past values of data. To support this capability,
Noctua incorporates a database which is used to store historical
values of data that passes through it.

B. Implementation

Noctua is written in JavaScript and powered by Node.js
[6], a server-side runtime environment built on Google’s V8
JavaScript engine. Node.js is designed with an event-driven
architecture that is highly optimized for network applications.
This makes it well suited for the task at hand, as operations
in Noctua are triggered when data passes through it. The
Node.js plugin aedes provides Noctua with the framework for
an MQTT broker. We use the HTTP protocol to handle macro
operations, such as creation, updates, and deletion. MongoDB
[7] is used as the database to store published values for future
reference.

(Noctua.topic (’home/tempF’) - 32) % 5/9

Fig. 3. A macro for temperature conversion

"name":
"code":

"home/tempC",

" (Noctua.topic (' tempF’) - 32) % 5/9"

Fig. 4. JSON object for HTTP POST request to create macro

C. Macros

1) Language: Rather than create a new language, macros
for Noctua are written in JavaScript, a scripting language
that is already well known. The full language is supported,
so all of the typical methods for flow control are available,
e.g. if statements and for loops. We expose a Noctua-specific
JavaScript Object to the runtime context of the macro such that
it is able to pull in data that has already been published to the
broker. We refer to this object as a topic reference. This data
can then be treated like any other value in the code. The use
of this object also allows Noctua to automatically determine a
macro’s dependencies, requiring no additional effort from the
application developer. We consider a macro to be activated
when a value arrives for one of its dependencies. A macro is
only triggered when all of its dependencies are satisfied.

Figure 3 shows a simple example of a macro that converts
temperature data from Fahrenheit to Celsius. This macro
takes the most recent value published to the MQTT topic
‘home/tempF’ and performs some arithmetic operations on it
to convert from one unit to another. The macro is triggered
whenever a new value arrives on the ‘home/tempF’ topic.
The computed value will then be published to a topic that
corresponds to the name of the macro, which can be seen in
Figure 4. In this case, the result will be published to the topic
“Noctua/home/tempC”. By default, the “Noctua” topic level is
reserved for use by the broker and is prepended to the name of
the macros to determine their associated topic for publishing.

The JSON object shown in Figure 4 shows the information
needed to register a new macro with Noctua over HTTP. If a
name is specified, it must be unique; otherwise a hash value
will automatically be generated for the macro and returned.
The code field is the only field that is required and it must
contain valid JavaScript code.

2) Topic Reference Settings: Noctua supports an optional
settings argument that can be specified in a topic reference.
The options are listed in Table I. We will first explain what the
options are and then provide an illustrative example to show
why this feature is important.

The cutoff option can be be thought of as the amount
of time a published value is acceptable for (with respect to
a particular macro). So for example, if a cutoff value of 5 is
specified, only a value received in the last 5 seconds of when
the macro is triggered will be returned by Noctua. This option



TABLE I
TOPIC REFERENCE SETTINGS

Option | Default Description
cutoff 0 Time in seconds that values are acceptable for
required 1 Minimum number of values to retrieve
limit 1 Maximum number of values to retrieve
function () {
var tl = Noctua.topic(’home/front_temp’, {
cutoff: 60 })
var t2 = Noctua.topic(’home/rear_temp’, {
cutoff: 60 })
return (tl+t2)/2

O

Fig. 5. A macro for averaging two temperatures

can be applied to ensure that values used in calculations are
either recent, or as we’ll see later on, temporally correlated.

The required and limit options provide application
developers with access to the historical values of a topic.
The required option indicates the minimum amount of
history needed by a macro for a topic while the 1imit option
specifies the maximum. As an example, if the required
option is set to 5, then an array of the 5 most recent values
of a topic will be returned, assuming at least that many are
available (otherwise the macro will not be triggered). If the
required option is set to 5 and the limit option is set
to 10, then an array of anywhere from 5 to 10 values may
be returned. A macro may then iterate over those values to
perform its calculation.

Figure 5 shows an example of a macro making use of
the cutoff option. With a cutoff value of 60, the macro
is specifying that only values received within the last minute
should be considered. If the last temperature value for one of
those topics arrived more than 60 seconds prior to when the
macro is activated, then the macro will not be triggered and
no value will be published.

The use of the cutoff option in this case provides
two benefits. First, applying a cutoff prevents data used and
published by our macro from being stale. For example, if the
last temperature value published to a topic is from yesterday
(perhaps a sensor has a long periodicity or lost connectivity),
then that value may no longer be relevant to the application.
Second, since the macro is applying a cutoff for all of its
topics, the macro can ensure that the values are temporally
correlated. Due to the decoupled nature of publish-subscribe
systems, the last value published to two different topics may
have arrived at wildly different times. The use of the cutoff,
in this case, restricts the values used in this macro to have
arrived within 60 seconds of each other.

D. Privacy

Noctua extends the purpose of the credentials provided in
the MQTT CONNECT message. By default, MQTT only uses
the credentials to authorize a connection to the broker. Once
a user connects, he or she will have access to every topic
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Fig. 6. Privacy protection

and is free to subscribe and/or publish to them. Noctua takes
the credentials a step further and enables an administrator
to specify permissions on a per-topic basis. This allows
for more fine-grained control over the data a user can and
can’t see. This level of granularity makes Noctua well suited
for heterogeneous IoT systems where many devices may be
sharing the same broker but don’t necessarily have the same
level of trust.

There is another feature that is gained from this high level
of access control when it is combined with Noctua’s computa-
tional capabilities. We illustrate this with an example. Imagine
there is some particularly sensitive data being published to the
broker, such as a person’s GPS location. That person may not
want others to know where he or she is, so access to that topic
may be severely restricted. However, if there is an application
that is not directly interested in that person’s location, but
rather the distance between that person and someone else, then
that use case may be acceptable. That application could be
restricted from directly accessing the person’s location topic,
but may be given permission to access the result it needs
through Noctua’s macro capability as depicted in Figure 6.

Essentially, what this approach to privacy allows is indirect
access to sensitive information in some aggregated form.
This protects sensitive information without severely limiting
flexibility in application development. The kind of aggregation
or filtering needed to make data anonymous is left to the
discretion of the data owner/administrator as it is expected
to be application specific.

Going beyond simple allow/deny permissions, Noctua can
also automate the assignment of the “right stream of data” to
each user based on their access role, which we refer to as
role-based publishing. We describe this general framework in
the following section.

IV. ROLE-BASED PUBLISHING

Noctua’s ability to process real-time data streams can be
used to provide differently processed streams to different
subscribing users, as a function of their role, greatly facilitating
the use of role-based access control for IoT applications. We
refer to this feature of Noctua as role-based publishing. At
the outset, we note that role based publishing is an optional
functionality in Noctua that can be activated and instantiated
for each topic.

Figure 7 shows how Noctua’s role-based publishing
works.The role-based authorization service could be imple-
mented on the same system as Noctua or it could be an external
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Fig. 7. Role-Based Publishing with Noctua

authorization/role-based access control server (e.g. a service
built using OpenlAM [8]— or OAuth [9]). The service is able
to provide Noctua with the role associated with a given user.

The data owner can upload one or more macros to Noctua

to process the raw data stream, and also provides a role-
based publishing specification (RBPS) that Noctua can use to
determine which macros/processed streams can be accessed
by which user (once the user’s role has been determined). The
RBPS may specify multiple streams that a role is allowed
to access, but must also specify one of these streams as the
default.

When a user subscribes to an original topic, Noctua makes

a call to the role-based authorization service to determine
that user’s role, then sends data to the user corresponding to
the default processed stream that is specified for the role, by
effectively subscribing the user to the permitted topic (original
or processed). Some roles may even be denied access to any
data from the stream. If a role is allowed access to multiple
streams, the user may further directly subscribe to other topics
corresponding to any of the permitted streams.

Figure 7 illustrates a possible flow for a given topic and

user.

1) The owner of data for topic t provides a macro called
“t/anonymize” for anonymizing that data stream. This
could be implemented, for example by adding noise to
the data, removing certain labels, or applying a threshold
to generate a coarse-grained version of the data. The
owner also uploads to the Noctua server (as a JSON
object posted using HTTP) a role-based publishing spec-
ification (RBPS) for this topic. This is a table, as shown
in the bottom left of the Figure 7, that specifies which

data streams each possible role is permitted to access,
and for each role also specifies a default stream.

2) User 2 sends a subscription request for topic t.

3) Noctua queries the authorization service about User 2.
The authorization service uses the user-role matrix to
determine this user’s role.

4) The service informs Noctua that the role for User 2 is
“customer”

5) The data owner publishes data to topic t on a streaming
basis.

6) The data from the publisher is available as topic t on
Noctua and also processed into a new macro-based
topic, called “Noctua/t/anonymized” (using the macro
provided by the data owner in Step 1).

7) Since the second row of the RBPS for topic t
specifies that the default stream for customers is
anonymized, User 2 will receive data on the topic “Noc-
tua/t/anonymized” from Noctua whenever it is available.

In this example, we see that User 2’s subscription request
for topic t is essentially automatically translated by Noctua
to another stream of anonymized data. User 1 would get
access to the raw stream by default due to his or her role
as a “developer.” However, User 1 can also directly subscribe
to and receive data on “Noctua/t/anonymized” because the
“’developer” role is permitted access to the anonymized stream
as well. If a user with a role that is not authorized to
access either the raw or anonymized streams subscribes, it
is denied the subscription entirely (and cannot access ‘“Noctu-
a/t/anonymized” directly either).



Fig. 8. Various sensors on a CCI Testbed node

V. EVALUATION

We have devised a set of experiments to analyze the
capabilities and performance of Noctua as compared to tra-
ditional methods of implementation of IoT systems. In our
first experiment, we evaluate Noctua on the campus-wide CCI
IoT Testbed currently under development at the University
Southern California [10]. Next we apply Noctua to localize
a person walking in an indoor environment. Finally, we take
a look at the implications of Noctua’s privacy features.

A. Hardware

One of the CCI Testbed nodes is shown in Figure 8. At
the core of each node is a Raspberry Pi 3 computer [11],
which handles data collection from all locally attached analog
and digital Grove sensors [12]. Each node is equipped with
several sensors, including temperature, humidity, light, noise,
and a variety of gas sensors as shown in the figure. The nodes
are connected to USC’s campus network through WiFi.

B. Weighted Moving Average

In this experiment, we look at creating a weighted moving
average of data from three CCI testbed nodes, specifically their
temperature readings. A moving average is a simple technique
for smoothing out time series data. Let f(¢) represent the
temperature at some time index t. For each node, we seek
to perform the following computation, shown in Equation 1,
over its past three values. This moving average gives more
weight to more recent values.

3 2 1
WMA = S1(0)+ Zf(E-D+cfE-2) ()

The testbed is configured such that each node is publishing
its temperature on an individual MQTT topic, one based
on its hostname. The nodes are configured to transmit their
temperature value once every second. QoS 0 is used for all
messages so that we can determine a lower bound on messages
required. Once we’ve obtained the weighted moving average
for each topic, we then average the three resulting values
together using equal weights. Figure 9 shows the macro used
for this experiment.

As shown in Figure 9, we are using the required op-
tion to specify that we need the last three values for each
topic we’ve referenced. It should be noted that whenever the
required or 1imit option specified is greater than 1, the
value returned for a topic reference will be in array form. We
are therefore able to iterate over the elements as we have done
in the macro.

For comparison purposes, we’ve implemented this moving
average calculation in three different ways, all based on
publish-subscribe messaging. We refer to these implemen-
tations as: a) local processing, where the subscriber itself
performs the calculation; b) application service, where a single
standalone service performs the calculation on behalf of any
subscribers; and c¢) Noctua, where the broker itself performs
the calculation. The topology for these implementations are
shown in Figure 12.

1) Message Complexity: Figure 12 shows the message
complexity in terms of the number of MQTT PUBLISH
messages required between devices until the first output of
the calculation is available, assuming the system starts from
scratch (no topic history). In all cases, we need at least three
values from each sensor, resulting in at least nine PUBLISH
messages before any calculation can take place, regardless of
the implementation. For the first case (Figure 12a), since the
subscriber performs the calculation itself, it needs all nine
messages forwarded to it resulting in a total of 18 messages,
as shown in Figure 10. Second, in Figure 12b, the application
service needs to receive all of the sensor data. The service then
publishes the result which gets forwarded to the subscriber.
This results in a total of 20 messages. Lastly, we can see
the results for the Noctua implementation in Figure 12c. The
calculation is performed inside the broker itself, so only a
single messsage, the result, needs to be transmitted to the
subscriber. This results in a total of 10 messages, which is
also the theoretical minimum for a broker-based system.

2) Delay: To determine the overhead associated with using
the Noctua framework, we measured the end-to-end delay
of the three implementations. Specifically, we measured the
amount of time it takes to get a calculated result once the first
MQTT PUBLISH message is sent. For each measurement,
all three nodes were triggered to start sending their values
simultaneously so that the results are comparable. Figure 11
shows the outcome of this experiment. The results are the
averaged over a 100 iterations for each implementation.

The maximum difference between the delays of the im-
plementations is small, < 0.2s. The local implementation
performed the best with an average delay of 5.36s, followed
closely by Noctua at 5.47s. With a delay of 5.54s, the appli-
cation service took the longest, which makes sense as there is
an additional link traversal involved with that implementation
relative to the others, as can be seen in Figure 12b. For
this moving average example, we can see that there is no
significant cost to using Noctua.

3) Scalability: To get a better sense of how Noctua may
perform for different applications, we investigate its scalability
in terms of message complexity. In Figures 13 and 14, we



function () {

var temps = [];

temps.push (Noctua.topic(’eed99_7/temp’,
{ required: 3 }));

temps.push (Noctua.topic(’eed499_8/temp’,
{ required: 3 }));

temps.push (Noctua.topic(’eed499_9/temp’,
{ required: 3 }));

var weights = [3, 2, 1];
var denom = weights.reduce((a, b) => a + b, 0);

var avg = 0;
for (var i = 0; i < temps.length; ++1i) {
var weighted_sum = 0;

for (var j = 0; j < weights.length; ++3) {
weighted_sum += temps[i][]j] * weights[j];
}
avg += weighted_sum/denom;
}
return avg/temps.length;

HO

Fig. 9. Macro for a weighted moving average
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calculated the number of PUBLISH messages required for
a varying number of sensors and a varying number of sub-
scribers, respectively, for the different implementations. For
Figure 13, we imagine that the moving average example was
extended to cover an increasing number of sensors. As before,
we still require three values from each sensor for the formula
shown in Equation 1. In this figure we assume there is still
a single subscriber. We can see that the message growth rate
is linear for all three implementations, but that the Noctua
implementation grows much more slowly than the other two,
demonstrating Noctua’s superiority in terms of scalability.

In Figure 14, we take a look at the opposite case. Instead
of varying the number of sensors, we vary the number of
subscribers interested in the output of the moving average.
The number of sensors is fixed at 50. Here we can see that
the local implementation performs much worse than the other
two as we would expect. It is simply not practical to send
every published message to every subscriber. The application
service and Noctua implementations have an almost horizontal
curve, although they are growing. Once again Noctua is able to
achieve the best performance in terms of PUBLISH messages.

C. Application Example: Localization as a Service

To demonstrate that Noctua is robust and can support appli-
cations involving calculations that are much more complicated
than a moving average, we created a macro that can process
RSSI values and make predictions as to where a person is
located. The localization macro is shown in Figure 15. The
idea is to have a user device publish its RSSI readings from
multiple beacons to the broker, and have the Noctua broker use
the macro to estimate the location and send back the estimated
location stream back to the user. This demonstrates how
Noctua can be used to rapidly build and deploy “localization as
a service” (and by extension, many other similar applications
where data analytics or machine learning algorithms can be
used to refine and transform raw data into more meaningful
insights in real-time).

To show the macro functioning and evaluate its compu-
tational cost, we perform experiments with simulated data.
In this experiment, we simulate a person walking through
an indoor environment with a wireless device. This device
measures the received signal strength, or RSSI, from multiple
beacons located within the space. The blue line in Figure
16 shows the path that this person takes, while the hollow
diamonds indicate the location of the beacons. We apply the
log-distance path loss radio propagation model [13] to simulate
the signal strengths the person would receive as they move
about the space. This model is shown in Equation 2. Prx
and Prx represent the received and transmitted signal powers
in dBm, respectively; K represents the path loss in dB at the
reference distance d; and X, is a zero mean Gaussian random
variable that represents fading.

d
Prx = Prx — K+ 107 10910d— + X, )
0
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}
For localization we apply the well-known maximum- ) }
likelihood (ML) estimation technique [14]. Our implementa-
tion of this technique evaluates the probability of observing max_pos = [5 + 10xmax_ind[0], 5 + 10*max_ind[1]]

the received RSSI values at different locations within the space

O

and chooses the location with the highest probability as the

prediction. We use the center point of each square in the grid
as our search space. Figure 17 shows the predictions made

return max_pos

Fig. 15. Macro for localization using maximum-likelihood estimation
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by Noctua. As the figure shows, it is generally the case that
using more beacons improves the prediction accuracy. Figure
18 shows the execution time of the Noctua macro when it uses
a varying number of beacons in its calculation. The execution
times are averaged over 100 iterations.

D. Impact of Role-based Publishing

We next consider the performance impact of role-based
publishing in Noctua, when activated for a topic. When a
user makes a subscription to a topic that has a role-based
publishing specification (RBPS) associated with it, Noctua
incurs additional processing and communication time before
data can be sent on that topic. This pertains to the communica-
tion and processing needed to contact and hear back from the
authorization server (which may be external to Noctua) and
the processing incurred to determine and set up publication
from the default data stream for the role that the given
user corresponds to. During this additional time before the
publication stream is set up, however, it is possible that the
publisher sent data items to the broker that Noctua doesn’t
deliver to the user.

We present a brief mathematical analysis of the expected
number of lost data items due to the latency associated with
role-based publishing. We model the role-based publishing set
up latency, the sum of the query latency for user roles plus the
local processing incurred to determine and set up the default
topic for the user, as being a random variable Trpp that is
exponentially distributed with mean (7). We also assume that
the data for the topic stream (raw or processed) is periodically
sent at a deterministic frequency of p times per second. Then
the number of lost packets L = |Tgrpp-p] — 1. It can be
shown that L+ 1 is a geometric random variable, with success
parameter p = 1 — 67%#, and hence L has the following
expected value:

—

-1 3)

.
TP

—
I
o

This is shown numerically in Figure 19. It can be seen that
the data loss increases essentially linearly in the product of
7 and p, which can be significant under some circumstances.
Such data loss occurs to a significant extent only if a) a role-
based publication specification is provided for a data stream,
b) querying for user roles incurs non-trivial latency (perhaps
because it involves calls to a cloud-based server), and c) the
published data stream has a very high frequency.

VI. RELATED WORKS

From the days of wireless sensor networks (WSNs), there
has been an effort towards developing effective programming
abstractions that has carried over into the IoT space. These
efforts have resulted in various solutions ranging from new
programming languages to macroprogramming frameworks.
Here we discuss some of these works that bear similarity to
our work on Noctua.

The authors of T-Res [15] present a programming ab-
straction that facilitates in-network processing in IoT-based
WSNs. In T-Res, the input, output, and processing components
of Python tasks are decoupled and presented as network
resources using the CoAP protocol [16], allowing them to
be reconfigured dynamically. One key difference between T-
Res and Noctua, is that T-Res places the burden of managing
asynchronicity of input data on the developer, who is required
to maintain state between the executions of their tasks. With
Noctua, developers can explicitly specify the constraints on
the data they need and rely on the framework to trigger their
macro only when these constraints are satisfied. Noctua also
enables users to access arbitrary amounts of historical data
rather than just the last value.

PyoT [17] is a macroprogramming framework that, like T-
Res, makes use of CoAP and Python. However, this frame-
work assumes the existence of metadata on devices to enable
searches and avoids the need to address devices directly. While
this framework is designed for more interactive use, through
a web interface that it provides, Noctua is focused on data-
driven applications and doesn’t expect much user involvement
beyond its initial setup.

Flask [1] presents a language for data-driven sensor network
applications. This language can be used to “wire” up data
flow graphs, which consist of the operations that need to
be performed to compute the desired output. A limitation of
Flask is that communication and processing all get statically
defined at compile time, leading to a strong coupling between
data sources and sinks. It is also not possible to change the
processing at runtime as all participating devices would need
to be reprogrammed.

There is a commercial product called PubNub that provides
publish-subscribe messaging infrastructure as a service. One
of the features supported by this service is known as PubNub
Functions [18] and it appears to implement a form of in-
networking processing. It allows users to manipulate their
data in various ways as it is flowing through the network.
These Functions are written in JavaScript. There are also third-
party Functions, referred to as BLOCKS, that can be used as
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well. Since PubNub Functions is a proprietary product, it is
difficult to speculate on what is going on behind the scenes,
but it demonstrates that there is a real demand for this type of
functionality.

Node-RED [19] is a web-based dataflow tool that enables
users to quickly create interactions among supported devices
and web-based services through a visual editor. While it
is built on similar technology, i.e. Node.js, Node-RED is
not focused on publish-subscribe messaging and does not
tackle the privacy issues we address with Noctua. Node-RED’s

Increasing

Expected Loss Due to RBP Setup Latency

2
Publish Rate (times per second)

Fig. 19. Average data loss due to setup latency associated with role-based
publishing on Noctua

Flows also cannot be dynamically reconfigured at runtime like
Noctua’s macros.

With regards to publish-subscribe messaging, there are a
variety of software products that provide such capability. One
such product is Apache Kafka [20], an open-source stream
processing platform. While Kafka provides publish-subscribe



semantics, it is more of an enterprise-grade messaging queue
than it is a replacement for a lightweight protocol such as
MQTT. Kafka is suited for operation in data center clouds
and not designed for use at the network edge or in otherwise
constrained environments, which we target with Noctua.

VII. CONCLUSION

This paper presented Noctua, a framework enabling a new
messaging paradigm we refer to as publish-process-subscribe.
This paradigm addresses the observation that many IoT appli-
cations actuate on processed forms of data rather than just the
raw data itself. This leads to a waste of network resources as
raw data is shipped across the network unnecessarily. Noctua
provides a mechanism, which we refer to as macros, by which
application developers can address this issue without being
burdened with managing low-level communication details.

In summary, the goals of Noctua are to ease application
development, while reducing network congestion, improving
network lifetime, and protecting data privacy. Noctua accom-
plishes these goals through the use of macros and flexible
access controls. Macros are portions of JavaScipt code that
are offloaded to the Noctua broker. We have demonstrated
that these macros are simultaneously effective at reducing the
computational strain on edge devices and improving network
congestion. And we have discussed how topic-level role-
based permissions and role-based privacy-oriented real time
data processing allow Noctua to support a diverse set of
applications.

We plan to make our reference implementation of Noctua
publicly available as open source upon publication of this
work. In future work, we would like to consider further
enhancements of Noctua including distributed processing, and
a more comprehensive evaluation through a large-scale de-
ployment in a project focused on IoT technologies for smart
cities.
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