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ABSTRACT

We consider the problem of automatically learning the opti-
mal thermal control in a room in order to maximize the
expected average satisfaction among occupants providing
stochastic feedback on their comfort through a participa-
tory sensing application. Not assuming any prior knowledge
or modeling of user comfort, we first apply the classic UCB1
online learning policy for multi-armed bandits (MAB), that
combines exploration (testing out certain temperatures to
understand better the user preferences) with exploitation
(spending more time setting temperatures that maximize
average-satisfaction) for the case when the total occupancy
is constant. When occupancy is time-varying, the number
of possible scenarios (i.e., which particular set of occupants
are present in the room) becomes exponentially large, pos-
ing a combinatorial challenge. However, we show that LLR,
a recently-developed combinatorial MAB online learning al-
gorithm that requires recording and computation of only a
polynomial number of quantities can be applied to this set-
ting, yielding a regret (cumulative gap in average satisfac-
tion with respect to a distribution aware genie) that grows
only polynomially in the number of users, and logarithmi-
cally with time. This in turn indicates that difference in
unit-time satisfaction obtained by the learning policy com-
pared to the optimal tends to 0. We quantify the perfor-
mance of these online learning algorithms using real data
collected from users of a participatory sensing iPhone app
in a multi-occupancy room in an office building in Southern
California.
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1. INTRODUCTION

A key ingredient for building smart, interactive, energy-
efficient spaces is automated, personalized, thermal control.
Indeed industry developments such as the Nest thermostat
show that there is a great demand for thermal-control sys-
tems that can learn and adapt themselves to the preference
of users.

For relatively simple single-user environments such a con-
trol system can either explicitly ask a user for her desired
temperature, try to infer or directly observe the user’s pres-
ence/absence and set the thermal controls accordingly. In
this paper, we tackle a somewhat different setting, in which
user preferences are learned over time through trials with
stochastic feedback.

We consider initially a single space with multiple occu-
pants that are always present. However, we do not assume
that the occupants directly report their desired temperature.
Instead, they are presented over time with different temper-
ature settings, and asked to give feedback on the tempera-
ture as an integer between -50 (too hot, reduce temperature)
to +50 (too cold, increase temperature). Their feedback is
then translated and normalized to a satisfaction level from
0 (highly unsatisfied) to 1 (highly satisfied). This feedback
is solicited through a participatory-sensing application - we
have ourselves developed an app that does precisely this for
our raw data collection experiments.

For this problem, we propose to use a well-known on-
line learning policy called UCBLI [1] from the framework of



multi-armed bandit theory for selecting the temperature lev-
els over time. Each temperature setting can be seen as an
arm, yielding a stochastic reward (the average of the sat-
isfaction reported by occupants). Over time, UCB1 keeps
track of the sample mean of the reward obtained from each
arm (temperature setting), as well as the number of times
that each arm has been played, and combines these quanti-
ties into an index for each arm, which on the one-hand tries
to give higher preference to arms with higher mean rewards
(for exploitation of arms that have thus far shown to be good
candidates), and on the other hand gives preference to arms
that have been insufficiently well sampled (for exploration,
to take sufficiently many samples from all arms to make sure
a good arm does not go undetected due to a bad “streak”).
Over time, it learns to spend most of its time on the best
arm.

The advantage of adopting the MAB framework for this
problem is that the online learning policy has some prov-
able bounds on performance. In particular, Auer et al. have
proved mathematically that the regret (gap in cumulative re-
ward compared to an arm-distribution-aware genie) achieved
by the UCB1 policy is bounded by a function that is loga-
rithmic in time and linear in the number of arms. This, in
turn, means that the instantaneous reward obtained by this
online learning policy asymptotically tends to the optimal
reward obtained by the genie. We evaluate UCBI1 on a real
data set obtained from four users in a multi-occupancy office
building and show that this is indeed the case.

We next consider a more general and challenging case,
when the occupancy of the room is dynamic. For this case,
we make the assumption that each time the identity of the
current occupants is known, specifically that the feedback
is obtained from all occupants at each time, and tagged
with their ID. Over time, different users occupy the space.
For each combination of users a different temperature set-
ting may maximize the average user satisfaction. Applying
UCBI to this setting naively, however, would yield a subop-
timal outcome - a single temperature setting that is best for
the average occupant distribution. Therefore we seek a more
sophisticated solution that learns to adapt the temperature
setting to the particular users in the space, for any combi-
nation. however, there are in principle exponentially many
distinct cases to consider - if there are n users, there are 2"
different combinations in which they could be present.

Learning efficiently in the face of such dynamics and com-
binatorial explosion is a potentially difficult task. For this
problem, we adapt the recently designed LLR algorithm for
combinatorial multi-armed bandits [7], which can be ap-
plied to problems involved constrained combinatorial arm
selections so long as the reward is a linear combination of
component rewards, and the component rewards are indi-
vidually observed. Applied to our problem, the LLR policy
maintains sample means and number of times played, not for
each temperature alone as with UCB1, or with each possi-
ble combination of occupants and temperature, but for each
occupant individually for each temperature. As a result, it
incurs only polynomial storage and computation, and has
been mathematically shown to yield regret that is polyno-
mial in the underlying variables and logarithmic in time. In
our setting, we again illustrate this behaviour based on the
real data set. This policy, incidentally, has a nice additional
feature —- it is flexible enough to handle the presence of
new users and it does so gracefully. Any new users detected

are simply added to the table of tracked users, with 0 prior
observations. If the number of newer users is large compared
to the old users, it will be more likely to select a tempera-
ture for exploration, whereas when the number of new users
is relatively small, it is more likely to select a temperature
that is consistent with the preferences of the old users.

The remainder of the paper is organized as follows: Re-
lated works are presented in Section 2. In Section 3, the
problem formulation is introduced. In Section 4, we show
the data collection process and in Section 5 we analyze the
collected data. A background on Multi-Armed Bandit is
presented in Section Section 6 and the proposed algorithms
are given in Section 7. Simulation results are presented in
Section 8. Finally, Section 9 concludes the paper.

2. RELATED WORK

Thermal comfort is defined as the state of mind in which
occupants express satisfaction about the indoor environment.
Accordingly, thermal comfort is a subjective factor that is
best described by individual occupants. However, the oper-
ational settings of the HVAC systems are set based on pre-
defined standard models for thermal comfort. These models
include standard recommended thermal comfort ranges for
different seasons in the simplest form to heat balance model,
in which thermal comfort of the occupants is determined
based on a number of environmental and human related fac-
tors. PMV-PPD (predicted mean vote and predicted per-
centage dissatisfied) [6] is the standard recommended heat
balance model in which the collective vote of a group of oc-
cupants is represented by PMV index (a value between -3
to 3 representing cold to cool on a seven ASHARE thermal
sensation scale). The PMV index has been used in several
studies as the metric for user comfort integration [11, 4, 3].
As noted in the literature, the PMV index depends on a
number of parameters including environmental and human
related variables. Assumptions for human related variables
are used in the absence of information about building oc-
cupants [4, 3]. Incorporation of these assumptions causes
the index to be less representative of the dynamic occu-
pancy characteristics in buildings. Therefore, a number of
studies proposed that user provided information to be used
for obtaining the metric for thermal comfort perceptions in
the control logic of building systems. Controlling building
systems through user provided set points has the drawback
that set points in buildings are not necessarily equal to the
perceived room temperatures. Moreover, user defined set
points might not always lead to user comfort. Accordingly,
a number of studies proposed mechanisms for learning users’
comfort ranges. Guillemin and Morel used occupants’ pref-
erences in the form of temperature set points through key-
boards in each room [8]. They have proposed a self-adapting
control system that learns specific occupant wishes through
user input in the form of set points and an artificial neural
network for thermal and lighting conditions. Murakami et
al. used user input for combination of binary preferences
of warmer and cooler along with ASHRAE thermal sensa-
tion scale through a user interface along with their proposed
logic for energy and comfort optimization called “Logic for
Building a Consensus” [12]. Daum et al. used user input in
the form of too hot/too cold complaints along with a prob-
abilistic approach for determination of user comfort profiles
in which, for each user, they update a default probabilistic
representation of user comfort profiles using user-provided



information [5]. The profiles had three zones: comfortable,
too cold, or too hot - allowing occupants to address (vote)
the two extreme indoor conditions. In another approach,
Bermejo et al. proposed to use static fuzzy rules for the
PMYV and update the thermal comfort index as occupants
interacted with the thermostats in their rooms [2]. Jazizadeh
et al. used a participatory sensing approach in which occu-
pants provide their thermal preferences through a smart-
phone (or similar mobile device) interface and they learn
occupant’s comfort profile using a fuzzy pattern recognition
approach as occupants interact with the interface to adjust
their desired indoor conditions [10]. Although these models
address the notion of personalized context dependent ther-
mal comfort model, the problem of controlling based on the
average satisfaction is a challenging task. In this study, we
proposed the approach to learn personalized thermal prefer-
ences and maximize the expected collective satisfaction.

3. PROBLEM FORMULATION

We consider the thermal control problem in office build-
ings where the satisfaction feedback received from the occu-
pants could be used for decision-making.

Let n = 1,..., N indicate the time steps with the horizon
of N. We assume that there are M number of occupants, in
the building. Each occupant has a thermal comfort profile
which is unknown to us and our goal is to learn these profiles
during the thermal control of the building. We consider two
cases: (i) All the M occupants are present at all time steps;
(ii) at each time step a subset of these M occupants are
present and give their thermal feedback. In the later case,
we denote the subset of present occupants at time step n by
P(n) c{1,2,...,M}.

At each time step we adjust the temperature of the build-
ing to one of the possible points ¢t € {ti, ..., 5} where ¢; and
ty, are the lowest and the highest temperature points, respec-
tively. After adjusting the temperature we receive feedback
from all present occupants. The feedbacks are in the form
of thermal comfort preferences which are integer values such
that larger positive/negative values means the occupant pre-
fer the temperature to be warmer/cooler. These thermal
comfort preferences can be converted to another measure-
ment, the comfort proportion, which is a value in the range
of [0,1] such that 0 means the occupant is uncomfortable
(the condition is too hot or too cold for them) and 1 means
that this is a perfect thermal condition for the occupant.
Let Sy,.+(n) indicate the comfort proportion of the occupant
m =1, ..., M obtained by selecting the temperature ¢ at time
step n.

The average comfort proportion at time step n is given
BY Si(n) = 3 e pimy Sot(n)/|P(n)], where [P(n)| is the
number of present occupants at time step n. Based on the
history of the selected temperatures and the comfort pro-
portions computed up to the current time step, a suitable
temperature will be selected to adjust at the next time step.
The goal is to find the optimal sequence of temperatures
to select over time in order to maximize the total satisfac-
tions. Satisfaction is defined as the summation of the com-
fort proportions in all time steps. We model this problem as
a multi-armed bandit problem which we will explain more
in details in Section 6.

4. DATA COLLECTION PROCESS

An experimental field study was conducted in order to
collect user provided data for validation of the proposed al-
gorithm through simulation of control process. The data,
collected in this experiment, is used to develop user thermal
comfort profiles, which are consequently used for simulating
users’ reaction to different temperatures in the room. In this
experiment, four occupants of a multi occupancy room in an
office building were asked to participate in the data collec-
tion. The building is located in Southern California. The
indoor air of the room is conditioned through a variable air
volume (VAV) box which is controlled through a thermostat
in the room. Having access to the thermostat enabled us
to expose the participants to different indoor thermal con-
ditions. The user feedback about the indoor environment
was collected through a thermal preference scale embedded
in a custom user interface designed for user-HVAC interac-
tion. The thermal preference scale is a preference slider,
which enables users to provide their feedback in the form of
a preference for warmer or cooler indoor environment. The
thermal comfort preference scale and its asscoiated interface
has been designed and evaluated to increase the consistency
of occupants’ votes (details could be found in [9]). The user
interface is illustrated in Figure.1.
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Figure 1: The user feedback interface implemented
as a smartphone application

The interface was implemented as an iPhone participa-
tory sensing application to facilitate user interaction during
the day. Moreover, in order to determine the associated
temperature with user feedback a temperature sensor was
installed in the room. Sensor was located in the middle
of the room on top of a desk to provide a representative
temperature that users perceive. The layout of the room
including the location of the mechanical systems and the lo-
cation of the occupants is presented in Figure 2. MaxDetect,
RHTO03 temperature/humidity sensor was used. Tempera-
ture measurement accuracy is +0.2°C and the resolution
(sensitivity) is 0.1°C. The sensor system uses an Arduino
Black Widow stand-alone single-board microcontroller with
integrated support for 802.11 WiFi communications. The
data collection was carried out in September and the outside
temperature was perceived as warm during the experiment.
The requirement in conducting the experiment was to cover
a wide range of temperature to ensure that the algorithm is
tested against different conditions of perceptions.

The data was collected for four weeks during the working
hours from morning to evening. The temperature range in
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Figure 2: The layout of the office set up used as the
test bed

the room was manually set between 20 and 27 °C at different
times. A sample of collected data is shown in Figure 3. In
this figure, the horizontal axis shows the feedback submitted
through the interface and the y axis shows the ambient tem-
perature in °C. Having collected data for about four weeks,
114, 77, 76, and 61 data points were provided by subjects 1
to 4, respectively.
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Figure 3: A sample of the collected data for one of
the participants

S. DATA ANALYSES

The data is collected in the form of thermal comfort pref-
erences (in the range of [—50,50]) for temperatures in the
range of [20,27] °C. We convert the thermal comfort pref-
erences to the comfort proportions which is in the range of
[0,1]. Therefore if we call the thermal comfort preference z,
the comfort proportation is assumed to be Sy, +(n) = f(z) =

(1- %)Jr, where f(0) =1 and f(x) = 0 for all x lower than
-30 or higher than +30.

From the collected data, we extract the mean value of the
comfort proportion for each occupant piy, +. Fig. 4 shows the
mean values versus the temperature for all four occupants.
As it’s obvious from the figure, the occupant 2 is more com-
fortable at lower temperatures, but occupants 1 and 4 prefer
higher temperatures.

For the collected data, we compute the probability mass
functions of the total comfort proportions (the average of
the comfort proportions of all occupants) for different tem-
peratures, as shown in Fig. 5. This figure shows that in
general the low or high temperatures are less preferable and
the occupants are more comfortable at the moderate tem-
peratures, 23-25 °C.

098

[ -+
08 <

Occupant! -
0.7|{—+ - Occupant2
——Occupant3 ~ a7

0.6| —¢--Occupant4 P <

~h e S

05+ - ~
= - \\\
04 : S ;_r——‘\
03 / = <
/
0.2 2 N
0.4 z -

Figure 4: The mean value of satisfaction u: versus
the temperature for different occupants.

6. MULTI-ARMED BANDIT BACKGROUND

Multi-Armed Bandit (MAB) problems are a class of se-
quential resource allocation problems where the resource is
being selected among several alternatives. Each resource al-
ternative is called an arm and selecting (playing) the arm
results in a reward which is generated from an unkonwn dis-
tribution corresponded to that arm.

A multi-armed bandit is a type of decision-making prob-
lem where: (i) The goal is to find the best or most reward-
able action (ii) The reward distribution can be updated as
the experiment progresses. Therefore, this decision making
problem is about which arms and in what order we should
select such that the total reward collected over time horizon
is maximized. In this problem we are faced with a trade-off
between exploration and exploitation. Exploitation means
to select the arm which has given the maximum value of re-
ward so far, as often as possible, and exploration means to
try the arms, which have not been selected enough times, to
explore their reward distributions. In other words, there is
a fundamental conflict between making decisions that gives
high immediate reward or sacrificing current reward in order
to get more information helpful for future decisions.

The classical multi-armed (K-armed) bandit process con-
sists of one decision-maker who selects only one arm at each
time step and all other arms stay frozen. This problem is
defined by random variables X; ,, for 1 <i < K and n > 1,
where each i is the index of an arm. Sequential plays of
arm ¢ yields rewards X; 1, X; 2, ... which are assumed to be
independent and identically distributed according to an un-
known distribution with unknown expectation p;.

A policy or allocation strategy is an algorithm that chooses
the next arm to play based on the sequence of past plays
and collected rewards. Let m;(n) be the number of times
that arm ¢ has been played during the first n plays. The
distribuion-aware genie’s policy is the repetitive sequence of
the action with the highest mean value, p*, which achieves
the highest possible expected reward. Therefore the to-
tal collected reward of the policies (without the knowledge
about the distributions) is less than the maximum possible
value achieved by the distribution-aware genie.

A popular measure of a policy’s success is the regret, de-
fined as the gap between the expected accumulated reward
over time obtained by this policy and the one achieved by
the distribution-aware genie. The regret of a policy after n
plays is given by:
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Figure 5: Probability mass function of the total comfort proportions for different temperatures.

Algotihm 1: Policy UCBI1 from Auer et al. [1]

1: // Initialization ~
2: Play each arm once. Update S¢, ns accordingly;
3: // Main Loop
4: while 1 do
5:  Play the arm ¢ that maximizes S; + 2;%;
6: Update S:, n; accordingly;
7: end while
K
poen =Y uiBlng(n)] (1)
j=1

where ©* = maxi<;<x p; and E[.] indicates expectation.

7. PROPOSED ALGORITHM

We use UCBI algorithm, proposed by Auer et al. [1], in
our problem to find the best temperature at each time step
in order to maximize the total satisfactions over time hori-
zon. In our Multi-Armed Bandit problem, the arms are the
temperatures ¢ € {t;,...,tn}. Therefore, the total number
of arms are t, — t; + 1. The reward corresponding to the
temperature (arm) t collected at time step n is equal to the
comfort proportion, S¢(n). The UCBL1 algorithm is shown
in Algorithm 1.

In this policy two variables are stored and updated each
time step as an arm is selected:

(i) n¢(n), the number of times that the temperature ¢ has
been selected up to the time step n.

(ii) S¢(n), the sample mean of the comfort proportion re-
wards collected by selecting temperature ¢ up to the current
time step n.

S; and n; are both initialized to 0 and updated as follows:

{St("l)"t("l)JrS‘M) if arm t is played

St (n) =

ne(n—1)+1

else.

if arm t is played,

®3)

else.

(1) — ngn—1)+1
() {nt(n—l)

The trade-off between exploration and exploitation is taken
into account in the line 5 of the above algorithm where the
first term tries to select the arm with higher average reward
(exploitation) and the second term tries to select the arm
with smaller n;, i.e. less number of selection (exploration).
Therefore the best temperature to select at time step n + 1
is given by:

21n(n)

T

]7

t" = arg rntaX[S_'t +

(4)

where S; and n; are the updated value at time steps n as
given by (2) and (3).

For the case of dynamic occupancy, we propose to use the
Learning with Linear Rewards (LLR) algorithm, proposed
recently by Gai et. al. [7]. The LLR algorithm is shown in
Algorithm 2. The basic idea is to track the sample means
and number of times played not for the temperature values,
but for each user and each temperature value. Then, for a
given set of occupants at any time (it is assumed that the
current occupants of the room can be correctly identified,
for instance, through their mobile device ID’s or through
some other identifying mechanism), a corresponding index
is computed only for those occupants at each temperature,
to decide, on the fly, which temperature should be selected.

This algorithm stores and updates Sy, ¢ and 7, ¢ for dif-
ferent occupants m € {1,..., M} and different temperature
t € {t —I,tit1,...,tn} which requires only polynomial stor-
age. Updating of S'myt and nm,,: at time step n are similar
to (2) and (3) for only the occupants m € P(n) and for the
rest of occupants these values stay fixed. The index that is
computed in line 5 for each temperature now considers the
sum of corresponding indices for each present occupant. M
is a parameter in this problem that can be conservatively



Algotihm 2: Policy LLR from Gai et. al. [7]

1: // Initialization

2: Play each arm ¢ once. Update Sm. i, Tom. ¢

for all m € P(i),i = 1,...,t accordingly;

3: // Main Loop

4: while 1 do

5:  Play the arm ¢ that maximizes

ZmGP(n) vat + \/ ]Zi:{"’

6: Update Sm.t, nm,t , for all m € P(n) accordingly;
7: end while

set to the maximum number of users.

8. SIMULATION RESULTS

We apply the UCB1 and LLR algorithms, given in pre-
vious section, to the thermal control problem for constant
and dynamic occupancy, respectively. We use the real data
to regenerate the data samples during the simulation.

8.1 Constant Occupancy

If all of occupants are present in all time steps to give
us feedback about their comfort, we can use UCBI1 algo-
rithm. Fig. 6 shows the total satisfaction collected up to
time n versus the time n, for two policies: (i) the UCB1 al-
gorithm and (ii) the distribution-aware genie which has the
knowledge about the mean values of comfort proportions.
The distribution-aware genie always selects the arm with
the highest mean value, which for our data set is t = 25 °C.

1400

—UucB1
——-Genie

1200

1000 -7 B
800

/,/ /
600 - g

400

Total satisfaction

i L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

Figure 6: Total satisfaction of UCB1 algorithm and
the distribution-aware genie’s policy (playing always
the best arm) versus the passed time.

Fig. 7 shows the regret of the UCB1 algorithm versus time
steps n which is the gap between total satisfactions of UCB1
and genie’s policy given in Fig. 6. Fig. 8 shows the loss
of the UCBL1 algorithm which is the difference in unit-time
satisfaction obtained by this learning policy compared to
genie’ optimal policy, versus time steps n. The loss function
at time step n is given by E[S«(n)—S¢(n)]. As figure shows,
the loss (dissatisfaction) will decrease to less than 10% after
passing 400 time steps and goes to zero by increasing the
time steps.

Fig. 9 shows the fraction of times that a temperature has
been selected in UCB1 algorithm versus the mean value of
comfort proportion. As it is obvious from the figure, the
temperature with higher mean value has a higher chance to
be selected.

i L L
00 200 400 600 800 1000 1200 1400 1600 1800 2000
n

Figure 7: Regret of UCBI1 algorithm versus the time
index.
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Figure 8: Unit-time loss of UCB1 algorithm versus
the time index.

The sample mean of comfort proportions corresponded to
different temperatures is updated as (2) and it is going to
converge to the mean value of the total comfort proportion,
¢, shown in Fig. 10. Note that i is the average of the mean
values of the comfort proportions of all occupants, pim ¢, m =
1,..., M shown in Fig. 4, i.e., ut = 25:1 tm,e/M. Fig. 9
shows S; achieved by UCBI1 algorithm at the horizon N
versus p; and it confirms that the sample means converge to
the comfort proportion mean values. Note that in this figure,
each pair of (us, S;) corresponds to one of the temperatures
in the range of [t, th]

8.2 Dynamic Occupancy

For the case that the number of occupants are varying
over time, the UCBI1 algorithm is not applicabale, because
the data from some of the occupants are not available. We
could use LLR algorithm given in previous section. To sim-
ulate the dynamic occupancy using the data collected from
M = 4 occupants, we assume that at each time step all of
2* subset of occupants are possible and we choose one of
them uniformly. The feedback received from this subset of
occupants will determine the best temperature for the next
time step.

Fig. 11 shows the total satisfaction collected up to time
n versus the time n, for two policies: (i) the LLR algorithm
and (ii) the policy of the genie who is aware of the subset
of present occupants and the mean values of their comfort
proportions at each time step. The distribution-aware genie
always selects the arm with the highest mean value for the
present occupants in P(n).

Fig. 12 and Fig. 13 show the regret and the unit-time
loss of the LLR algorithm compared to the genie’s policy,
respectively. Comparing them with Fig. 7 and Fig. 8 shows



2
<
0.5} e
0.1
0.05 b e e 4
1 1
935 04 0.45 05 055 06 0.65 0.7

Figure 9: The number of selection of the tempera-
ture, n; versus the mean value of comfort propor-
tion.

o
3

average %
o o
o o o o
. ]
T T T T

o

IS

[l
T

041

i i i I i i
0'35;.35 04 0.45 05 0.55 06 0.65 07
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that the regret and loss of the dynamic occupancy case are
lower than that of the constant occupancy.
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Figure 11: Total satisfaction of LLR algorithm and
the distribution-aware genie’s policy for dynamic oc-
cupancy versus the passed time.

9. CONCLUSION

This study has shown how feedback obtained from users
of a participatory sensing app deployed in multi-occupant
spaces can be used to automatically learn the best tempera-
ture setting to maximize average user satisfaction. We have
shown that this can be done in a personalized fashion, tak-
ing into account the individual preference of each user. Our
primary contribution is to show that the problem of online
learning of thermal control settings for even a dynamic pop-
ulation of users with exponential combinations can be han-
dled efficiently, by applying a state-of-the-art combinatorial
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Figure 12: Regret of LLR algorithm for dynamic
occupancy versus the time index.
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Figure 13: Unit-time loss of LLR algorithm for dy-
namic occupancy versus the time index.

multi-armed bandit algorithm. Furthermore, we have empir-
ically validated this claim via simulations based on real user
data. Since users provide their feedback overtime and they
have control over the environment the proposed method en-
ables the integration of the contextual information such as
user clothing level and metabolic rates benefiting from the
user adaptiveness ability. Moreover, this approach, in its
current format, is suited for building zones with permanent
occupancy. In this way, the preferences of the occupants
could be learned over time while the occupants comfort is
preserved. However, this method requires user cooperation
in provision of satisfaction and dis-satisfaction feedback dur-
ing the training for a number of times per day. Our obser-
vations in the field experiments show that if the users are
provided with a personalized control system, they are willing
to participate in feedback provision.

For future work, we would like to consider objectives other
than maximizing the average user satisfaction. Depending
on the setting, in some cases a prioritized, possible even non-
linear, may be preferable (e.g., giving higher consideration to
the comfort of longer-term occupants). Another possibility
is to refine the user satisfaction model based on sensed user
activity — for instance, a user may have a different tempera-
ture preference after having just performed vigorous exercise
than when engaged in sedentary activity. Integrating infor-
mation from automated personal activity state sensing (e.g.
as proposed in [13]) into the smartphone application could
allow for even more fine-grained sensing and control.

Also, the current policies assume no prior information is
available about the user preferences. It is conceivable that
previously learned information about the users’ preferences
in other spaces could be used to speed up learning. In future



work, we also plan to consider a Bayesian approach that
allows the prior preferences to be taken into account in the
learning process. Finally, we hope to be able to deploy the
proposed thermal control system live in a real environment
and conduct experiments to test its performance.
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