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Abstract—We consider the problem of power allocation over
one or more time-varying channels with unknown distributions
in energy harvesting communications. In the single-channel case,
the transmitter chooses the transmit power based on the amount
of stored energy in its battery with the goal of maximizing the
average rate over time. We model this problem as a Markov
decision process (MDP) with transmitter as the agent, battery
status as the state, transmit power as the action and rate as
the reward. The average reward maximization problem can be
modelled by a linear program (LP) that uses the transition
probabilities for the state-action pairs and their reward values
to select a power allocation policy. This problem is challenging
because the uncertainty in channels implies that the mean
rewards associated with the state-action pairs are unknown.
We therefore propose two online learning algorithms: Linear
Program of Sample Means (LPSM) and Epoch-LPSM that learn
these rewards and adapt their policies over time. For both
algorithms, we prove that their regret is upper-bounded by a
constant. To our knowledge this is the first result showing con-
stant regret learning algorithms for MDPs with unknown mean
rewards. We also prove an even stronger result about LPSM: that
its policy matches the optimal policy exactly in finite expected
time. Epoch-LPSM incurs a higher regret compared to LPSM,
while reducing the computational requirements substantially. We
further consider a multi-channel scenario where the agent also
chooses a channel in each slot, and present our multi-channel
LPSM (MC-LPSM) algorithm that explores different channels
and uses that information to solve the LP during exploitation.
MC-LPSM incurs a regret that scales logarithmically in time
and linearly in the number of channels. Through a matching
lower bound on the regret of any algorithm, we also prove the
asymptotic order optimality of MC-LPSM.

Index Terms—Contextual bandits, multi-armed bandits
(MABs), online learning, energy harvesting communications,
Markov decision process (MDP).

I. INTRODUCTION

Communication systems where the transmissions are pow-
ered by the energy harvested from nature have rapidly emerged
as viable options for the next-generation wireless networks
[1]. These advances are promising as they help us reduce the
dependence on the conventional sources of energy and the
carbon footprint of our systems. The ability to harvest energy
promises self-sustainability and prolonged network lifetimes
that are only limited by the communication hardware rather
than the energy storage. Energy can be harvested from various
natural sources, such as solar, thermal, chemical, biological
etc. Their technologies differ in terms of their efficiency and
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harvesting capabilities, depending on the mechanisms, devices,
circuits used. Since these energy sources are beyond human
control, energy harvesting brings up a novel aspect of irregular
and random energy source for communication. This demands
a fresh look at the transmission schemes used by wireless
networks. The next generation wireless networks need to be
designed while keeping the irregularities and randomness in
mind.

The performance of the energy harvesting communication
systems is dependent on the efficient utilization of energy
that is currently stored in the battery, as well as that is to
be harvested over time. These systems must make decisions
while keeping their impact on the future operations in mind.
Such problems of optimal utilization of the available resources
can be classified into offline optimization [2], [3], [4] and
online optimization [5], [6], [7], [8], [4] problems. In the
offline optimization problems, the transmitter deterministically
knows the exact amounts of the harvested energies and the
data along with their exact arrival times. These assumptions
are too optimistic, since the energy harvesting communication
systems are usually non-deterministic. In the online optimiza-
tion problems, however, the transmitter is assumed to know
the distributions or some statistics of the harvesting and the
data arrival processes. It may get to know their instantaneous
realizations before making decisions in each slot. The problem
considered in this paper falls in the category of the online
optimization problems.

In our paper, the channel gains are assumed to be i.i.d.
over time with an unknown distribution and the harvested
energy is assumed to be stochastically varying with a known
distribution. This is based on the fact that the weather con-
ditions are more predictable than the radio frequency (RF)
channels which are sensitive to time-varying multi-path fading.
In the single channel case, the transmitter has to decide
its transmit power level based on the current battery status
with the goal maximizing the average expected transmission
rate obtained over time. We model the system as a Markov
decision process (MDP) with the battery status as the state,
the transmit power as the action, the rate as the reward. The
power allocation problem, therefore, reduces to the average
reward maximization problem for an MDP. Since the channel
gain distribution is unknown, their expected rates for different
power levels are also unknown. The transmitter or the agent,
therefore, cannot determine the optimal mapping from the
battery state to the transmit power precisely. It needs to learn
these rate values over time and make decisions along the way.
We cast this problem as an online learning problem over an
MDP.

In the multi-channel case, the agent needs to also select
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a channel from the set of channels for transmission. The
gain-distributions of these channels are, in general, different
and unknown to the agent. Due to different distributions, the
optimal channels for different transmit powers can be different.
The agent, therefore, needs to explore different channels over
time to be able to estimate their rate values and use these
estimates to choose a power-level and a channel at each time.
This exploration of different channels leads the agent into
making non-optimal power and channel decisions and thus
hampers the performance of the online learning algorithm.

One interesting feature of this problem is that the data-rate
obtained during transmission is a known function of the chosen
transmit power level and the instantaneous channel condition.
Whenever a certain power is used for transmission, the agent
can figure out the instantaneous channel condition once the
instantaneous rate is revealed to it. This information about
the instantaneous gain of the chosen channel can, therefore,
be used to update the rate-estimates for all power levels. The
knowledge of the rate function can be used to speed up the
learning process in this manner.

A. Contributions
The problem of maximizing the average expected reward

of an MDP can be formulated as a linear program (LP). The
solution of this LP gives the stationary distribution over the
state-action pairs under the optimal policy. If the MDP is
ergodic, then there exists a deterministic optimal policy. We
model the problem of communication over a single channel
using the harvested energy as an MDP and prove the ergodicity
of the MDP under certain assumptions about the transmit
power and the distribution of harvested energy. This helps us
focus only on the deterministic state-action mappings which
are finite in number.

The LP formulation helps us characterize the optimal policy
that depends on the transition probabilities for the state-action
pairs and their corresponding mean rewards. We use the
optimal mean reward obtained from the LP as a benchmark
to compare the performance of our algorithms with. Since the
mean rewards associated the state-action pairs are unknown to
the agent, we propose two online learning algorithms: LPSM
and Epoch-LPSM that learn these rewards and adapt their
policies along the way. The LPSM algorithm solves the LP
at each step to decide its current policy based on its current
sample mean estimates for the rewards, while the Epoch-
LPSM algorithm divides the time into epochs, solves the LP
only at the beginning of the epochs and follows the obtained
policy throughout that epoch. We measure the performance of
our online algorithms in terms of their regrets, defined as the
cumulative difference between the optimal mean reward and
the instantaneous reward of the algorithm. We prove that the
reward loss or regret incurred by each of these algorithms is
upper bounded by a constant. To our knowledge this is the
first result where constant regret algorithms are proposed for
the average reward maximization problem over MDPs with
stochastic rewards with unknown means. We further prove
that the LPSM algorithm starts following the genie’s optimal
policy in finite expected time. The finite expected time is an
even stronger result than the constant regret guarantee.

Our proposed single channel algorithms greatly differ
in their computational requirements. Epoch-LPSM incurs a
higher regret compared to LPSM, but reduces the computa-
tional requirements substantially. LPSM solves a total of T
LPs in time T , whereas Epoch-LPSM solves only O(lnT )
number of LPs. We introduce two parameters n0 and η that
reveal the computation vs regret tradeoff for Epoch-LPSM.
Tuning these parameters allows the agent to control the system
based on its performance requirements.

We extend our framework to the case of multiple chan-
nels where the agent also needs to select the transmission
channel in each slot. We present our MC-LPSM algorithm
that deterministically separates exploration from exploitation.
MC-LPSM explores different channels to learn their expected
rewards and uses that information to solve the average reward
maximization LP during the exploitation slots. The length
of the exploration sequence scales logarithmically over time
and contributes to the bulk of the regret. This exploration,
however, helps us bound the exploitation regret by constant.
We, therefore, prove a regret bound for MC-LPSM that scales
logarithmically in time and linearly in the number of channels.
This design of the exploration sequence, however, needs to
know a lower bound on the difference in rates for the channels.
We observe that this need of knowing some extra information
about the system can be eliminated by using a longer explo-
ration sequence as proposed in [9]. The regret of this design
can be made arbitrarily close to the logarithmic order. We also
prove an asymptotic regret lower bound of Ω(lnT ) for any
algorithm under certain conditions. This proves the asymptotic
order optimality of the proposed MC-LPSM approach. We
further show that, similar to Epoch-LPSM, the MC-LPSM
algorithm also solves only O(lnT ) number of LPs in time
T .

We show that the proposed online learning algorithms also
work for cost minimization problems in packet scheduling
with power-delay tradeoff with minor changes.

B. Organization

This paper is organized as follows. First, we describe
the model for the energy harvesting communication system
using a single channel, formulate this problem as an MDP
and discuss the structure of the optimal policy in section
III. We then propose our online learning algorithms LPSM
and Epoch-LPSM for single channel systems and prove their
regret bounds in section IV. We extend our approach to
multi-channel systems, propose our MC-LPSM algorithm, and
analyze its regret in section V. In section VI, we show that
our online learning framework can also model the average cost
minimization problems over MDPs. Section VII presents the
results of numerical simulations for this problem and section
VIII concludes the paper. We also include appendices A and
B to discuss and prove some of the technical lemmas at the
end of the paper.

II. RELATED WORK

The offline optimization problems in the energy harvesting
communications assume a deterministic system and the exact
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knowledge of energy and data arrival times and their amounts.
In [2], the goal is to minimize the time by which all the packets
are delivered. In [3], a finite horizon setting is considered with
the goal of maximizing the amount of transmitted data. These
two problems are proved to be duals of each other in [3].
In the online problems, the system is usually modelled as an
MDP with the objective being the maximization of the average
reward over time. These problems make specific distributional
assumptions about the energy harvesting process and the
channel gains. In the Markovian setting considered in [5], the
energy replenishment process and the packet arrival process
are assumed to follow Poisson distributions. Each packet has
a random value assigned to it and the reward, in this setting,
corresponds to the sum of the values of the successfully
transmitted packets. In [6], the power management problem
is formulated as an MDP, where the transmitter is assumed to
know the full channel state information before the transmission
in each slot. The properties of the optimal transmission policy
are characterized using dynamic programming for this setting.
In [7], the energy harvesting process and the data arrivals
are assumed to follow Bernoulli distributions and a simple
AWGN channel is assumed for transmission. A policy iteration
based scheme is designed to minimize the transmission errors
for the system. In [8], power allocation policies over a finite
time horizon with known channel gain and harvested energy
distributions are studied. In [10], [11], power control policies
are analyzed for communication systems with retransmissions.
These MDP settings assume that energy harvesting follows a
stationary Bernoulli process. In [10], the channel is assumed
to follow a known fading model and in [11], the packet error
rate is assumed to be known. In [4], the offline and online
versions of the throughput optimization problem are studied
for a fading channel and Poisson energy arrival process. In
our paper, however, we do not assume specific distributions
for the energy arrival process and the channel gain-to-noise
ratios.

Our problem can be seen from the lens of contextual bandits,
which are extensions of the standard multi-armed bandits
(MABs). In the standard MAB problem [12], [13], [9], the
agent is presented with a set of arms each providing stochastic
rewards over time with unknown distributions and it has to
choose an arm in each trial with the goal of maximizing the
sum reward over time. In [12], Lai and Robbins provide an
asymptotic lower bound of Ω(lnT ) on the expected regret of
any algorithm for this problem. In [13], an upper confidence
bound based policy called UCB1 and a randomized policy
that separates exploration from exploitation called ε-greedy
are proposed and are also proved to achieve logarithmic
regret bounds for arm distributions with finite support. In
[9], a deterministic equivalent of ε-greedy called DSEE is
proposed and proved to provide similar regret guarantees.
In the contextual bandits, the agent also sees some side-
information before making its decision in each slot. In the
standard contextual bandit problems [14], [15], [16], [17],
[18], the contexts are assumed to be drawn from an unknown
distribution independently over time. In our problem, the
battery state can be viewed as the context. We model the
context transitions by an MDP, since the agent’s action at

time t affects not only the instantaneous reward but also the
context in slot t+ 1. The agent, therefore, needs to decide the
actions with the global objective in mind, i.e. maximizing the
average reward over time. The algorithms presented in [15],
[16], [17] do not assume any specific relation between the
context and the reward. The DCB(ε) algorithm presented in
[18], however, assumes that the mapping from the context and
random instance to the reward is a known function and uses
this function knowledge to reduce the expected regret. It must,
however, be noted that the MDP formulation generalizes the
contextual bandit setting in [18], since the i.i.d. context case
can be viewed as a single state MDP.

Our problem is also closely related to the reinforcement
learning problem over MDPs from [19], [20], [21]. The
objective for these problems is to maximize the average
undiscounted reward over time. In [19], [20], the agent is
unaware of the transition probabilities and the mean rewards
corresponding to the state-action pairs. In [21], the agent
knows the mean rewards, but the transition probabilities are
still unknown. In our problem, the mean rewards are unknown,
while the transition probabilities of the MDP can be inferred
from the knowledge of the arrival distribution and the action
taken from each state. In contrast to the works above, for
our problem motivated by the practical application in energy
harvesting communications, we show that the learning incurs
a constant regret in the single channel case.

III. SYSTEM MODEL

We describe the model of the energy harvesting com-
munication system considered in this paper using a single
channel. Consider a time-slotted energy harvesting communi-
cation system where the transmitter uses the harvested power
for transmission over a channel with stochastically varying
channel gains with unknown distribution as shown in figure
1. We further assume that the channel gain-to-noise ratio is
i.i.d. over time. Let pt denote the harvested power in the t-th
slot which is assumed to be i.i.d. over time. Let Qt denote the
stored energy in the transmitter’s battery that has a capacity
of Qmax. Assume that the transmitter decides to use qt(≤ Qt)
amount of power for transmission in t-th slot. We assume
discrete and finite number of power levels for the harvested
and transmit powers. The rate obtained during the t-th slot is
assumed to follow a relationship

rt = B log2(1 + qtXt), (1)

where Xt denotes the instantaneous channel gain-to-noise ratio
of the channel which is assumed to be i.i.d. over time and B
is the channel bandwidth. The battery state gets updated in the
next slot as

Qt+1 = min{Qt − qt + pt, Qmax}. (2)

The goal is to utilize the harvested power and choose a
transmit power qt in each slot sequentially to maximize the
expected average rate lim

T→∞
1
T E
[∑T

t=1 rt

]
obtained over time.
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Fig. 1. Power allocation over a wireless channel in energy harvesting
communications

A. Problem Formulation

Consider an MDPM with a finite state space S and a finite
action space A. Let As ⊂ A denote the set of allowed actions
from state s. When the agent chooses an action at ∈ Ast in
state st ∈ S, it receives a random reward rt(st, at). Based on
the agent’s decision the system undergoes a random transition
to a state st+1 according to the transition probability P (st+1 |
st, at). In the energy harvesting problem, the battery status
Qt represents the system state st and the transmit power qt
represents the action taken at at any slot t.

In this paper, we consider systems where the random
rewards of various state action pairs can be modelled as

rt(st, at) = f(st, at, Xt), (3)

where f is a reward function known to the agent and Xt

is a random variable internal to the system that is i.i.d.
over time. Note that in the energy harvesting communications
problem, the reward is the rate obtained at each slot and the
reward function is defined in equation (1). In this problem,
the channel gain-to-noise ratio Xt corresponds to the system’s
internal random variable. We assume that the distribution of
the harvested energy pt is known to the agent. This implies that
the state transition probabilities P (st+1 | st, at) are inferred
by the agent based on the update equation (2).

A policy is defined as any rule for choosing the actions
in successive time slots. The action chosen at time t may,
therefore, depend on the history of previous states, actions
and rewards. It may even be randomized such that the action
a ∈ As is chosen from some distribution over the actions. A
policy is said to be stationary, if the action chosen at time t
is only a function of the system state at t. This means that a
deterministic stationary policy β is a mapping from the state
s ∈ S to its corresponding action a ∈ As. When a stationary
policy is played, the sequence of states {st | t = 1, 2, · · · }
follows a Markov chain. An MDP is said to be ergodic, if
every deterministic stationary policy leads to an irreducible
and aperiodic Markov chain. According to section V.3 from
[22], the average reward can be maximized by an appropriate
deterministic stationary policy β∗ for an ergodic MDP with
finite state space. In order to arrive at an ergodic MDP
for the energy harvesting communications problem, we make
following assumptions:

AS-1 When Qt > 0, the transmit power qt > 0.

AS-2 The distribution of the harvested energy is such that
Pr{pt = p} > 0 for all 0 ≤ p ≤ Qmax.

Proposition 1. Under assumptions AS-1 and AS-2, the MDP
corresponding to the transmit power selection problem in
energy harvesting communications is ergodic.

Proof: Consider any policy β and let P (n)(s, s′) be the n-
step transition probabilities associated with the Markov chain
resulting from the policy.

First, we prove that P (1)(s, s′) > 0 for any s′ ≥ s as
follows. According to the state update equations,

st+1 = st − β(st) + pt. (4)

The transition probabilities can, therefore, be expressed as

P (1)(s, s′) = Pr{p = s′ − s+ β(s)} ≥ 0, (5)

since s′ ≥ s and β(s) ≥ 0 for all states. This implies that
any state s′ ∈ S is accessible from any other state s in the
resultant Markov chain, if s ≤ s′.

Now, we prove that P (1)(s, s − 1) > 0 for all s ≥ 1 as
follows. From equation (5), we observe that

P (1)(s, s− 1) = Pr{p = β(s)− 1} ≥ 0, (6)

since β(s) ≥ 1 for all s ≥ 1. This implies that every state
s ∈ S is accessible from the state s+1 in the resultant Markov
chain.

Equations (5) and (6) imply that all the state pairs (s, s+1)
communicate with each other. Since communication is an
equivalence relationship, all the states communicate with each
other and the resultant Markov chain is irreducible. Also,
equation (5) implies that P (1)(s, s) > 0 for all the states and
the Markov chain is, therefore, aperiodic.

Under assumptions AS-1 and AS-2, the MDP under con-
sideration is ergodic and we can restrict ourselves to the set
of deterministic stationary policies which we interchangeably
refer to as policies henceforth. Let µ(s, a) denote the expected
reward associated with the state-actions pair (s, a) which can
be expressed as

µ(s, a) = E [r(s, a)] = EX [f(s, a,X)] . (7)

For ergodic MDPs, the optimal mean reward ρ∗ is independent
of the initial state (see [23], section 8.3.3). It is specified as

ρ∗ = max
β∈B

ρ(β,M), (8)

where B is the set of all policies, M is the matrix whose (s, a)-
th entry is µ(s, a), and ρ(β,M) is the average expected reward
per slot using policy β. We use the optimal mean reward as
the benchmark and define the cumulative regret of a learning
algorithm after T time-slots as

R(T ) := Tρ∗ − E

[
T−1∑
t=0

rt

]
. (9)

This definition of regret of an online learning algorithm
is used in reinforcement learning literature [19], [20], [21].
With this definition, the optimal policy also incurs a regret,
when the initial state distribution is not same as the stationary
distribution. We characterize this regret using tools from
Markov chain mixing in appendix B.
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B. Optimal Stationary Policy

When the expected rewards for all state-action pairs µ(s, a)
and the transition probabilities P (s′ | s, a) are known, the
problem of determining the optimal policy to maximize the
average expected reward over time can be formulated as a
linear program (LP) (see e.g. [22], section V.3) shown below.

max
∑
s∈S

∑
a∈As

π(s, a)µ(s, a)

s.t. π(s, a) ≥ 0, ∀s ∈ S, a ∈ As,∑
s∈S

∑
a∈As

π(s, a) = 1,∑
a∈As′

π(s′, a) =
∑
s∈S

∑
a∈As

π(s, a)P (s′ | s, a), ∀s′ ∈ S,

(10)
where π(s, a) denotes the stationary distribution of the MDP.
The objective function of the LP from equation (10) gives
the average rate corresponding to the stationary distribution
π(s, a), while the constraints make sure that this stationary
distribution corresponds to a valid policy on the MDP. Such
LPs can be solved by standard solvers such as CVXPY [24].

If π∗(s, a) is the solution to the LP from (10), then for
every s ∈ S, π(s, a) > 0 for only one action a ∈ As.
This is due to the fact the the optimal policy β∗ is deter-
ministic for ergodic MDPs in average reward maximization
problems (see [23], section 8.3.3). Thus for this problem,
β∗(s) = arg max

a∈As
π∗(s, a). Note that we, henceforth, drop the

action index from the stationary distribution, since the policies
under consideration are deterministic and the corresponding
action is, therefore, deterministically known. In general, we
use πβ(s) to denote the stationary distribution corresponding
to the policy β. It must be noted that the stationary distribution
of any policy is independent of the reward values and only
depends on the transition probability for every state-action
pair. The expected average reward depends on the stationary
distribution as

ρ(β,M) =
∑
s∈S

πβ(s)µ(s, β(s)). (11)

In terms of this notation, the LP from (10) equivalent to
maximizing ρ(β,M) over β ∈ B. Since the matrix M is
unknown, we develop online learning policies for our problem
in the next section.

IV. ONLINE LEARNING ALGORITHMS

For the power allocation problem under consideration, al-
though the agent knows the state transition probabilities, the
mean rewards for the state-action pairs µ(s, a) values are still
unknown. Hence, the agent cannot solve the LP from (10) to
figure out the optimal policy. Any online learning algorithm
needs to learn the reward values over time and update its policy
adaptively. One interesting aspect of the problem, however,
is that the reward function from equation (3) is known to
the agent. Since the reward functions under consideration (1)
is bijective, once the reward is revealed to the agent, it can
infer the instantaneous realization of the random variable X .

This can be used to predict the rewards that would have been
obtained at that time for other state-action pairs using the
function knowledge.

In our online learning framework, we store the average
values of these inferred rewards θ(s, a) for all state-action
pairs. The idea behind our algorithms is to use the estimated
sample mean values for the optimization problem instead of
the unknown µ(s, a) values in the objective function of the
LP from (10). Since the θ(s, a) values get updated after each
reward revelation, the agent needs to solve the LP again and
again. We propose two online learning algorithms: LPSM
(linear program of sample means) where the agent solves the
LP at each slot and Epoch-LPSM where the LP is solved at
fixed pre-defined time slots. Although the agent is unaware of
the actual µ(s, a) values, it learns the statistics θ(s, a) over
time and eventually figures out the optimal policy.

Let B(s, a) ≥ supx∈X f(s, a, x)− infx∈X f(s, a, x) denote
any upper bound on the maximum possible range of the
reward for the state-action pair (s, a) over the support X
of the random variable X . We use following notations in
the analysis of our algorithms: B0 := max

(s,a)
B(s, a), ∆1 :=

ρ∗ − max
β 6=β∗

ρ(β,M). The total number of states and actions

are specified as S := |S|, A := |A|, respectively. Also, Θt

denotes the matrix containing the entries θt(s, a) at time t.

A. LPSM
The LPSM algorithm presented in algorithm 1 solves the LP

at each time-step and updates its policy based on the solution
obtained. It stores only one θ value per state-action pair. Its
required storage is, therefore, O(SA). In theorem 1, we derive
an upper bound on the expected number of slots where the
LP fails to find the optimal solution during the execution of
LPSM. We use this result to bound the total expected regret
of LPSM in theorem 2. These results guarantee that the regret
is always upper bounded by a constant. Note that, for the ease
of exposition, we assume that the time starts at t = 0. This
simplifies the analysis and has no impact on the regret bounds.

Theorem 1. The expected number of slots where non-optimal
policies are played by LPSM is upper bounded by

1 +
(1 +A)S

e
1
2

(
∆1
B0

)2

− 1

. (12)

Proof: Let βt denote the policy obtained by LPSM at
time t and I(z) be the indicator function defined to be 1 when
the predicate z is true, and 0 otherwise. Now the number of
slots where non-optimal policies are played can be expressed
as

N1 = 1 +
∞∑
t=1

I {βt 6= β∗}

= 1 +

∞∑
t=1

I {ρ(β∗,Θt) ≤ ρ(βt,Θt)} . (13)

We observe that ρ(β∗,Θt) ≤ ρ(βt,Θt) implies that at least
one of the following inequalities must be true:

ρ(β∗,Θt) ≤ ρ(β∗,M)− ∆1

2
(14)
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Algorithm 1 LPSM
1: Initialization: For all (s, a) pairs, θ(s, a) = 0.
2: for n = 0 do
3: Given the state s0 and choose any valid action;
4: Update all (s, a) pairs: θ(s, a) = f(s, a, x0);
5: end for
6: // MAIN LOOP
7: while 1 do
8: n = n+ 1;
9: Solve the LP from (10) using θ(s, a) in place of

unknown µ(s, a);
10: In terms of the LP solution π(n), define βn(s) =

arg max
a∈As

π(n)(s, a), ∀s ∈ S;

11: Given the state sn, select the action βn(sn);
12: Update for all valid (s, a) pairs:

θ(s, a)← nθ(s, a) + f(s, a, xn)

n+ 1
;

13: end while

ρ(βt,Θt) ≥ ρ(βt,M) +
∆1

2
(15)

ρ(β∗,M) < ρ(βt,M) + ∆1. (16)

Note that the event from condition (16) can never occur,
because of the definition of ∆1. Hence we upper bound the
probabilities of the other two events. For the first event from
condition (14), we get

Pr

{
ρ(β∗,Θt) ≤ ρ(β∗,M)− ∆1

2

}
= Pr

{∑
s∈S

π∗(s, β∗(s))θt(s, β
∗(s)) ≤

∑
s∈S

π∗(s, β∗(s))µ(s, β∗(s))− ∆1

2

}
≤ Pr

{
For at least one state s ∈ S :

π∗(s, β∗(s))θt(s, β
∗(s)) ≤

π∗(s, β∗(s))

(
µ(s, β∗(s))− ∆1

2

)}
≤
∑
s∈S

Pr
{
π∗(s, β∗(s))θt(s, β

∗(s)) ≤

π∗(s, β∗(s))

(
µ(s, β∗(s))− ∆1

2

)}
≤
∑
s∈S

Pr

{
θt(s, β

∗(s)) ≤ µ(s, β∗(s))− ∆1

2

}
(a)

≤
∑
s∈S

e
−2

(
∆1

2B(s,β∗(s))

)2
t

= Se
−2

(
∆1
2B0

)2
t
, (17)

where (a) holds due to Hoeffding’s inequality from lemma 1
(see appendix A).

Similarly for the second event from condition (15), we get

Pr

{
ρ(βt,Θt) ≥ ρ(βt,M) +

∆1

2

}
= Pr

{∑
s∈S

∑
a∈As

πβt(s, a)θt(s, a) ≥

∑
s∈S

∑
a∈As

πβt(s, a)µ(s, a) +
∆1

2

}
≤ Pr {For at least one state-action pair (s, a) :

πβt(s, a)θt(s, a) ≥ πβt(s, a)

(
µ(s, a) +

∆1

2

)}
≤
∑
s∈S

∑
a∈As

Pr {πβt(s, a)θt(s, a) ≥

πβt(s, a)

(
µ(s, a) +

∆1

2

)}
=
∑
s∈S

∑
a∈As

Pr

{
θt(s, a) ≥ µ(s, a) +

∆1

2

}
(b)

≤
∑
s∈S

∑
a∈As

e−2( ∆1
2B(s,a) )

2
t

≤ SAe
−2

(
∆1
2B0

)2
t
, (18)

where (b) holds due to Hoeffding’s inequality from lemma 1
in appendix A.

The expected number of non-optimal policies from equation
(13), therefore, can be expressed as

E[N1] ≤ 1 +
∞∑
t=1

Pr {ρ(β∗,Θt) ≤ ρ(βt,Θt)}

≤ 1 +
∞∑
t=1

(
Pr

{
ρ(β∗,Θt) ≤ ρ(β∗,M)− ∆1

2

}
+ Pr

{
ρ(βt,Θt) ≥ ρ(βt,M) +

∆1

2

})
≤ 1 + (1 +A)S

∞∑
t=1

e
−2

(
∆1
2B0

)2
t

≤ 1 + (1 +A)S
e
− 1

2

(
∆1
B0

)2

1− e
− 1

2

(
∆1
B0

)2

≤ 1 +
(1 +A)S

e
1
2

(
∆1
B0

)2

− 1

. (19)

It is important to note that even if the optimal policy is
found by the LP and played during certain slots, it does not
mean that regret contribution of those slots is zero. According
to the definition of regret from equation (9), regret contribution
of a certain slot is zero if and only if the optimal policy is
played and the corresponding Markov chain is at its stationary
distribution. In appendix B, we introduce tools to analyze
the mixing of Markov chains and characterize this regret
contribution in theorem 10. These results are used to upper
bound the LPSM regret in the next theorem.
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Theorem 2. The total expected regret of the LPSM algorithm
is upper bounded by1 +

(1 +A)S

e
1
2

(
∆1
B0

)2

− 1

( µmax

1− γ
+ ∆max

)
. (20)

where γ = max
s,s′∈S

‖P∗(s′, ·)−P∗(s, ·)‖TV, P∗ denotes the tran-

sition probability matrix corresponding to the optimal policy,
µmax = max

s∈S,a∈As
µ(s, a) and ∆max = ρ∗ − min

s∈S,a∈As
µ(s, a).

Proof: The regret of LPSM arises when either non-
optimal actions are taken or when optimal actions are taken
and the corresponding Markov chain is not at stationarity.
For the first source of regret, it is sufficient to analyze the
number of instances where the LP fails to find the optimal
policy. For the second source, however, we need to analyze
the total number of phases where the optimal policy is found
in succession.

Since only the optimal policy is played in consecutive
slots in a phase, it corresponds to transitions on the Markov
chain associated with the optimal policy and the tools from
appendix B can be applied. According to theorem 10, the
regret contribution of any phase is bounded from above by
(1 − γ)−1µmax. As proved in theorem 1, for t ≥ 1, the
expected number of instances of non-optimal policies is upper
bounded by (1+A)S

e
1
2 ( ∆1

B0
)
2

−1

. Since any two optimal phases must

be separated by at least one non-optimal slot, the expected
number of optimal phases is upper bounded by 1+ (1+A)S

e
1
2 ( ∆1

B0
)
2

−1

.

Hence, for t ≥ 1, the expected regret contribution from the
slots following the optimal policy is upper bounded by1 +

(1 +A)S

e
1
2

(
∆1
B0

)2

− 1

 µmax

1− γ
. (21)

Note that the maximum regret possible during one slot is
∆max. Hence for the slots where non-optimal policies are
played, the corresponding expected regret contribution is upper

bounded by

(
1 + (1+A)S

e
1
2 ( ∆1

B0
)
2

−1

)
.

Overall expected regret for the LPSM algorithm is, there-
fore, bounded from above by equation (20).

Remark 1. It must be noted that we call two policies as same
if and only if they recommend identical actions for every state.
It is, therefore, possible for a non-optimal policy to recommend
optimal actions for some of the states. In the analysis of LPSM,
we count all occurrences of non-optimal policies as regret
contributing occurrences in order to upper bound the regret.

Remark 2. Note that the LPSM algorithm presented above
works for general reward functions f . The rate function in the
energy harvesting communications is, however, not dependent
on the state which is the battery status. It is a function of the
transmit power level and the channel gain only. The LPSM
algorithm, therefore, needs to store only one θ variable for
each transmit power level and needs O(A) storage overall.
The probability of event from condition (15) is bounded by a

tighter upper bound of Ae
−2

(
∆1
2B0

)2
t. The regret upper bound

from theorem 2 is also tightened to1 +
(S +A)

e
1
2

(
∆1
B0

)2

− 1

( µmax

1− γ
+ ∆max

)
. (22)

For the LPSM algorithm, we can prove a stronger result
about the convergence time. Let Z be the random variable
corresponding to the first time-slot after which LPSM never
fails to find the optimal policy. This means that Z − 1
represents the last time-slot where LPSM finds a non-optimal
policy. We prove that the expected value of Z is finite,
which means that LPSM takes only a finite amount time in
expectation before it starts following the genie. We present
this result in theorem 3.

Theorem 3. For the LPSM algorithm, the expected value of
the convergence time Z is finite.

Proof: Since Z−1 denotes the index of the last slot where
LPSM errs, all the slots from Z onward must have found the
optimal policy β∗. We use this idea to bound the following
probability

Pr{Z ≤ Z0}
= Pr {LPSM finds the optimal policy

in all slots Z0, Z0 + 1, · · · }
= 1− Pr {LPSM fails in at least one slot

in {Z0, Z0 + 1, · · · }}

≥ 1−
∞∑
t=Z0

Pr {LPSM fails at t}

≥ 1−
∞∑
t=Z0

(1 +A)Se
−2

(
∆1
2B0

)2
t (From equation (19))

= 1− (1 +A)Se
− 1

2

(
∆1
B0

)2
Z0

1− e
− 1

2

(
∆1
B0

)2 . (23)

We, therefore, get the following exponential inequality for
Z0 ≥ 1

Pr{Z > Z0} ≤
(1 +A)Se

− 1
2

(
∆1
B0

)2
Z0

1− e
− 1

2

(
∆1
B0

)2 . (24)

The expectation of Z can, now, be bounded as

E[Z] =
∞∑

Z0=0

Z0 Pr{Z = Z0}

=
∞∑

Z0=0

Pr{Z > Z0}

≤ 1 +
∞∑

Z0=1

(1 +A)Se
− 1

2

(
∆1
B0

)2
Z0

1− e
− 1

2

(
∆1
B0

)2

= 1 +
(1 +A)Se

− 1
2

(
∆1
B0

)2

(
1− e

− 1
2

(
∆1
B0

)2
)2 . (25)
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The expected value of Z is, therefore, finite.

Remark 3. Note that the result about finite expected conver-
gence time is not directly implied by the constant regret result.
The proof of theorem 3 relies on the exponential nature of the
concentration bound, whereas it is possible to prove constant
expected regrets even for weaker concentration bounds [25].

B. Epoch-LPSM

The main drawback of the LPSM algorithm is that it is
computationally heavy as it solves one LP per time-slot. In
order to reduce the computation requirements, we propose the
Epoch-LPSM algorithm in algorithm 2. Epoch-LPSM solves
the LP in each of the first n0 slots, divides the later time
into several epochs and solves the LPs only at the beginning
of each epoch. The policy obtained by solving the LP at
the beginning of an epoch is followed for the remaining
slots in that epoch. We increase the length of these epochs
exponentially as time progresses and our confidence on the
obtained policy increases. In spite of solving much fewer
number of LPs, the regret of Epoch-LPSM is still bounded by
a constant. First, we obtain an upper bound on the number
of slots where the algorithm plays non-optimal policies in
theorem 4 and later use this result to bound the regret in
theorem 5.

Algorithm 2 Epoch-LPSM
1: Parameters: n0 ∈ N and η ∈ {2, 3, · · · }.
2: Initialization: k = 0, n = 0 and for all (s, a) pairs,
θ(s, a) = 0.

3: while n < n0 do
4: Follow LPSM algorithm to decide action an, update the

θ variables accordingly and increment n;
5: end while
6: while n ≥ n0 do
7: n = n+ 1;
8: if n = n0η

k then
9: k = k + 1;

10: Solve the LP from (10) with θ(s, a) in place of
unknown µ(s, a);

11: In terms of the LP solution π(n), define β(k)(s) =
arg max
a∈As

π(n)(s, a), ∀s ∈ S;

12: end if
13: Given the state sn, select the action β(k)(sn);
14: Update for all (s, a) pairs:

θ(s, a)← nθ(s, a) + f(s, a, xn)

n+ 1
;

15: end while

Theorem 4. The expected number of slots where non-optimal
policies are played by Epoch-LPSM is upper bounded by

1+(1+A)S

1− e
− 1

2

(
∆1
B0

)2
n0

e
1
2

(
∆1
B0

)2

− 1

+(η−1)(1+A)Sn0σn0,η,

(26)

where σn0,η =
∑∞
k=0 η

ke
− 1

2

(
∆1
B0

)2
n0η

k

<∞.

Proof: Note that epoch k starts at t = n0η
k−1 and end at

t = n0η
k − 1. The policy obtained at t = n0η

k−1 by solving
the LP is, therefore, played for (ηk−ηk−1)n0 number of slots.

Let us analyse the probability that the policy played during
epoch k is not optimal. Let that policy be β(k).

Pr{β(k) 6= β∗} = Pr{βn0ηk−1 6= β∗}
(a)

≤ (1 +A)Se
−2

(
∆1
2B0

)2
n0η

k−1

, (27)

where (a) holds for all k ≥ 1 as shown in the proof of theorem
1.

When the LP fails to obtain the optimal policy at the
beginning of an epoch, then all the slots in that epoch will play
the obtained non-optimal policy. Let N2 denote total number
of such slots. We get

N2 = 1 +

n0−1∑
t=1

I{βt 6= β∗}

+
∞∑
k=1

n0(ηk − ηk−1)I{β(k) 6= β∗}.

In expectation, we get

E[N2] = 1 +

n0−1∑
t=1

Pr{βt 6= β∗}

+

∞∑
k=1

n0(ηk − ηk−1) Pr{β(k) 6= β∗}

≤ 1 +

n0−1∑
t=1

(1 +A)Se
−2

(
∆1
2B0

)2
t

+

∞∑
k=1

n0(ηk − ηk−1)(1 +A)Se
−2

(
∆1
2B0

)2
n0η

k−1

≤ 1 + (1 +A)S

n0−1∑
t=1

e
− 1

2

(
∆1
B0

)2
t

+ n0(η − 1)(1 +A)S
∞∑
k=0

ηke
− 1

2

(
∆1
B0

)2
n0η

k

≤ 1 + (1 +A)Se
− 1

2

(
∆1
B0

)2 1− e
− 1

2

(
∆1
B0

)2
n0

1− e
− 1

2

(
∆1
B0

)2

+ n0(η − 1)(1 +A)Sσn0,η, (28)

where σn0,η <∞ holds due to ratio test for series convergence
as

lim
k→∞

∣∣∣∣∣∣η
k+1e

− 1
2

(
∆1
B0

)2
n0η

k+1

ηke
− 1

2

(
∆1
B0

)2
n0ηk

∣∣∣∣∣∣
= lim
k→∞

∣∣∣∣ηe
− 1

2

(
∆1
B0

)2
n0(ηk+1−ηk)

∣∣∣∣
= lim
k→∞

∣∣∣∣∣η
(

e
1
2

(
∆1
B0

)2
n0(η−1)

)−ηk ∣∣∣∣∣
= 0.
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Now we analyse the regret of Epoch-LPSM in the following
theorem.

Theorem 5. The total expected regret of the Epoch-LPSM
algorithm is upper bounded by1 + (1 +A)S

1− e
− 1

2

(
∆1
B0

)2
n0

e
1
2

(
∆1
B0

)2

− 1

( µmax

1− γ
+ ∆max

)
+ (η − 1)(1 +A)Sn0σn0,η∆max

+ (1 +A)S

( ∞∑
k=1

e
−2

(
∆1
2B0

)2
n0η

k−1

)
µmax

1− γ
. (29)

Proof: First we analyse the regret contribution from the
first n0 slots. As argued in the proof of theorem 2, the regret
contribution of the first n0 slots is upper bounded by1 + (1 +A)S

1− e
− 1

2

(
∆1
B0

)2
n0

e
1
2

(
∆1
B0

)2

− 1

( µmax

1− γ
+ ∆max

)
.

(30)
Now we analyse the number of phases where the optimal

policy is played in successive slots for t ≥ n0 . Note that any
two optimal phases are separated by at least one non-optimal
epoch. We bound the number of non-optimal epochs N3 as

E[N3] =

∞∑
k=1

Pr{β(k) 6= β∗}

≤ (1 +A)S

∞∑
k=1

e
−2

(
∆1
2B0

)2
n0η

k−1

(From equation (27))
< 0,

where the series
∑∞
k=1 e

−2
(

∆1
2B0

)2
n0η

k−1

converges due to
ratio test as

lim
k→∞

∣∣∣∣∣∣e
− 1

2

(
∆1
B0

)2
n0η

k+1

e
− 1

2

(
∆1
B0

)2
n0ηk

∣∣∣∣∣∣
= lim
k→∞

∣∣∣∣∣
(

e
1
2

(
∆1
B0

)2
n0(η−1)

)−ηk ∣∣∣∣∣ = 0.

Hence for t ≥ n0, there can be at most E[N3] number of
optimal phases in expectation. Since each of these phases can
contribute a maximum of (1−γ)−1µmax regret in expectation,
total regret from slots with optimal policies for t ≥ n0 is upper
bounded by E[N3]µmax

1−γ . Also, the expected number of slots
where a non-optimal policy is played for t ≥ n0 is bounded by
(η−1)(1 +A)Sn0σn0,η as derived in the proof of theorem 4.
The regret contribution of these slots is, therefore, bounded by
(η − 1)(1 + A)Sn0σn0,η∆max, since the maximum expected
regret incurred during any slot is ∆max.

The total expected regret of Epoch-LPSM is, therefore,
upper bounded by the expression (29).

Remark 4. Similar to the LPSM algorithm, the algorithm
presented above works for general reward functions f . Since
the rate function in the energy harvesting communications is

not dependent on the state, the Epoch-LPSM algorithm needs
to store only one θ variable per transmit power level and uses
O(A) storage overall. The regret upper bound from theorem
5 is also tightened to1 + (S +A)

1− e
− 1

2

(
∆1
B0

)2
n0

e
1
2

(
∆1
B0

)2

− 1

( µmax

1− γ
+ ∆max

)
+ (η − 1)(S +A)n0σn0,η∆max

+ (S +A)

( ∞∑
k=1

e
−2

(
∆1
2B0

)2
n0η

k−1

)
µmax

1− γ
.

(31)

C. Regret vs Computation Tradeoff
The LPSM algorithm solves T LPs in time T , whereas

the Epoch-LPSM algorithm solves n0 LPs in the initial n0

slots and dlogη(T − n0)e LPs when the time gets divided
into epochs. This drastic reduction in the required computation
comes at the cost of an increase in the regret for Epoch-LPSM.
It must, however, be noted that both the algorithms have
constant-bounded regrets. Also, increasing the value of the
parameter η in Epoch-LPSM leads to reduction in the number
of LPs to be solved over time by increasing the epoch lengths.
Any non-optimal policy found by LP, therefore, gets played
over longer epochs increasing the overall regret. Increasing
n0 increases the total number of LPs solved by the algorithm
while reducing the expected regret. The system designer can
analyse the regret bounds of these two algorithms and its own
performance requirements to choose the parameters n0 and
η for the system. We analyse the effect of variation of these
parameters on the regret performance of Epoch-LPSM through
numerical simulations in section VII.

V. MULTI-CHANNEL COMMUNICATION

In this section, we extend the energy harvesting communica-
tions problem to consider a system where there exists a set of
parallel channels, with unknown statistics, for communication
and one of these channels is to be selected in each slot. The
goal is to utilize the battery at the transmitter and maximize
the amount of data transmitted over time. Given a time-slotted
system, we assume that the agent is aware of the distribution
of energy arrival. The agent sees the current state of the battery
and needs to decide the transmit power-level and the channel
to be used for transmission. This problem, therefore, involves
an additional decision making layer compared to the single
channel case. Note that we use the terms transmit power and
action interchangeably in this section.

For this problem, we simplify the notations used previously
and drop the state as a parameter for the reward function f ,
since the rate is not a function of the battery state and only
depends on the transmit power-level and the channel gain.
These channels will, in general, have different distributions
of channel gains and there may not be a single channel that
is optimal for all transmit power-levels. The expected rate
achieved by selecting j-th channel from the set of M channels
and an action a corresponding the transmit power used is

µj(a) = EXj [f(a,Xj)], (32)
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where Xj denotes the random gain of j-th channel. Let us
define φ∗ : A → {1, 2 · · · ,M} as the mapping from transmit
power-levels to their corresponding optimal channels:

φ∗(a) = arg max
j∈{1,2··· ,M}

µj(a). (33)

A genie that knows the distributions of different channels gains
can figure out the optimal channel mapping φ∗. Once an action
a is chosen by the genie, there is no incentive to use any
channel other than φ∗(a) for transmission during that slot.
Let µ∗(a) denote the expected rate of the best channel for
action a, i.e. µ∗(a) = µφ∗(a)(a). The genie uses these values
to solve the following LP.

max
∑
s∈S

∑
a∈As

π(s, a)µ∗(a)

s.t. π(s, a) ≥ 0, ∀s ∈ S, a ∈ As,∑
s∈S

∑
a∈As

π(s, a) = 1,∑
a∈As′

π(s′, a) =
∑
s∈S

∑
a∈As

π(s, a)P (s′ | s, a), ∀s′ ∈ S.

(34)
The genie obtains β∗ : S → A, the optimal mapping from the
battery state to the transmit power-level using the non-zero
terms of the optimal stationary distribution π∗(s, a). Note that
the constraints of the optimization problem (34) ensure that
the stationary distribution actually corresponds to some valid
deterministic state-action mapping.

Let B be the set of all state-action mappings. There are only
a finite number of such mappings β ∈ B and the stationary
distribution only depends on the matrix of state transition
probabilities which is assumed to be known. We use πβ(s)
denote the stationary distribution corresponding to the state-
action mapping β. We dropped the action parameter from the
previous notation, since it is implicit from β. The expected
average reward of the power selection policy β along with a
channel selection policy φ is calculated as

ρ(β, φ,M) =
∑
s∈S

πβ(s)µφ(a)(a), (35)

where M denotes the matrix containing all µj(a) values for
power-channel pairs. For the genie under consideration, the
LP from (34) is equivalent to

β∗ = arg max
β∈B

ρ(β, φ∗,M). (36)

The expected average reward of the genie can, therefore, be
defined as ρ∗ = ρ(β∗, φ∗,M). Since the mean rate matrix
M is unknown to the agent, we propose an online learning
framework for this problem.

A. Online Learning Algorithm
Since the agent does not know the distributions of channel

gains, it needs to learn the rates for various power-channel
pairs, figure out φ∗ over time and use it to make decisions
about the transmit power-level at each slot. We propose an
online learning algorithm called Multi-Channel LPSM (MC-
LPSM) for this problem. We analyze the performance of MC-
LPSM in terms of the regret as defined in equation (9).

The MC-LPSM algorithm stores estimates of the rates
for all power-level and channel pairs based on the observed
values of the channel gains. Whenever the rate obtained is
revealed to the agent, it can infer the instantaneous gain of
the chosen channel knowing the transmit power-level. Once
the instantaneous gain of a channel is known, this information
can be used to update the sample-mean rate estimates of all
the power-levels for that channel. The algorithm divides time
into two interleaved sequences: an exploration sequence and
an exploitation sequence similar to the DSEE algorithm from
[9]. In the exploitation sequence, the agent uses its current esti-
mates of the rates to determine the transmit power and channel
selection policies. First it selects a channel for each power-
level that has the highest empirical rate for that transmit power.
The sample-mean rate estimates for these power-channel pairs
are, then, used to solve the LP from equation (34) with θ values
replacing the µ values and to obtain a power-selection policy
for that slot. In the exploration sequence, the agent selects all
channels in a round-robin fashion in order to learn the rates
over time and chooses the transmit power-levels arbitrarily.
The choice of the length of the exploration sequence balances
the tradeoff between exploration and exploitation.

Let R(t) denote the set of time indexes that are marked as
exploration slots up to time t. Let |R(t)| be the cardinality
of the set R(t). At any given time t, mj stores the number
of times j-th channel has been chosen during the exploration
sequence till that slot. Using these notations we present MC-
LPSM in algorithm 3. Note that MC-LPSM stores a θj(a)
variable for every action action-channel pair (a, j) and an mj

variable for every channel j. It, therefore, requires O(MA)
storage.

Note that the agent updates the θ variables only during the
exploration sequence when it tries different channels sequen-
tially. Since the θ variables do not change during exploitation,
the agent does not have to solve the LP in all exploitation slots.
During a phase of successive exploitation slots, the channel
and power selection policies obtained by solving the LPs
remain unchanged. The agent, therefore, needs to solve the
LP at time t only if the previous slot was an exploration slot.
Since there are at most |R(T )| exploration slots, MC-LPSM
solves at most |R(T )| number of LPs in T slots.

B. Regret Analysis of MC-LPSM

Let us first define the notations used in the regret analysis.
Since the agent is unaware of the matrix of expected rates M,
it stores the estimates of the expected rates in matrix Θ. We
define ρ(β, φ,Θ) according to equation (35) with the actual
mean values replaced by their corresponding estimates in Θ.
Let P∗ denote the transition probability matrix corresponding
to the optimal state-action mapping β∗. We further define:

γ = max
s,s′∈S

‖P∗(s′, ·)− P∗(s, ·)‖TV (38)

µmax = max
a∈A

µ∗(a) (39)

∆max = ρ∗ − min
a∈A, j∈{1,2,··· ,M}

µj(a) (40)

∆3 = min
a∈A, j 6=φ∗(a)

{µ∗(a)− µj(a)} (41)
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Algorithm 3 MC-LPSM

1: Parameters: w >
2B2

0

d2 .
2: Initialization: For all a ∈ A and j ∈ {1, 2, · · · ,M},
θj(a) = 0. Also mj = 0 for all channels j and n = 0.

3: while n < T do
4: n = n+ 1;
5: if n ∈ R(T ) then
6: // Exploration sequence
7: Choose channel j = ((n− 1) mod M) + 1 and any

valid power-level as action a;
8: Update θj(a) variables for all actions a ∈ A for the

chosen channel j:

θj(a)← mjθj(a) + f(a, xn)

mj + 1
,

mj ← mj + 1; (37)

9: else
10: // Exploitation sequence
11: if n− 1 ∈ R(T ) then
12: Define a channel mapping φ, such that φ(a) =

max
j
θj(a);

13: Solve the LP from (34) with θφ(a)(a) instead
of unknown µ∗(a) for all valid state-action pairs
(s, a);

14: In terms of the LP solution π(n), define β(s) =
arg max
a∈As

π(n)(s, a), ∀s ∈ S;

15: end if
16: Given the state sn, select the power-level an = β(sn)

as action for transmission over channel φ(an);
17: end if
18: end while

∆4 = ρ∗ − max
β 6=β∗

ρ(β, φ∗,M) (42)

B0 = sup
x∈X

f(a, x)− inf
x∈X

f(a, x). (43)

In terms of these notations, we provide an upper bound on the
regret of MC-LPSM as follows.

Theorem 6. Given a constant d ≤ min{∆3,∆4}, choose
a constant w >

2B2
0

d2 . Construct an exploration sequence
sequentially as follows:

1) |R(1)| < {1},
2) For any t > 1, include t in R(t) iff |R(t − 1)| <

Mdw ln te.
Under this exploration sequence R, the T -slot expected

regret of MC-LPSM algorithm is upper bounded by(
Mdw lnT e+ 2AMc

(wd
2

2B2
0

)

)(
∆max +

µmax

1− γ

)
, (44)

where c(x) =
∑∞
t=1 t

−x <∞ for x > 1.

Proof: In order to upper bound the regret of the MC-
LPSM algorithm, we analyze the number of time-slots where
the agent plays policy combinations other than (β∗, φ∗). Such
a failure event at time t corresponds to at least one of the
following cases

1) t ∈ R, i.e. the exploration of different channels,
2) φt 6= φ∗ during exploitation,
3) βt 6= β∗ during exploitation.
Let N4(T ) be the total number of exploitation slots where

MC-LPSM fails to find the optimal power-channel mapping
φ∗ or the optimal state-action mapping β∗ up to time T . Let
us define events E1,t = {φt 6= φ∗} and E2,t = {βt 6= β∗}.
Now N4(T ) can be expressed as

N4(T ) =
∑

t/∈R,t≤T

I{E1,t ∪ E2,t}

=
∑

t/∈R,t≤T

(
I{E1,t}+ I{E2,t ∩ E1,t}

)
. (45)

We analyse the two events separately and upper bound their
probabilities.

1) Non-Optimal Power-Channel Mapping: We use θ∗t (a)
to denote θφ∗(a),t(a) for all action a. The probability of the
event E1,t can be bounded as

Pr{φt 6= φ∗} = Pr {For at least one action a ∈ A such that:
φt(a) 6= φ∗(a)}

≤
∑
a∈A

Pr{φt(a) 6= φ∗(a)}

≤
∑
a∈A

Pr {For at least one channel j 6= φ∗(a):

θj,t(a) ≥ θ∗t (a)}

=
∑
a∈A

∑
j 6=φ∗(a)

Pr{θj,t(a) ≥ θ∗t (a)}. (46)

In order for the condition θj,t(a) ≥ θ∗t (a) to hold, at least one
of the following must hold:

θj,t(a) ≥ µj(a) +
∆3

2
(47)

θ∗t (a) ≤ µ∗(a)− ∆3

2
(48)

µ∗(a) < µj(a) + ∆3. (49)

Note that condition (49) cannot hold due to the definition
of ∆3. Hence we upper bound the the probabilities of the
other two events. The construction of the exploration sequence
guarantees that at t /∈ R each channel has been explored at
least dw ln te times. Since B0 upper bounds the maximum
deviation in the range of rate values over channels, we
bound the probability for the event from condition (47) using
Hoeffding’s inequality as

Pr

{
θj,t(a) ≥ µj(a) +

∆3

2

}
≤ e−

1
2 (

∆3
B0

)2dw ln te

≤ e−
1
2 (

∆3
B0

)2w ln t

≤ t−
w
2 (

∆3
B0

)2

. (50)

Using the Hoeffding’s inequality again for the condition (48),
we similarly obtain

Pr

{
θ∗t (a) ≤ µ∗(a)− ∆3

2

}
≤ t−

w
2 (

∆3
B0

)2

. (51)
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We can, therefore, express the upper bound from equation (46)
as

Pr{φt 6= φ∗} ≤
∑
a∈A

∑
j 6=φ∗(a)

(
Pr

{
θj,t(a) ≥ µj(a) +

∆3

2

}

+ Pr

{
θ∗t (a) ≤ µ∗(a)− ∆3

2

})
≤
∑
a∈A

∑
j 6=φ∗(a)

2t−
w
2 (

∆3
B0

)2

≤ 2A(M − 1)t−
w
2 (

∆3
B0

)2

. (52)

2) Non-Optimal State-Action Mapping: We analyse the
event E2,t ∩ E1,t where the LP fails to find the optimal state-
action mapping β∗ in spite of having found the optimal power-
channel mapping φ∗.

Pr{E2,t ∩ E1,t} = Pr{βt 6= βt;φt = φ∗}
= Pr {ρ(β∗, φ∗,Θt) ≤ ρ(βt, φ

∗,Θt)} . (53)

For ρ(β∗, φ∗,Θt) ≤ ρ(βt, φ
∗,Θt) to hold, at least one of the

following must hold:

ρ(β∗, φ∗,Θt) ≤ ρ(β∗, φ∗,M)− ∆4

2
(54)

ρ(βt, φ
∗,Θt) ≥ ρ(βt, φ

∗,M) +
∆4

2
(55)

ρ(β∗, φ∗,M) < ρ(βt, φ
∗,M) + ∆4. (56)

The condition from equation (56) cannot hold due to the def-
inition of ∆4. We use the techniques from equations (17) and
(18) in the proof theorem 1 to upper bound the probabilities
of the events of equations (54) and (55) as

Pr

{
ρ(β∗, φ∗,Θt) ≤ ρ(β∗, φ∗,M)− ∆4

2

}
≤ min{S,A}e−

1
2 (

∆4
B0

)2dw ln te

≤ At−
w
2 (

∆4
B0

)2

(57)

Pr

{
ρ(βt, φ

∗,Θt) ≥ ρ(βt, φ
∗,M) +

∆4

2

}
≤ Ae−

1
2 (

∆4
B0

)2dw ln te

≤ At−
w
2 (

∆4
B0

)2

. (58)

Note that these concentration bounds are different from the
single channel case, as the number of observations leading to
θt is only dw ln te in contrast to t observations for the single
channel. Now we update the upper bound from equation (53)
as

Pr{E2,t ∩ E1,t} ≤ Pr

{
ρ(β∗, φ∗,Θt) ≤ ρ(β∗, φ∗,M)− ∆4

2

}
+ Pr

{
ρ(βt, φ

∗,Θt) ≥ ρ(βt, φ
∗,M) +

∆4

2

}
≤ 2At−

w
2 (

∆4
B0

)2

. (59)

The expected number of exploitation slots, where non-
optimal power and channel selection decisions are made

E[N4(T )], can be bounded using equations (52) and (59) as

E[N4(T )] ≤
T∑
t=1

(
Pr{E1,t}+ Pr{E2,t ∩ E1,t}

)
≤

T∑
t=1

(
2A(M − 1)t−

w
2 (

∆3
B0

)2

+ 2At−
w
2 (

∆4
B0

)2
)

≤ 2AM
T∑
t=1

t−
w
2 ( d

B0
)2

≤ 2AMc
(wd

2

2B2
0

)
, (60)

where d ≤ min{∆3,∆4}. Since w >
2B2

0

d2 , the upper
bound from equation (60) holds. The expected number of
slots, where non-optimal decisions are made including ex-
ploration and exploitation sequences, is upper bounded by
Mdw lnT e + 2AMc

(wd
2

2B2
0

)
. This implies that there can at

most be Mdw lnT e+ 2AMc
(wd

2

2B2
0

)
phases where the optimal

policies are played in succession, since any two optimal phases
must have at least one non-optimal slot in between. The total
expected regret of any optimal phase is bounded by µmax

1−γ
and the expected regret incurred during a non-optimal slot
is bounded by ∆max. The total expected T -slot regret of
the MC-LPSM algorithm is, therefore, upper bounded by the
expression (44).

Note that the length of the exploration sequence specified
in theorem 6 scales logarithmically in time. The MC-LPSM
algorithm using this exploration sequence, therefore, solves
O(lnT ) number of LPs in T slots, similar in order to the
single channel Epoch-LPSM algorithm.

It must be noted that the logarithmic order regret is achiev-
able by MC-LPSM if we know d, a lower bound on ∆3 and
∆4. This is required in order to define a constant w that
leads to the series convergence in the regret proof. If no such
knowledge is available, the exploration sequence needs to be
expanded in order to achieve a regret that is arbitrarily close
to the logarithmic order, similar to the DSEE techniques from
[9]. The regret result for such an exploration sequence is as
follows:

Theorem 7 (Theorem 2 from [9]). Let g be any positive,
monotonically non-decreasing sequence with g(t) → ∞ as
t → ∞. Construct an exploration sequence as follows: for
any t > 1, include t in R iff |R(t − 1)| < Mdg(t) ln te.
Under this exploration sequence R, the T -slot expected regret
of MC-LPSM algorithm is O(g(T ) lnT ).

While this regret is not logarithmic in time, one can ap-
proach arbitrarily close to the logarithmic order by reducing
the diverging rate of g(t). With this construction of the explo-
ration sequence, the MC-LPSM algorithm solves O(g(T ) lnT )
number of LPs in time T .

C. Asymptotic Lower Bound

In the multi-channel scenario, there exist one or more
channels that are optimal for some transmit power levels with
non-zero stationary probability. For every optimal channel j,
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there exists some state s ∈ S such that φ∗(β∗(s)) = j. There
may also exist arms that are either not optimal for any transmit
power level or are optimal for power levels that have zero
stationary probability. We now present an asymptotic lower-
bound on regret of any algorithm for the multi-channel energy
harvesting communications problem under certain conditions.
To prove the regret bound, we first present a lower bound
on the number of plays of the non-optimal channels for any
algorithm. Our analysis is based on the asymptotic lower
bound on the regret of the standard MAB problem by Lai
and Robbins [12]. This MAB regret lower bound applies to
the settings where the arm-distributions are characterized by
a single parameter. This result was extended by Burnetas and
Katehakis to distributions indexed by multiple parameters in
[26]. In our analysis, however, we restrict ourselves to the
single parameter channel-gain distributions.

Let the gain distribution of each channel be expressed
by its density function g(x;ψ) with respect to some mea-
sure ν , where the density function g(·; ·) is known and
ψ is an unknown parameter from some set Ψ. Although
we consider continuous distributions here, the analysis also
holds for discrete distributions where probability mass function
replaces the density and the summations replace the integrals.
Corresponding to a valid transmit power a and parameter
ψ ∈ Ψ, we define the expected rate as

µ(a;ψ) =

∫
x∈X

f(a, x)g(x;ψ)dν(x). (61)

Let I(ψ,ψ′) denote the Kullback-Leibler distance defined as

I(ψ,ψ′) =

∫
x∈X

[
ln

(
g(x;ψ)

g(x;ψ′)

)]
g(x;ψ)dν(x). (62)

We now make following assumptions about the density and
the parameter set under consideration.

A1 Existence of mean: µ(a;ψ) < ∞ exists for any ψ ∈ Ψ
and a ∈ A.

A2 Denseness of Ψ: ∀ψ ∈ Ψ, ∀a ∈ A and ∀δ > 0, ∃ψ′ ∈ Ψ
such that µ(a;ψ) < µ(a;ψ′) < µ(a;ψ) + δ.

A3 Positivity of distance: 0 < I(ψ,ψ′) < ∞ whenever
µ(a;ψ) < µ(a;ψ′) for some a ∈ A.

A4 Continuity of I(ψ,ψ′): ∀ε > 0, ∀a ∈ A and ∀ψ,ψ′ ∈ Ψ
such that µ(a;ψ) < µ(a;ψ′), ∃δ = δ(a, ε, ψ, ψ′) > 0
for which |I(ψ,ψ′)−I(ψ,ψ′′)| < ε whenever µ(a;ψ′) <
µ(a;ψ′′) < µ(a;ψ′) + δ.

For channel gain distributions satisfying these conditions, we
present a lower bound on the number of plays of a non-optimal
arm based on the techniques from [12].

Theorem 8. Assume that the density and the parameter set
satisfy assumptions A1-A4. Let ψ = (ψ1, ψ2, · · · , ψM ) be
a valid parameter vector characterizing the distributions of
the M channels, Pψ and Eψ be the probability measure and
expectation under ψ. Let L be any allocation rule that satisfies
for every ψ as T →∞, RL(T ) = o(T b) for every b > 0 over
an MDP M. Let Ni(T ) denote the number of plays of i-th
channel up to time T by the rule L, and Oψ the index set of
the optimal channels under the parameter vector ψ. Then for

every channel i ∈ Oψ ,

lim inf
T→∞

Eψ
[
Ni(T )

lnT

]
≥ max
j∈Oψ

1

I(ψi, ψj)
. (63)

Proof: Without the loss of generality, we assume that
1 ∈ Oψ and 2 ∈ Oψ for the parameter vector ψ. This means
that ∃a ∈ A such that µ(a;ψ2) > µ(a;ψ1) and µ(a;ψ2) ≥
µ(a;ψj) for 3 ≤ j ≤M . Fix any 0 < δ < 1. By assumptions
A2 and A4, we can choose σ ∈ Ψ such that

µ(a;σ) > µ(a;ψ2) & |I(ψ1, σ)− I(ψ1, ψ2)| < δI(ψ1, ψ2).
(64)

Let us define a new parameter vector σ = (σ, ψ2, · · · , ψM )
such that under σ, 1 ∈ Oσ . The basic argument is that any
algorithm incurring regrets of order o(T b) for every b > 0
must play every channel a minimum number of times to be
able to distinguish between the cases ψ and σ.

Let Ni,j(T ) denote the number of times the i-th channel
has been played up to time T with power levels for which
j-th channel was the optimal channel. We, therefore, have
Ni(T ) =

∑M
j=1Ni,j(T ) where Ni,j(T ) ≥ 0 for all (i, j)

pairs. We define Ti(T ) as the number of plays of the power
levels for which i-th channel is optimal up to time T . This
implies that the allocation rule L plays channels other than
the i-th channel for Ti(T ) −Ni,i(T ) number of times where
they were non-optimal. Fix 0 < b < δ. Since RL(T ) = o(T b)
as T →∞, we have Eσ[Nj,i(T )] = o(T b) when i 6= j. Hence
for distributions parametrized by σ, we have

Eσ[T1(T )−N1,1(T )] =
∑
j 6=1

Eσ[Nj,1(T )] = o(T b). (65)

We define a stationary distribution over channel plays under
the optimal power selection policy for the MDP as

πj =
∑
s∈S

∑
a∈A, β∗(a)=j

π∗(s, a). (66)

Note that the optimal policies φ∗ and β∗ are dependent on
the choice of the parameter vector characterizing the channels
and so is πj . For channels j ∈ Oσ , πj > 0 under σ. Since
RL(T ) = o(T b) asymptotically, we have Eσ[|π1T−T1(T )|] =
o(T b) as T →∞. Fix 0 < c < 1. We have

Pσ {T1(T ) ≤ (1− c)π1T}
= Pσ {π1T − T1(T ) ≥ cπ1T}
≤ Pσ {|π1T − T1(T )| ≥ cπ1T}

≤ Eσ[|π1T − T1(T )|]
cπ1T

(Markov’s Inequality)

= o(T b−1). (67)

We consider another event:

Pσ
{
N1,1(T ) < (1− δ) lnT

I(ψ1, σ)
;T1(T ) ≥ (1− c)π1T

}
≤ Pσ

{
T1(T )−N1,1(T ) ≥ T1(T )− (1− δ) lnT

I(ψ1, σ)
;

T1(T ) ≥ (1− c)π1T
}

≤ Pσ
{
T1(T )−N1,1(T ) ≥ (1− c)π1T − (1− δ) lnT

I(ψ1, σ)
;
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T1(T ) ≥ (1− c)π1T
}

≤ Pσ
{
T1(T )−N1,1(T ) ≥ (1− c)π1T − (1− δ) lnT

I(ψ1, σ)

}
≤ Eσ[T1(T )−N1,1(T )]

(1− c)π1T −O(lnT )
(Markov’s Inequality)

= o(T b−1). (68)

For the event Pσ
{
N1(T ) < (1− δ) lnT

I(ψ1,σ)

}
, we have

Pσ
{
N1(T ) < (1− δ) lnT

I(ψ1, σ)

}
≤ Pσ

{
N1,1(T ) < (1− δ) lnT

I(ψ1, σ)

}
≤ Pσ {T1(T ) ≤ (1− c)π1T}

+ Pσ
{
N1,1(T ) < (1− δ) lnT

I(ψ1, σ)
;T1(T ) ≥ (1− c)π1T

}
= o(T b−1). (69)

Note that the allocation rule L only knows the channel
gain realizations of the arms it has played, it does not have
the exact distributional knowledge. Let Y1, Y2, · · · denote the
successive realizations of the 1-st channel’s gains. We define
Lm =

∑m
k=1 ln g(Yk;ψ1)

g(Yk;σ) and an event ET as

ET =

{
N1(T ) < (1− δ) lnT

I(ψ1, σ)
;LN1(T ) ≤ (1− b) lnT

}
.

(70)

From the inequality in (69), we have

Pσ {ET } = o(T b−1). (71)

Note the following relationship

Pσ {N1(T ) = n1, · · · , NM (T ) = nM ;Ln1 ≤ (1− b) lnT}

=

∫
{N1(T )=n1,··· ,NM (T )=nM ;Ln1

≤(1−b) lnT}

n1∏
k=1

g(Yk;σ)

g(Yk;ψ1)
dPψ

=

∫
{N1(T )=n1,··· ,NM (T )=nM ;Ln1

≤(1−b) lnT}
e−Ln1dPψ

≥ e−(1−b) lnTPψ {N1(T ) = n1, · · · , NM (T ) = nM ;

Ln1
≤ (1− b) lnT}

= T−(1−b)Pψ {N1(T ) = n1, · · · , NM (T ) = nM ;

Ln1
≤ (1− b) lnT} . (72)

This result rests on the assumption that the allocation
rule L can only depend on the channel gain
realizations it has observed by playing and possibly
on some internal randomization in the rule. Note
that ET is a disjoint union of the events of the form
{N1(T ) = n1, · · · , NM (T ) = nM and Ln1 ≤ (1− b) lnT}
with n1 + · · · + nM = T and n1 < (1 − δ) lnT

I(ψ1,σ) . It now
follows from equations (71) and (72) that as T →∞:

Pψ {ET } ≤ T 1−bPσ {ET } → 0. (73)

By the strong law of large numbers, Lm
m → I(ψ1, σ) > 0

and max
k≤m

Lk
m → I(ψ1, σ) almost surely under Pψ . Since 1−b >

1− δ, it follows that as T →∞:

Pψ
{
Lk > (1− b) lnT for some k < (1− δ) lnT

I(ψ1, σ)

}
→ 0.

(74)

From equations (73) and (74), we conclude that

lim
T→∞

Pψ
{
N1(T ) <

(1− δ) lnT

I(ψ1, σ)

}
= 0.

In other words,

lim
T→∞

Pψ
{
N1(T ) <

(1− δ) lnT

(1 + δ)I(ψ1, ψ2)

}
= 0.

This implies that

lim inf
T→∞

Eψ
[
N1(T )

lnT

]
≥ 1

I(ψ1, ψ2)
. (75)

Note that we only considered one optimal arm above.
Results like equation (75) hold for all optimal arms. By
combining the lower bounds for a fixed non-optimal arm, we
get the result in equation (63).

Theorem 9. Assume that the density and the parameter set
satisfy assumptions A1-A4. Let ψ denote the parameter vector
whose j-th entry is ψj and O denote the index set of optimal
channels. Let L be any allocation rule that satisfies for every
ψ as T →∞, RL(T ) = o(T b) for every b > 0 over an MDP
M. Then the regret of L satisfies

lim inf
T→∞

RL(T )

lnT
≥ ∆3

∑
i∈O

(
max
j∈O

1

I(ψi, ψj)

)
. (76)

Proof: Define a hypothetical allocation L′ based on L
such that whenever L plays a non-optimal channel for some
power level during its execution, L′ plays the optimal channel
corresponding to the same power level. It follows L in rest of
the slots. If N ′ denotes the count variables corresponding to
L′, then for i ∈ O we have N ′i(T ) = 0 and for j ∈ O we
have

N ′j(T ) = Nj(T ) +
∑
i∈O

Ni,j(T ). (77)

According to equation (41), ∆3 is the minimum expected
gap between the optimal rate of any power level and the rate
for any other channel at that power. Using ∆3, we relate the
regrets of L and L′ as

RL(T ) ≥ RL′(T ) + E

∑
i∈O

Ni(T )

∆3

≥ ∆3

∑
i∈O

E [Ni(T )] . (78)

Using theorem 8, we get the equation (76).
Theorem 9 implies that when the gain distributions char-

acterized by a single parameter for each channel and follow
assumptions A1-A4, any algorithm with R(T ) = o(T b) for
every b > 0 must play the non-optimal channels at least
Ω(lnT ) times asymptotically. In the presence of non-optimal
channels, an asymptotic regret of Ω(lnT ) is inevitable for any
algorithm. Hence we conclude that our MC-LPSM algorithm
is asymptotically order optimal when the system contains non-
optimal channels.
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Fig. 2. Packet scheduling over a wireless channel

VI. COST MINIMIZATION PROBLEMS

We have considered reward maximization problems for
describing our online learning framework. This framework
can also be applied to average cost minimization problems
in packet scheduling with power-delay tradeoff as shown in
figure 2. We describe this motivating example and the minor
changes required in our algorithms.

Consider a time-slotted communication system where a
sender sends data packets to a receiver over a stochastically
varying channel with unknown distribution. Such a communi-
cation system has been studied previously in [27] assuming
the channel to be non-stochastically varying over time. In
our setting, the arrival of data packets is also stochastic with
a known distribution. The sender can send multiple packets
at a higher cost, or can defer some for latter slots while
incurring a fixed delay penalty per packet for every time-slot
it spends in the sender’s queue. Let Qt denote the number of
packets in the queue at time t and rt(≤ Qt) be the number
of packets transmitted by the sender during the slot. Hence,
Qt − rt number of packets get delayed. The sender’s queue
gets updated as

Qt+1 = min{Qt − rt + bt, Qmax}, (79)

where bt is the number of new packet arrivals in t-th slot and
Qmax is the maximum queue size possible. Since the data-rate
is modelled according to equation (1), the power cost incurred
during the t-th slot by transmitting rt packets over the channel
becomes wpXt2

rt/B , where wp is a constant known to the
sender and Xt is the instantaneous channel gain-to-noise ratio
that is assumed to be i.i.d. over time. Assuming wd as the unit
delay penalty, during the slot the sender incurs an effective cost

Ct = wd(Qt − rt) + wpXt2
rt/B . (80)

This problem also represents an MDP where the queue size is
the state and the number of packets transmitted is the action
taken. The goal of this problem is to schedule transmissions
rt sequentially and minimize the expected average cost over
time

lim
T→∞

1

T
E

[
T∑
t=1

Ct

]
. (81)

Note that the cost from equation (80) used in this scenario
is also a function of the state unlike the problem of energy
harvesting communications.

The presented algorithms LPSM and Epoch-LPSM also
apply to cost minimization problems with minor changes. If
ρ(β,M) denotes the average expected cost of the policy β,
then ρ∗ = minβ∈B ρ(β,M). Using this optimal mean cost as
the benchmark, we define the cumulative regret of a learning
algorithm after T time-slots as

R(T ) := E

[
T−1∑
t=0

Ct

]
− Tρ∗. (82)

In order to minimize the regret for this problem, the LP
from (10) needs to be changed from a maximization LP to
a minimization LP. With these changes to the algorithms, all
the theoretical guarantees still hold with the constants defined
accordingly.

VII. NUMERICAL SIMULATIONS

We perform simulations for the power allocation problem
with S = {0, 1, 2, 3, 4} and A = {0, 1, 2, 3, 4}. Note that each
state st corresponds to Qt from equation (2) with Qmax = 4
and at corresponds to the transmit power qt from equation
(1). The reward function is the rate function from equation
(1) and the channel gain is a scaled Bernoulli random variable
with Pr{X = 10} = 0.2 and Pr{X = 0} = 0.8. The
valid actions As and the optimal action β∗(s) for each state
s are shown in table I. We use CVXPY [24] for solving
the LPs in our algorithms. For the simulations in figure 3,
we use n0 = 2 and η = 10, and plot the average regret
performance over 103 independent runs of different algorithms
along with their corresponding regret upper bounds. Here,
the naive policy never uses the battery, i.e. it uses all the
arriving power for the current transmission. Playing such a
fixed non-optimal policy causes linearly growing regret over
time. Note that the optimal policy also incurs a regret because
of the corresponding Markov chain not being at stationarity.
We observe that LPSM follows the performance of the optimal
policy with the difference in regret stemming from the first
few time-slots when the channel statistics are not properly
learnt and thus LPSM fails to find the optimal policy. As the
time progresses, LPSM finds the optimal policy and its regret
follows the regret pattern of the optimal policy. In Epoch-
LPSM with n0 = 2 and η = 10, the agent solves the LP at
t = 1 and t = 2. Its LP solution at t = 2 is followed for
the first epoch and thus the regret grows linearly till t = 19.
At t = 20, a new LP is solved which often leads to the
optimal policy and the regret contribution from latter slots,
therefore, follows the regret of the optimal policy. It must be
noted that Epoch-LPSM solves only 3 LPs during these slots,
while LPSM solves 99 LPs. Epoch-LPSM, therefore, reduces
the computational requirements substantially while incurring
a slightly higher cumulative regret.

In figure 4, we plot the average regret performance over 104

independent runs of Epoch-LPSM for the previous system with
different n0 and η value pairs. As the value of η increases for
a fixed n0, the length of the epochs increases and thus the
potential non-optimal policies are followed for longer epochs.
Larger the value of n0, better are the policies played in the
initial slots where the agent solves the LP at each time. These
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Fig. 3. Regret performance of LPSM algorithms.
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Fig. 4. Effect of the parameters n0 and η on the regret of Epoch-LPSM.

intuitions are consistent with figure 4, where Epoch-LPSM
with n0 = 6 and η = 2 has the lowest regret and the one
with n0 = 2 and η = 6 has the highest of the lot. We see the
regret vs computation tradeoff in action, as the decrease in
computation by increasing η or decreasing n0 leads to larger
regrets. We observe that η has more impact on the regret
than n0. Notice that there are changes in the regret trends
of Epoch-LPSM at t = n0η

m for small m, because these are
the slots where a new LP is solved by MC-LPSM. Once the
optimal policy is found by the algorithm, its regret in latter
slots follows the trend of the optimal policy.

In figure 5, we plot the regret performance of MC-LPSM
for a system with 2 communication channels. The channels
are scaled Bernoulli random variables where the gain of the
first follows Pr{X = 10} = 0.5 and Pr{X = 0} = 0.5,
while that of the other follows Pr{X = 22} = 0.4 and
Pr{X = 0} = 0.6. The optimal actions selection policy is
same as the previous case, while the optimal mapping of
transmit-power to the channels is φ∗(1) = 2, φ∗(2) = 2,
φ∗(3) = 1 and φ∗(4) = 1. For MC-LPSM, we set w = 300
and plot the regret divided by the logarithm of the time index,
averaged over 100 realizations, in figure 5. We notice that
whenever the exploration slots are densely packed, the regret
grows linearly as non-optimal policies are potentially played

TABLE I
ACTIONS FOR EACH STATE

s As β∗(s)
0 {0} 0
1 {1} 1
2 {1, 2} 1
3 {1, 2, 3} 2
4 {1, 2, 3, 4} 3
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Fig. 5. Regret performance of the MC-LPSM algorithm.

during exploration. As the exploration need gets satisfied over
time, the agent solves the LP based on its rate estimates
from exploration phases and the regret contribution from
the exploitation remains bounded. The regret divided by the
logarithm of time saturates, as expected, to a constant value
smaller than the asymptotic upper bound of the regret.

VIII. CONCLUSION

We have considered the problem of power allocation over
a stochastically varying channel with unknown distribution in
an energy harvesting communication system. We have cast
this problem as an online learning problem over an MDP. If
the transition probabilities and the mean rewards associated
with the MDP are known, the optimal policy maximizing
the average expected reward over time can be determined by
solving an LP specified in the paper. Since the agent is only
assumed to know the distribution of the harvested energy,
it needs to learn the rewards of the state-action pairs over
time and make its decisions based on the learnt behaviour.
For this problem, we have proposed two online learning
algorithms: LPSM and Epoch-LPSM, which both solve the
LP using the sample mean estimates of the rewards instead
of the unknown mean rewards. The LPSM algorithm solves
the LP at each time-slot using the updated estimates, while
the Epoch-LPSM only solves the LP at certain pre-defined
time-slots parametrized by n0 and η and thus, saves a lot of
computation at the cost of an increased regret. We have shown
that the regrets incurred by both these algorithms are bounded
from above by constants. The system designers can, therefore,
analyze the regret versus computation tradeoff and tune the
parameters n0 and η based on their performance requirements.
Through the numerical simulations, we have shown that the
regret of LPSM is very close to that of the optimal policy. We
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have also analyzed the effect of the parameters n0 and η on
the regret the Epoch-LPSM algorithm which approaches the
regret of the optimal policy for small η values and large n0.

For the case of multiple channels, there is an extra layer of
decision making to select a channel for transmission in each
slot. For this problem, we have extended our approach and
proposed the MC-LPSM algorithm. MC-LPSM separates the
exploration of different channels to learn their rates from the
exploitation where these rate-estimates of different channels
for different channels are used to obtain a power selection
policy and a channel selection policy in each slot. We have
proved a regret upper bound that scales logarithmically in
time and linearly in the number of channels. We have also
shown that the total computational requirement of MC-LPSM
also scales similarly. In order to show the asymptotic order
optimality of our MC-LPSM algorithm, we have proved an
asymptotic regret lower bound of Ω(lnT ) for any algorithm
under certain conditions. In this paper, we have considered
uniform exploration of different channels in MC-LPSM. Ana-
lyzing upper confidence bound algorithms, where exploration
of different channels gets tuned to their performance, remains
a future work.

While we have considered the reward maximization prob-
lem in energy harvesting communications for our analysis,
we have shown that these algorithms also work for the
cost minimization problems in packet scheduling with minor
changes.

APPENDIX A
TECHNICAL LEMMAS

Lemma 1 (Hoeffding’s Concentration Inequality from [28]).
Let Y1, ..., Yn be i.i.d. random variables with mean µ and

range [0, 1]. Let Sn =
n∑
t=1

Yt. Then for all α ≥ 0

Pr{Sn ≥ nµ+ α} ≤ e−2α2/n

Pr{Sn ≤ nµ− α} ≤ e−2α2/n.

APPENDIX B
ANALYSIS OF MARKOV CHAIN MIXING

We briefly introduce the tools required for the analysis
of Markov chain mixing (see [29], chapter 4 for a detailed
discussion). The total variation (TV) distance between two
probability distributions φ and φ′ on sample space Ω is defined
by

‖φ− φ′‖TV = max
E⊂Ω
|φ(E)− φ′(E)|. (83)

Intuitively, it means the TV distance between φ and φ′ is
the maximum difference between the probabilities of a single
event by the two distributions. The TV distance is related to
the L1 distance as follows

‖φ− φ′‖TV =
1

2

∑
ω∈Ω

|φ(ω)− φ′(ω)|. (84)

We wish to bound the maximal distance between the station-
ary distribution π and the distribution over states after t steps
of a Markov chain. Let P (t) be the t-step transition matrix

with P (t)(s, s′) being the transition probability from state s
to s′ of the Markov chain in t steps and P be the collection of
all probability distributions on Ω. Also let P (t)(s, ·) be the row
or distribution corresponding to the initial state of s. Based on
these notations, we define a couple of useful t-step distances
as follows:

d(t) := max
s∈S
‖π − P (t)(s, ·)‖TV

= sup
φ∈P
‖π − φP (t)‖TV, (85)

d̂(t) := max
s,s′∈S

‖P (t)(s′, ·)− P (t)(s, ·)‖TV

= sup
φ′,φ∈P

‖φ′P (t) − φP (t)‖TV. (86)

For irreducible and aperiodic Markov chains, the distances
d(t) and d̂(t) have following special properties:

Lemma 2 ([29], lemma 4.11). For all t > 0, d(t) ≤ d̂(t) ≤
2d(t).

Lemma 3 ([29], lemma 4.12). The function d̂ is sub-
multiplicative: d̂(t1 + t2) ≤ d̂(t1)d̂(t2).

These lemmas lead to following useful corollary:

Corollary 1. For all t ≥ 0, d(t) ≤ d̂(1)t.

Consider an MDP with optimal stationary policy β∗. Since
the MDP might not start at the stationary distribution π∗

corresponding to the optimal policy, even the optimal policy
incurs some regret as defined in equation (9). We characterize
this regret in the following theorem. Note that this regret bound
is independent of the initial distribution over the states.

Theorem 10 (Regret of Optimal Policy). For an ergodic
MDP, the total expected regret of the optimal stationary policy
with transition probability matrix P∗ is upper bounded by
(1−γ)−1µmax, where γ = max

s,s′∈S
‖P∗(s′, ·)−P∗(s, ·)‖TV and

µmax = max
s∈S,a∈A

µ(s, a).

Proof: Let φ0 be the initial distribution over states and
φt = φ0P

(t)
∗ be such distribution at time t represented as

a row vectors. Also, let µ∗ be a row vector with the entry
corresponding to state s being µ(s, β∗(s)). We use d∗(t) and
d̂∗(t) to denote the t-step distances from equations (85) and
(86) for the optimal policy. Ergodicity of the MDP ensures
that the Markov chain corresponding to the optimal policy is
irreducible and aperiodic, and thus lemmas 2 and 3 hold. The
regret of the optimal policy, therefore, gets simplified as:

R∗(φ0, T ) = Tρ∗ −
T−1∑
t=0

φt · µ∗

= T (π∗ · µ∗)−
T−1∑
t=0

φt · µ∗

=
T−1∑
t=0

(π∗ − φt) · µ∗

≤
T−1∑
t=0

(π∗ − φt)+ · µ∗

(Negative entries ignored)



0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2773526, IEEE
Transactions on Information Theory

18

=
T−1∑
t=0

∑
s∈S

(π∗(s)− φt(s))+µ
∗(s)

≤ µmax

T−1∑
t=0

∑
s∈S

(π∗(s)− φt(s))+

= µmax

T−1∑
t=0

‖π∗ − φ0P
(t)
∗ ‖TV

≤ µmax

T−1∑
t=0

d∗(t)

≤ µmax

T−1∑
t=0

(
d̂∗(1)

)t
(From corollary 1)

= µmax

T−1∑
t=0

γt

≤ µmax
1

1− γ
.

REFERENCES

[1] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and
K. Huang, “Energy harvesting wireless communications: A review of
recent advances,” Selected Areas in Communications, IEEE Journal on,
vol. 33, no. 3, pp. 360–381, 2015.

[2] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy har-
vesting communication system,” Communications, IEEE Transactions
on, vol. 60, no. 1, pp. 220–230, 2012.

[3] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for
battery limited energy harvesting nodes,” Wireless Communications,
IEEE Transactions on, vol. 11, no. 3, pp. 1180–1189, 2012.

[4] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-
sion with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 8, pp. 1732–1743, 2011.

[5] J. Lei, R. Yates, and L. Greenstein, “A generic model for optimizing
single-hop transmission policy of replenishable sensors,” IEEE Trans-
actions on Wireless Communications, vol. 8, no. 2, pp. 547–551, 2009.

[6] A. Sinha, “Optimal power allocation for a renewable energy source,” in
Communications (NCC), 2012 National Conference on, pp. 1–5, IEEE,
2012.

[7] Z. Wang, A. Tajer, and X. Wang, “Communication of energy harvesting
tags,” IEEE Transactions on Communications, vol. 60, no. 4, pp. 1159–
1166, 2012.

[8] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless
communications with energy harvesting constraints,” Signal Processing,
IEEE Transactions on, vol. 60, no. 9, pp. 4808–4818, 2012.

[9] S. Vakili, K. Liu, and Q. Zhao, “Deterministic sequencing of exploration
and exploitation for multi-armed bandit problems,” Selected Topics in
Signal Processing, IEEE Journal of, vol. 7, no. 5, pp. 759–767, 2013.

[10] A. Aprem, C. R. Murthy, and N. B. Mehta, “Transmit power control
policies for energy harvesting sensors with retransmissions,” IEEE
Journal of Selected Topics in Signal Processing, vol. 7, no. 5, pp. 895–
906, 2013.

[11] A. Seyedi and B. Sikdar, “Energy efficient transmission strategies for
body sensor networks with energy harvesting,” IEEE Transactions on
Communications, vol. 58, no. 7, pp. 2116–2126, 2010.

[12] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3,
pp. 235–256, 2002.

[14] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on World wide web, pp. 661–670,
ACM, 2010.

[15] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-
armed bandits with side information,” in Advances in neural information
processing systems, pp. 817–824, 2008.

[16] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,
and T. Zhang, “Efficient optimal learning for contextual bandits,” in
Conference on Uncertainty in Artificial Intelligence, 2011.

[17] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. E. Schapire,
“Taming the monster: A fast and simple algorithm for contextual
bandits,” in International Conference on Machine Learning, pp. 1638–
1646, 2014.

[18] P. Sakulkar and B. Krishnamachari, “Stochastic contextual bandits with
known reward functions.” USC ANRG Technical Report, ANRG-2016-
02, http://anrg.usc.edu/www/papers/DCB ANRG TechReport.pdf.

[19] P. Ortner and R. Auer, “Logarithmic online regret bounds for undis-
counted reinforcement learning,” in Proceedings of the 2006 Conference
on Advances in Neural Information Processing Systems, vol. 19, p. 49,
2007.

[20] P. Auer, T. Jaksch, and R. Ortner, “Near-optimal regret bounds for
reinforcement learning,” in Advances in neural information processing
systems, pp. 89–96, 2009.

[21] A. Tewari and P. L. Bartlett, “Optimistic linear programming gives loga-
rithmic regret for irreducible mdps,” in Advances in Neural Information
Processing Systems, pp. 1505–1512, 2008.

[22] S. Ross, Introduction to stochastic dynamic programming. Academic
Press, 1983.

[23] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2005.

[24] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
2016. To appear.

[25] P. Sakulkar and B. Krishnamachari, “Online learning of power allocation
policies in energy harvesting communications,” in Signal Processing and
Communications (SPCOM), 2016 IEEE International Conference on,
IEEE, 2016.

[26] A. N. Burnetas and M. N. Katehakis, “Optimal adaptive policies
for markov decision processes,” Mathematics of Operations Research,
vol. 22, no. 1, pp. 222–255, 1997.

[27] Y. Wu, R. Kannan, and B. Krishnamachari, “Efficient scheduling for
energy-delay tradeoff on a time-slotted channel,” tech. rep., University of
Southern California, Ming Hsieh Department of Electrical Engineering
– Systems, 2015.

[28] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58,
no. 301, pp. 13–30, 1963.

[29] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing
times. American Mathematical Soc., 2009.

Pranav Sakulkar received his B.Tech. in Electrical
Engineering at the Indian Institute of Technology
Kanpur in 2011 and his M.Sc. in Communications
Engineering at RWTH Aachen University, Germany
in 2014. He is a recipient of the Graduate Ph.D.
Fellowship and is currently pursuing his Ph.D. in
the Department of Electrical Engineering at the
University of Southern California’s Viterbi School of
Engineering. His primary research interest lies in the
applications of online learning and bandit problems
in wireless networks.

Bhaskar Krishnamachari (Senior Member, IEEE)
received his B.E. in Electrical Engineering at The
Cooper Union, New York, in 1998, and his M.S.
and Ph.D. degrees from Cornell University in 1999
and 2002 respectively. He is a Ming Hsieh Faculty
Fellow and Professor in the Department of Electrical
Engineering at the University of Southern Califor-
nia’s Viterbi School of Engineering. His primary
research interest is in the design, theoretical analysis
and experimental evaluation of algorithms and proto-
cols for next-generation wireless networks including

low power wireless sensor networks. He has co-authored more than 200
publications on this topic, including best paper awards at Mobicom (2010),
IPSN (2004, 2010), and MSWiM (2006).

http://anrg.usc.edu/www/papers/DCB_ANRG_TechReport.pdf

