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Abstract—To reduce the energy consumption of various infor-
mation and communication systems, sleeping mechanism design is
considered to be a key problem. Prior work has derived optimal
single server sleeping policies only for non-bursty, memoryless
Poisson arrivals. In this paper, for the first time, we derive the
optimal sleep operation for a single server facing bursty traffic
arrivals. Specifically, we model job arrivals as a discrete-time
interrupted Bernoulli process (IBP) which models bursty traffic
arrivals. Key factors including the switching and working energy
consumption costs as well as a delay penalty are accounted for
in our model. As the arrival process state (busy or quiet) cannot
be directly observed by the server, we formulate the problem
as a POMDP (partially observable Markov decision process),
and show that it can be tractably solved as a belief-MDP by
considering the time interval since the last observed arrival t.
We prove that the optimal sleeping policy is hysteretic and the
numerical results reveal that the optimal policy is a t-based two-
threshold policy, where the sleeping thresholds change with t.
The simulation results show that our policy outperforms the
previously derived Poisson-optimal policy and that the system
cost decreases with the burstiness of traffic.

I. INTRODUCTION

Reducing the energy consumption of communications and
networks is one of the main challenges and brings benefits in
many aspects including economic and environmental concern.
For example, in upcoming 5G networks, the energy consump-
tion and cost per bit have to be reduced by at least 100 times
[1], which reveals the growing importance of ”greening” the
networks.

Considered as one of the most efficient methods to reduce
energy consumption, sleeping mechanisms have been studied
widely in recent years. The trade-off between energy saving
from sleeping and delay are studied in [2]–[4], [10]. In these
works, the traffic is modeled as a random Poisson process.
In practice, however, traffic and jobs have a bursty nature
especially for data and video traffic [5], which might bring in
more dynamics and chances for a server to sleep. Therefore,
we study the optimal sleeping policy for a single server with
bursty traffic.

In [10], the authors discuss multiple hysteresis sleeping
mechanism and their delay performance under Poisson traffic
arrival. In previous work [13], the authors consider a single
server and find the optimal sleeping policy with Poisson

arrivals by formulating the problem into a continuous-time
MDP, where the system state only changes when there is an
arrival or a departure. The optimal policy has been proved to
be a two-threshold policy, where the queue length in the server
will be compared to an ON threshold and an OFF threshold,
to decide whether the action is ON, OFF or to stay at the
current operation mode. In this situation, if there is no arrivals
or departures for a long time, which would happen with a
higher probability under bursty traffic, keeping the server on
would potentially consume more power. If the server could
make decisions in the middle of the queue length changes, we
might gain higher energy efficiency. In this work, for the first
time, we show how to optimally operate the sleep mode for a
single server under bursty traffic. For tractability we consider
a discrete-time Interrupted Bernoulli Process, which can be
used to approximate an interrupted Poisson Process arbitrarily
well (as the time duration per slot tends to zero), to reflect the
burstiness of traffic.

Note that in [6], the authors did study the sleeping per-
formance of a single server under bursty traffic, assuming an
N -based policy, where the server goes to sleep when the buffer
is empty and wakes up when there are N jobs accumulated
in the buffer. They find the optimal transmit power and the
waking-up threshold N to minimize the energy consumption,
with a certain constraint of delay. However, that work does
not consider whether the N -based policy is the optimal policy
under bursty traffic. To our knowledge, this work is the first
to find the optimal sleeping policy with a POMDP (partially
observable Markov decision process) formulation, and our
result shows that for the optimal policy under bursty arrivals,
the sleep decision should be made not only based on the queue
length, but also based on a measure of time.

A POMDP is a generalization of an MDP where we cannot
observe the MDP-determined system state directly. Instead, a
probability distribution over the state space is recorded and
updated. POMDP has been used to analyze the communication
systems widely in [7]–[9]. In [8], the authors use POMDP to
analyze opportunistic spectrum access. Decisions of channel
selection are discussed in [7], [9]. To our knowledge, this work
provides the first optimal solution for the IBP arrivals with
POMDP formulation.

In this paper, we make the following contributions:



• We formulate this decision problem into a Partially
Observable Markov decision process and give the
numerical results for the optimal sleeping policy and
analyze the structure of it.

• According to the numerical results, we find that the
optimal policy seems to be a t-based two-threshold
policy, where the sleeping thresholds not only depend
on the queue length, but also the time interval since
the last arrival t. The server would postpone several
time slots to switch its operation mode from ON to
OFF, and switch earlier from OFF to ON, instead of
shutting down immediately when the buffer is empty
or keeping sleeping when there are not enough jobs
waiting in the buffer.

• By adding the time interval since the last arrival into
the system state, the system cost, which is a combina-
tion of energy consumption and delay, is always lower
than the optimal solution for memoryless arrivals in
previous work [13].

• From the simulation results, we find that the system
cost decreases with burstiness of the arrival process.

The rest of this paper is organized as follows. The system
model and POMDP approach are introduced in Section II.
We analyze the structure of the optimal policy in Section III.
In Section IV, numerical results and simulations are given.
Conclusions and future work are presented in Section V.

II. POMDP APPROACH

In this section, we first introduce the interrupted Bernoulli
process (IBP) traffic model and formulate the decision problem
into a POMDP. After that, we try to solve the POMDP with a
belief-MDP and give the expressions for the cost function and
the transition matrix.

A. Traffic Model

We consider a single server with a finite buffer with a
size of B. There are two operation modes for the server, ON
and OFF, which represent the working mode and the sleeping
mode, respectively. The system is modeled as a discrete-time
system where time is divided into time slots and there is
at most one arrival or departure in one time slot. Assume
that the job arrivals follow an IBP with parameters (λ, α, β),
which includes a quiet phase and a busy phase. As shown
in Fig. 1, the time spent in the busy and quiet phases are
both geometrically distributed, with expected durations α and
β time slots, respectively. That is, given that the process is in
the busy phase (or the quiet phase) at time slot n, it would
change to the quiet phase (or the busy phase) with probability
α−1 (or β−1), or would remain in the same phase at the next
time slot n+ 1 with probability (1− α−1) (or (1− β−1)).

In the busy phase, the time interval between two job arrivals
during the phase also follows a geometric distribution with
success probability λ at each time slot, which is also known
as the arrival rate. That is, the mean interarrival time in the
busy phase is λ−1 time slots. There is no job arrival in the
quiet phase. Therefore, with varying λ, α and β, traffic with
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Fig. 1. An example of IBP arrivals with parameters (λ, α, β).

different bursty levels is able to be generated. Based on [11],
the global average interarrival time, ρ, is given by

ρ =
1

λ
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α
. (1)

The squared coefficient of variation (SCV) of the interarrival
time, C2, is given by
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β
)
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β
)2

− 1]. (2)

The larger C2 is, the higher bursty level the arrival process has.
We also assume that the jobs need a geometrically distributed
period of work from the server with success probability µ, of
which the mean service time needed is µ−1 time slots for each
job. Note that with arbitrarily small period of one time slot,
the IBP can approximate arbitrarily well the continuous time
interrupted Poisson process (IPP), which is one of the most
typical models to reflect traffic burstiness.

B. POMDP Formulation

If the state of the arrival process (busy or quiet) can be
observed directly, the optimal operation decision problem for
the server can be formulated into an MDP, by adding the state
of the arrival process S into the state of the Poisson arrival
MDP problem. Note that S ∈ {Busy, Quiet}. However, we
assume that the actual state of the arrival IBP process cannot
be observed directly. As a result, we formulate this problem as
a discrete-time partially observable Markov decision process
and the state updates at each time slot.

At each time slot, the server takes a certain action based on
the current state and the system transits to another state with
known transition probabilities. After that, the system would
receive an observation based on the new state and the action,
which helps us determine the underlying state and make the
decision for the next time slot. Finally, the action and the
former state incur a cost for the system. Our objective is to
decide which action to choose at each time slot to minimize
the total expected discounted costs over time. The POMDP
formulation of this optimal operation problem is defined as
follows.

The actual system state is (S,R,Q,W ), if the arrival
process is in state S, the queue length in the server is Q and
the operation state of the server is W ∈{ON, OFF} in the
current time slot. R is a Boolean variable that R = 1 indicates
there is a job arrival in the passing time slot. The state space
is Ω = {Busy,Quiet}× {0, 1}× {0, 1, 2, ..., B}×{ON, OFF}.
Note that departures are assumed to happen earlier than arrivals
at each time slot. Thus, R = 1 indicates there has to be at least
one job in the buffer, that is, Q > 0. We use Sn, Rn, Qn and
Wn to denote the state at time slot n, where n is a non-negative
integer.



At each time slot, the server takes an action a ∈ Φ. The
action space only contains two actions, that is, Φ = {ON,
OFF}. The server processes the jobs at rate 1 only when it is
ON; otherwise, the server is in OFF mode and no job could be
processed. The server consumes a constant Eon energy each
time slot when it is ON. Every action that switches the mode
of the server (ON to OFF, or OFF to ON) would consume Esw

energy.

After transiting to a new state, an observation (R,Q,W )
is taken by the server. All the state elements except the IBP
state S can be observed directly.

The cost function is determined by the current state and the
action. We consider the energy consumption including both the
switching consumption and the operation consumption when
the server is ON. The delay of the jobs are counted in the
cost function as a penalty that is proportional to the sojourn
time of each job. By changing the weighting between energy
consumption and the delay penalty, we are able to model
systems with different emphasis on delay tolerance and energy
saving.

The solution to this POMDP is a policy that indicates how
to choose an optimal action in each state, or correspondingly,
at each time slot.

C. Belief-MDP Formulation

In the POMDP formulation, the server would keep a belief
of the probability distribution over the state space at the current
time slot, upon the action taken and the observation. It is not
hard to find that the only uncertainty of the state is the IBP
phase S, with (R,Q,W ) known. Therefore, we define p to
indicate the probability of being in busy phase knowing all
the past observations and actions, and pn denotes the belief at
time slot n. Because the state is Markovian and the IBP busy
phase probability can be only extracted from R, but not Q and
W , the belief pn can be updated only based on the previous
belief pn−1 and Rn. That is,

pn = Pr[Sn = Busy|Rn, pn−1]. (3)

To solve this POMDP, we formulate this problem into an
MDP where each belief is a state. As a result, the state of
this belief-MDP is i = (p,R,Q,W ). If Rn = 1, which means
there is a job arrival at time slot n, the arrival process has to
be in the Busy phase, therefore, pn = 1; otherwise, if Rn = 0
and there is no job arrival at time slot n, pn can be calculated
conditionally based on pn−1, α and β. Note that the state at
time slot n can be expressed by in.

The action space remains the same with the POMDP
formulation. The action taken at time slot n decides the server’s
operation mode at time slot n+1, which can be expressed by:

Aπ(in) = Wn+1, (4)

where π is a certain policy that determines the rules for the
server to take an action. Aπ(in) denotes the action taken under
state in based on policy π.

We define C(i, Aπ(i)) as the cost function received at
state i under policy π, which is a combination of energy
consumption and delay, given by:

C(i, Aπ(i)) = |W −Aπ(i)|Esw + ωQ+Aπ(i)Eon, (5)

where the first term is the energy consumption caused by
the operation mode switching. ω is the weighting parameter
corresponding to the delay penalty caused by congestion,
which is proportional to the queue length Q, and Aπ(i)Eon

is the energy consumption of the server. Note that the cost
function above does not depend on p, but only depends on W ,
Aπ(i) and Q.

D. State Simplification

From the definition of pn in Eq.3, we find that if Rn = 1,
then pn = 1 and if Rn = 0, pn can be calculated by iterations,
which is given as follows:

pn = Pr[Sn = Busy|Rn = 0, pn−1]

=
Pr[Sn = Busy, Rn = 0|pn−1]

Pr[Rn = 0|pn−1]

=
(1− λ)Pr[Sn = Busy|pn−1]

1− λPr[Sn = Busy|pn−1]

=
(1− λ)[(1 − 1

α
− 1

β
)pn−1 +

1

β
]

1− λ[(1 − 1

α
− 1

β
)pn−1 +

1

β
]
. (6)

Note that Pr[Sn = Busy|pn−1] = pn−1Pr[Sn = Busy|Sn−1 =
Busy] + (1− pn−1)Pr[Sn = Busy|Sn−1 = Quiet] = (1− 1

α
−

1

β
)pn−1 + 1

β
]. Assume there is a sequence {mk}, m0 = 1,

the iteration between mk and mk−1 is the same as Eq.6. All
the possible values of pn are included in {mk}. Moreover, we
find the subscript of the sequence is exactly the time interval
since the last arrival, denoted by t, which covers exactly the
same information of (p,R). Therefore, we are able to simply
the i = (p = mk, R,Q,W ) state into i = (t = k,Q,W ) state,
which is clear enough to show that the belief state space of our
formulation is countable, as the values of t are non-negative
integers. In the rest of the paper, we use (t, Q,W ) formulation
instead.

E. Transition Probability

One of the most important part in the transition probability
calculation is to calculate the probability of being in Busy
phase at time slot n + 1, given tn. The calculation is given
below.

Pr[Sn+1 = Busy|tn = k]

= Pr[Sn+1 = Busy|Sn = Busy, tn = k]Pr[Sn = Busy|tn = k]

+ Pr[Sn+1 = Busy|Sn = Quiet, tn = k]Pr[Sn = Quiet|tn = k]

= (1 −
1

α
)mk +

1

β
(1−mk). (7)

For simplicity, we also define a sequence {qk}, where for each
k, qk = (1 − 1

α
)mk + 1

β
(1 −mk) to indicate the probability

given above.

Since the system state updates at each time slot, the queue
length in the buffer might remain the same in our formulation.
The transition probability at state (t, Q,W ), are discussed in
three cases based on the value of Q and given as follows.
For Q = 0,

Pr[(k, 0,W ) → (0, 1, Aπ(k, 0,W ))] = qkλ, (8)

Pr[(k, 0,W ) → (k + 1, 0, Aπ(k, 0,W ))] = 1− qkλ. (9)



Note that departures take place earlier than arrivals at each
time slot. Therefore, when Q = 0, t cannot be 0.
For Q = B,

Pr[(k,B,W ) → (k + 1, B,ON)] = (1− qkλ)(1 − µ), (10)

Pr[(k,B,W ) → (0, B,ON)] = qkλ, (11)

Pr[(k,B,W ) → (k + 1, B − 1,ON)] = (1− qkλ)µ. (12)

We assume that if there are B jobs in the buffer at the current
time slot, the server will always take the ON action to process
the jobs.
For 0 < Q < B,

Pr[(k,Q,W ) → (0, Q+ 1,OFF)] = qkλ, (13)

Pr[(k,Q,W ) → (k + 1, Q,OFF)] = 1− qkλ, (14)

Pr[(k,Q,W ) → (0, Q+ 1,ON)] = qkλ(1 − µ), (15)

Pr[(k,Q,W ) → (0, Q,ON)] = qkλµ, (16)

Pr[(k,Q,W ) → (k + 1, Q,ON)] = (1 − qkλ)(1 − µ), (17)

Pr[(k,Q,W ) → (k + 1, Q− 1,ON)] = (1 − qkλ)µ. (18)

F. The Optimal Operation Policy

We apply dynamic programming to solve this MDP prob-
lem. The objective of choosing the server operation policy is
to minimize the expected discounted sum of the costs over
time, and the value function is shown below.

V (i0) = min
π

E[
∞∑

n=0

γnC(in, Aπ(in))], (19)

where γ is the discount factor that indicates how important
the future costs are to the value function, and in is the system
state at time slot n. The value function given by the Bellman
equation is given below:

V (i) = min
a

{C(i, a) + γ
∑

j

P a
i→jV (j)}, (20)

where a is the action taken by the server and P a
i→j is the

transition probability from state i to state j that has been
defined in Section II-C. As a result, the optimal operation
policy for each state is

Aπ∗(i) = argmin
a∈Φ

{C(i, a) + γ
∑

j

P a
i→jV (j)}. (21)

III. ANALYSIS OF STRUCTURAL PROPERTIES

Intuitively, the optimal policy under IBP traffic model
might have the similar properties with the optimal policy under
memoryless traffic model. Concretely, due to the switching cost
from OFF to ON mode, the server may not choose to turn ON
immediately when Q > 0. This leads to hysteretic, which is
defined as follows.

Definition 1: A policy π is called hysteretic if for some
d ∈ Φ, Aπ(t, Q, d) = a implies Aπ(t, Q, a) = a, a ∈ Φ.

We are able to prove this conjecture and give the following
theorem.

Theorem 1: The optimal operation policy (21) is hys-
teretic.
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Fig. 2. The busy phase probability evolution in sequence {qk}.

Proof: Theorem 1 in [12] points out that the optimal
policy is hysteretic if the policy can be written as

Aπ∗(i) = arg min
a inΦ

{s(W,a) + w(t, Q, a)}, (22)

and the function s satisfies

s(a, b) ≤ s(a, c) + s(c, b), ∀a, b, c ∈ Φ, (23)

s(a, a) = 0, ∀a ∈ Φ. (24)

Therefore, if we give definitions:

s(W,a) , |W − a|Esw, (25)

w(t, Q, a) , ωQ+ aEon + γ
∑

j

P a
i→jV (j), (26)

Eq.(22) becomes the same as Eq.(21). s(W,a) is the switching
cost when the current state is W and the action taken is a.
w(Q, a) is the serving cost including the future part.

It is straightforward that s(W,a) defined in Eq.(25) satisfies
the two conditions needed in Eqs.(23)(24). As a result, the
optimal operation policy is hysteretic.

To explain this property clearer, if the decision with certain
t and Q is to turn ON from OFF, then the decision for the
corresponding ON state with the same t and Q is to stay ON
as well.

IV. NUMERICAL AND SIMULATION RESULTS

We give numerical results and performance analysis for the
optimal policy under our formulation in this section. Moreover,
we compare the performance of the optimal policy with the
queue-based policy in the prior work [13].

Value iteration algorithm for MDP is applied to get our
numerical results. The optimal policy and the value function
are updated every iteration, until the value function converges.
The details of the algorithm has been given in [13]. To apply
the algorithm, we have to restrict the maximum recorded
interarrival time as M and set a finite buffer size to get a
finite state space. The buffer size B is set to be 80 so that
the queue length would not reach the buffer size. The mean
durations of the busy phase and the quiet phase, α and β, are
set to be 20 time slots and 40 time slots, respectively. The
average interval of job arrivals λ−1 is 2 time slots and the
mean service time µ−1 is 1.2 time slots. Therefore, the traffic
load of the system is assumed to be ρµ = 0.2. The length of
one time slot is assumed to be 0.1s. Thus, based on [13], the
energy consumption for an ON server in a time slot Eon is 25J.
The switching energy cost is set to be 41.6J. The weighting
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(a) The zoomed-in optimal policy for the
states with W = ON.
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(b) The zoomed-in optimal policy for the
states with W = OFF.

Fig. 3. The zoomed-in structure of optimal policy

parameter between energy and delay penalty ω is 10 and the
discount factor γ is 0.99, which is chosen to be close to zero.

As for the maximum recorded interarrival time M , the
evolution of the sequence {qk} calculated from the parameters
above is given in Fig.2. The curve decreases sharply at first
and converges to 0.05 when k is larger than 10. Therefore, M
is set as 20 to guarantee the convergence of {qk}.

Due to limited space, and to get a clearer vision of the
structure, we only give the zoomed-in version of the optimal
policy in Fig.3, which shows how the decision changes with
t and Q in details. Note that the decisions for larger t and Q
follow the decisions for the smaller ones with the same Q and
t, respectively. It is shown that when the current server state
is ON, the server would choose to sleep only if Q = 0 and
t ≤ 3, and if the server is OFF in the current time slot, the
server would wake up only if Q = 1 and t ≥ 4, or Q ≥ 2.
Note that these decision thresholds depend on the parameters
of the arrival process.

We would like to compare our optimal policy in this paper,
which is based on a (t, Q,W ) state formulation and the policy
proposed in [13], which gives the best mapping from tuples
of the form (Q,W ) to actions. With memoryless arrivals,
t will not bring any additional information to the system.
Therefore, (Q,W ) formulation is sufficient for system with
Poisson arrivals. First, note that we are applying the Poisson-
optimal policy for the continuous-time system in [13] to the
discrete time system we are considering here; we conjecture
it would still be optimal for a Bernoulli process.

In the discrete time (Q,W ) formulation, we consider the
arrival process as memoryless Bernoulli arrivals with the global
average interarrival time ρ. Due to the space limitation, we are
not able to present the optimal policy in figures. The results
show that in (Q,W ) formulation, the server would turn OFF
form ON only if Q = 0 and turn ON from OFF only if
Q ≥ 2, under the same parameters, which is a two-threshold
policy. Comparing these two policies, it is found that in our
formulation, even if the server is current ON and the queue
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Fig. 4. The comparison of total cost between our optimal policy, which is
based on a (t, Q,W ) state formulation, and the policy based on a (Q,W )
state formulation (from [13]).

is empty, it will not sleep immediately but keep ON for two
time slots, because the arrival process is much likely in the
busy phase and arrivals might happen. Therefore, it would be
better for the server to stay ON longer and save the switching
cost. In the contrast, the server would turn ON earlier than
the (Q,W ) formulation when t is large and Q = 1. This is
because when t ≥ 4, if the server still stays OFF, the delay
penalty will be quite large and have a bad impact on the total
cost. Therefore, in this case, the server turns ON earlier than
the (Q,W ) formulation.

The optimal policy in [13] has been proved to be a two-
threshold policy. From the comparison given above, we find
that by adding t into the state under IBP arrivals, the ON
and OFF thresholds become varying with t. The sleeping
thresholds of queue length is no longer a constant, but will
change with the time interval since last arrival t. It is so called
a t-based two-threshold policy. By simulations, we also find
that when Esw is sufficiently large, once the server is ON, it
will never go to sleep.

Except for the optimal policy, we also compare the cost
and energy saving performance of the optimal policies under
(t, Q,W ) and (Q,W ) formulations. By value iterations, the
optimal policies are applied at each time slot to decide whether
the server would be ON or OFF in the next time slot. The
simulation runs for 200000 time slots. Fig.4 shows how the
total system cost changes with β, the mean interval for the
quiet phase. It is obvious that the total cost under (t, Q,W )
formulation is always lower and better than the results under
(Q,W ) formulation. This improvement in the system cost is
caused by the different structure in the optimal policies. That
is, comparing with the (Q,W ) formulation, in our formulation,
the switching cost is lower when the queue length jumps
between 0 and 1, and the delay penalty is lower when the
queue length is 1. We can also find that the gap between the
cost increases with β increasing. The cost also decreases with
increasing β under both (t, Q,W ) and (Q,W ) formulations.
The trend is caused by the load decrease and burstiness
increase with β increasing.

In Figs. 5 and 6, the total cost and total energy consumption
under different weighting parameters between energy and
delay, ω, through 200000 time slots are given respectively.
On each curve, the cost (or energy consumption) varies with
the SCV of the interarrival time, while the global average
interarrival time ρ remains 6 time slots. When ω = 0, this
POMDP will only minimize the energy consumption without
considering the delay. In this case, the cost and energy con-
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Fig. 5. The total cost changing with burstiness under different weighting
between energy and delay.

sumption change slightly with the burstiness. However, when
ω is non-zero, it is found that the larger burstiness the arrival
process is, the lower the cost is, because larger burtiness incurs
lower server switching times. While obversing the energy
consumption in Fig.6, several hops occur in the curve. These
are caused by the shift in the optimal policy. For example,
considering the second and third point from the right side
when ω = 10, the difference of the optimal policies between
these two cases is when C2 is larger, the server will be ON
whenever the queue is not empty. While in the opposite, the
third point for the right side represents the case when the server
will remain OFF when Q = 1 and t ≤ 2. Therefore, in the
latter case, the operation energy is saved, yet with higher delay,
which causes the non-monotonicity in burstiness. Under these
parameters, the system can save up to 68% energy compared
to the non-sleeping server for the case ω = 10 and C2 = 10.
When C2 is large enough, we also find that the optimal policy
becomes the same when ω = 10 and ω = 20, as the values of
total energy consumption is equal. In this case, the weighting
of delay penalty ω cannot influence the optimal policy further,
because of the large burstiness.

V. CONCLUSIONS

In this paper, we consider a single server with bursty traffic,
which is modeled as IBP arrivals, and formulate the sleeping
decision problem into a Partially Observable Markov decision
process (POMDP) where we consider the time interval from
the last arrival t additionally. The numerical results show
the optimal policy is a t-based two-threshold policy and the
sleeping thresholds of queue length would change with t.
We find that comparing with the formulation with Bernoulli
arrivals, the server would postpone several time slots to switch
OFF from ON, instead of shutting down immediately when
the buffer is empty, and turn ON from OFF earlier when the
buffer is not empty. The system cost in our formulation, which
considers energy and delay penalty, is always lower than the
cost in the formulation with memoryless arrivals [13]. The
system cost is also found to decrease with burstiness of the
arrival process.

As for the next step of this work, we would like to look into
the relationship between the discrete time and continuous time
formulations rigorously and how the optimal policy changes
with other parameters. Moreover, the problem structure with
finite state description leads us to consider Q-learning in the
future work. We also want to consider the optimal policy
for other bursty arrival models, such as MMBP (Markov
Modulated Bernoulli Process).
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Fig. 6. Energy consumption changing with burstiness under different
weighting between energy and delay.
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