
Hermes: Latency Optimal Task Assignment for
Resource-constrained Mobile Computing

Abstract—With mobile devices increasingly able to connect
to cloud servers from anywhere, resource-constrained devices
can potentially perform offloading of computational tasks to
either improve resource usage or improve performance. It is of
interest to find optimal assignments of tasks to local and remote
devices that can take into account the application-specific profile,
availability of computational resources, and link connectivity,
and find a balance between energy consumption costs of mobile
devices and latency for delay-sensitive applications. Given an
application described by a task dependency graph, we formulate
an optimization problem to minimize the latency while meeting
prescribed resource utilization constraints. Different from most of
existing works that either rely on an integer linear programming
(ILP) formulation, which is NP-hard in general and is not
applicable to general task dependency graph for latency metrics,
or on intuitively derived heuristics that offer no theoretical
performance guarantees, we propose Hermes, a novel fully
polynomial time approximation scheme (FPTAS) algorithm to
solve this problem. Hermes provides a solution with latency
no more than (1 + ε) times of the minimum while incurring
complexity that is polynomial in problem size and 1

ε
. We evaluate

the performance by using real data set collected from several
benchmarks, and show that Hermes improves the latency by
16% (36% for larger scale application) compared to a previously
published heuristic and incurs CPU computing time by only 0.4%
of overall latency.

I. INTRODUCTION

As more embedded devices are connected, lots of resource
on the network, in the form of cloud computing, become ac-
cessible. These devices, either suffering from stringent battery
usage, like mobile devices, or limited processing power, like
sensors, are not capable to run computation-intensive tasks
locally. Taking advantage of the remote resource, more sophis-
ticated applications, requiring heavy loads of data processing
and computation [1], [2], can be realized in timely fashion
and acceptable performance. Thus, computation offloading—
sending computation-intensive tasks to more resourceful sev-
ers, is becoming a potential approach to save resources on
local devices and to shorten the processing time [3], [4], [5].

However, implementing offloading invokes extra commu-
nication cost due to the application and profiling data that
must be exchanged with remote servers. The additional com-
munication affects both energy consumption and latency [6].
Hence, it is not trivial to figure out the best offloading strategy
considering the balance between how much the offloading
saves and how much extra cost is induced. For example, Fig.
1 shows a task graph of an arbitrary application. A task is
represented by a node whose weight specifies its complexity.
Each edge shows the data dependency between two tasks,
and is labelled with the amount of data being communicated

between them. Suppose we have three devices; we want to find
the best way to assign each task on the devices to minimize the
overall latency considering reasonable energy consumption.
Fig. 2 shows that the optimal strategy varies as we increase the
complexity of the shaded task from 8 to 12. Due to the budget
constraint on energy consumption, the varying complexity on
a node affects the strategy on the whole branch that contains it.
More importantly, the latency increases if we use the initially
optimal strategy to serve the ones with increased complexity,
while there exist optimal strategies for each case that can
achieve the same minimum latency. In addition to considering
a single remote server, which involves in only binary decision
on each task, another spectrum of offloading schemes make
use of other idle and connected devices in the network [7],
where the decision is made over multiple devices considering
their availabilities and multiple wireless channels. From the
above observations, a rigorous optimization formulation of
the problem and the scalability of corresponding algorithm
are the key issues that need to be addressed.

In general, we are concerned in this domain with a task
assignment problem over multiple devices, subject to con-
straints. Furthermore, task dependency must be taken into
account in formulations involving latency as a metric. The
authors of Odessa [10] present a heuristic approach to task
partitioning for improving latency and throughput with mobile
offloading, involving iterative improvement of bottlenecks in
task execution and data transmission. However, this greedy
heuristic provides no performance guarantees in both latency
metrics and other constraints, as we show that it can be further
improved by 36% in some cases. Of all optimization formula-
tions, integer linear programming (ILP) is the most common
formulation due to its flexibility and intuitive interpretation
of the optimization problem. In the well-known MAUI work,
Cuervo et al. [8] propose an ILP formulation with latency
constraint of a serial tasks. However, the ILP formulations
are generally NP-hard, that is, there is no polynomial-time
algorithm to solve all instances of ILP unless P = NP [11].
Moreover, the overall latency is not additive over tasks for gen-
eral task dependency, which is often described by a directed
acyclic graph (DAG). In addition to ILP, graph partitioning is
another approach. Given a task graph, the minimum cut on
weighted edges specifies the minimum communication cost
and cuts the tasks into two disjoint sets, one is the set of tasks
that are to be executed at the remote server and the other are
ones that remain at the local device. Wang et al. [9] provide
a polynomial time algorithm to solve for the best partitioning.
However, the algorithm is not applicable to latency metrics.

split

start

final

10.5

3

1.2

2 10

3.3

5

1

10

3

5.5 5.5

5

10

3

5

15 9.7

8.5
8.5

3

1.2 1.2 5

5 5

15.510

10

5 5

5
8

Fig. 1: A task graph of an application

0

1

2
complexity = 8

0

1

2
complexity = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

tasks

d
e
v
c
e
s

complexity = 12

8 8.5 9 9.5 10 10.5 11 11.5 12
24

26

28

task complexity

la
te

n
c
y

Fig. 2: The optimal strategy varies as the complexity of the
shaded task in Fig. 1 increases. The latency will increase if we
use sub-optimal strategy, while there exist optimal strategies
for each case to achieve the same latency.

TABLE I: Comparison between existing works and Hermes

Existing Works MAUI [8] min k-cut [9] Odessa [10] Hermes

Task Dependency Graph serial DAG general subset of DAG
Objectives energy consumption communication cost latency & throughput latency
Constraints latency none none cost

Task Assignment 2 devices multiple devices 2 devices multiple devices
Algorithm Complexity exponential exponential no guarantee polynomial

Performance optimal optimal no guarantee near-optimal (ε-approximate)

Furthermore, for offloading across multiple devices, instead
of making binary decision on each task, the minimum k-
cut problem is NP-hard [12]. Compared with the existing
formulations and algorithms, we formulate an optimization
problem that aims to minimize the latency subject to a cost
constraint. We propose Hermes1, an algorithm that is a fully
polynomial time approximation scheme (FPTAS). That is, the
solution given by Hermes performs no more than (1 + ε)
times of the minimum objective, where ε is a positive number
and the complexity is bounded by a polynomial in 1

ε and
the problem size [13]. Table I summarizes the comparison of
our formulation and algorithm to the existing works. To our
best knowledge, for this class of task assignment problems,
Hermes applies to more sophisticated formulations than prior
works and runs in polynomial time with problem size but still
provides near-optimal solutions with performance guarantee.
We list our main contributions as follows.

1) A new formulation of task assignment considering
both latency and resource cost: Our formulation is
practically useful for applications with a general task
dependency described by a directed acyclic graph and
allows for the minimization of total latency (makespan)
subject to a resource cost constraint.

2) Hermes: an FPTAS algorithm to solve the pro-
posed formulation: We prove that Hermes runs in
O(dinNM

2 l2

ε) time and provides an (1+ε) approxima-

1Because of its focus on minimizing latency, Hermes is named for the
Greek messenger of the gods with winged sandals, known for his speed.

tion, where N is the number of tasks, M is the number
of devices, din is the maximum indegree over all tasks
and l is the length of the longest paths.

3) Comparative performance evaluation: We evaluate
the performance of Hermes by using real data sets mea-
sured in several benchmarks to emulate the executions
of these applications, and compare it to the previously-
published Odessa scheme considered in [10]. The result
shows that Hermes improves the latency by 16% (36%
for larger scale application) compared to Odessa and
incurs CPU computation time by only 0.4% of overall
latency, which implies the latency gain of Hermes is
significant enough to compensate its extra CPU load.

II. MODELS AND NOTATIONS

In this section, we formulate our optimization problem to
solve for the optimal task assignment strategy.

A. Task Graph

An application profile can be described by a directed graph
G(V, E) as shown in Fig. 1, where nodes stand for tasks and
directed edges stand for data dependencies. A task precedence
constraint is described by an directed edge (m,n), which
implies that task n relies on the result of task m. That is,
task n cannot start until it gets the result of task m. The
weight on each node specifies the measure of complexity of
the task, while the weight on each edge shows the amount
of data communication between two tasks. In addition to the
application profile, there are some parameters related to the

TABLE II: Notations

Notation Description

mi task complexity of task i

di the amount of data generated by task i

rj CPU rate of device j

G(V, E) task graph with nodes (resp. edges) described by set V (resp. E)

C(i) set of children of node i

l the depth of task graph (the longest path)

din the maximum indegree of task graph

δ quantization step size

x ∈ [M]N assignment strategy of tasks 1 · · ·N
T

(j)
ex (i) latency of executing task i on device j

T
(jk)
tx (d) latency of transmitting d units of data from device j to k

C
(j)
ex (i) cost of executing task i on device j

C
(jk)
tx (d) cost of transmitting d units of data from device j to k

D(i) accumulated latency when task i finishes

graph measure in our complexity analysis. We use N to denote
the number of tasks and M to denote the number of devices.
For each task graph, there is an initial task (task 1) that starts
the application and a final task (task N) that terminates it. A
path from initial task to final task can be described by a serial
of nodes, where every pair of consecutive nodes are connected
by a directed edge. We use l to denote the maximum number
of nodes in a path, i.e., the length of the longest path. Finally,
din denotes the maximum indegree in the task graph.

B. Cost and Latency

We use the general cost and latency functions in our
derivation. Let C(j)

ex (i) be the execution cost of task i on
device j and C

(jk)
tx (d) be the transmission cost of d units of

data from device j to device k. Similarly, the latency consists
of execution latency T

(j)
ex (i) and the transmission latency

T
(jk)
tx (d). Given a task assignment strategy x ∈ {1 · · ·M}N ,

where the ith component, xi, specifies the device that task i is
assigned to, the total cost can be described as follows.

Cost =

N∑
i=1

C(xi)
ex (i) +

∑
(m,n)∈E

C
(xmxn)
tx (dm) (1)

As described in the equation, the total cost is additive over
nodes (tasks) and edges of the graph. On the other hand, the
accumulated latency up to task i depends on its preceding
tasks. Let D(i) be the latency when task i finishes, which can
be recursively defined as

D(i) = max
m∈C(i)

{
T

(xmxi)
tx (dm) +D(m)

}
+ T (xi)

ex (i). (2)

We use C(i) to denote the set of children of node i. For
example, in Fig. 3, the children of task 6 are task 4 and task
5. For each child node m, the latency is accumulating as the
latency up to task m plus the latency caused by transmission
the result dm to task i. Hence, D(i) is determined by the
slowest branch.

start

finish

1 2 3

4 5

6

Fig. 3: A tree-structured task graph, in which the two sub-
problems can be independently solved.

cost

latency

y = t

x = B

Fig. 4: The algorithm solves each sub-problem for the min-
imum cost within latency constraint t (the area under the
horizontal line y = t). The filled circles are the optimums
of each sub-problems. Finally, it looks for the one that has the
minimum latency of all filled circles in the left plane x ≤ B.

C. Optimization Problem

Consider an application, described by a task graph, and a
resource network, described by the processing powers and link
connectivity between available devices, our goal is to find a
task assignment strategy x that minimizes the total latency and
satisfies the cost constraint, that is,

min
x∈[M]N

D(N)

s.t. Cost ≤ B. (3)

The Cost and D(N) are defined in Eq. (1) and Eq. (2),
respectively. In the following section, we propose an approx-
imation algorithm based on dynamic programming to solve
this problem and show that it runs in polynomial time in 1

ε
with approximation ratio (1 + ε).

III. HERMES: FPTAS ALGORITHMS

We first propose the approximation scheme to solve the
optimization problem for a tree-structure task graph and prove
that this simplest version of the Hermes algorithm is an
FPTAS. Then we solve for more general task graphs by
calling the proposed algorithm for trees a polynomial number
of times. Finally, we show that the Hermes algorithm also
applies to the stochastic optimization problem, minimizing the
expected latency subject to expected cost constraint.

Algorithm 1 Hermes FPTAS for tree-structured task graph

1: procedure FPTAStree(N) . min. cost when task N finishes at devices 1, · · · ,M within latencies 1, · · · ,K
2: q ← BFS (G,N) . run Breadth First Search of G from node N and store visited nodes in order in q
3: for i← q.end, q.start do . start from the last element in q
4: if i is a leaf then . initialize C values of leaves

5: C[i, j, k]←

{
C

(j)
ex (i) ∀k ≥ qδ

(
T

(j)
ex (i)

)
∞ otherwise

6: else
7: for j ← 1,M , k ← 1,K do
8: Calculate C[i, j, k] from Eq. (5)
9: end procedure

A. Tree-structured Task Graph

We propose an dynamic programming method to solve the
problem with tree-structured task graph. For example, in Fig.
3, the minimum latency when the task 6 finishes depends on
when and where task 4 and 5 finish. Hence, prior to solving
the minimum latency of task 6, we want to solve both task
4 and 5 first. We exploit the fact that the sub-trees rooted by
task 4 and task 5 are independent. That is, the assignment
strategy on task 1, 2 and 4 does not affect the strategy on task
3 and 5. Hence, we can solve the sub-problems respectively
and combine them when considering task 6.

We define the sub-problem as follows. Let C[i, j, t] denote
the minimum cost when finish task i on device j within
latency t. We will show that by solving all of the sub-problems
for i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} and t ∈ [0, T] with
sufficiently large T , the optimal strategy can be solved by
combining the solutions of these sub-problems. Fig. 4 shows
our methodology. Each circle marks the performance given
by an assignment strategy, with x-component as cost and y-
component as latency. Our goal is to find out the red circle,
that is, the strategy that causes minimum latency and satisfies
the cost constraint. Under each horizontal line y = t, we
first identify the circle with minimum x-component, which
specifies the least-cost strategy among all of strategies that
causes latency at most t. These solutions are denoted by the
filled circles. In the end, we look at the one in the left plane
(x ≤ B) whose latency is the minimum.

Instead of solving infinite number of sub-problems for all
t ∈ [0, T], we discretize the time domain. We define a uniform
quantization function as

qδ(x) = k, if (k − 1)δ < x ≤ kδ. (4)

It suffices to solve all the sub-problems for k ∈ {1, · · · ,K},
where K = dTδ e. We will analyze how the performance is
affected due to the lost of precision by doing quantization and
the trade-off with complexity after we present our algorithm.
Suppose we are solving the sub-problem C[i, j, k], given that
all of the preceding tasks have been solved, the recursive
relation can be described as follows.

C[i, j, k] = C(j)
ex (i)

+ min
xm:m∈C(i)

{
∑

m∈C(i)

C[m,xm, k − km] + C
(xmj)
tx (dm)},

km = qδ
(
T (j)
ex (i) + T

(xmj)
tx (dm)

)
.

That is, to find out the minimum cost within latency k at task
i, we trace back to its child tasks and find out the minimum
cost over all possible strategies, with the latency that excludes
the execution delay of task i and data transmission delay. As
the cost function is additive over tasks and the decisions on
each child task is independent with each other, we can further
lower down the solution space from Mz to zM , where z is the
number of child tasks of task i. That is, by making decisions
on each child task independently, we have
C[i, j, k] = C(j)

ex (i)

+
∑

m∈C(i)

min
xm∈[M]

{C[m,xm, k − km] + C
(xmj)
tx (dm)}. (5)

After solving all the sub-problems C[i, j, k], we solve for the
optimal strategy by performing the combining step as follows.

min k s.t. C[N, j, k] ≤ B.
As the application should always terminate at the local

machine, it is reasonable to fix j and solve for the minimum
k. We summarize our algorithm for tree-structure task graph
in Algorithm 1. Since the algorithm will be used as a basic
block function for more general task graph, we neglect the
combining step and simply focus on solving C[i, j, k].

Theorem 1. Algorithm 1 runs in O(dinNM
2 l2

ε) time and
admits an (1 + ε) approximation ratio.

Proof. From Algorithm 1, to find C[N, j, k] needs to solve
NMK sub-problems, where K depends on the maximum
dynamic range of the latency. Given a task i with complexity
measure mi, if it is executed at device j, the execution delay
can be expressed as

T (j)
ex (i) = c

mi

rj
,

where rj is the CPU rate of device j and c is a constant. The
largest single stage delay is determined by the slowest device
executing the most intensive task. That is,

Tmax = c
mmax

rmin
.

Hence, the maximum latency over all assignment strategies
can be bounded by lTmax, where l is the longest branch of
the tree. If we set δ = εTmax

l , then

Algorithm 2 Hermes FPTAS for serial trees

1: procedure FPTASpath(N) . min. cost when task N finishes at devices 1, · · · ,M within latencies 1, · · · ,K
2: for root il, l ∈ {1, · · · , n} do . solve the conditional sub-problem for every tree
3: for j ← 1,M do
4: Call FPTAStree(il) conditioning on j with modification described in Eq. (8)
5: for l← 2, n do
6: Perform combining step in Eq. (9) to solve C[il, jl, kl]

7: end procedure

K = d lTmax
δ
e = O(

l2

ε
).

Let din denote the maximum indegree of the task graph. For
solving each sub-problem in Eq. (5), there are at most din
minimization problems over M devices. Hence, the overall
complexity is

O(NMK × dinM) = O(dinNM
2 l

2

ε
).

Since both the depth and the maximum indegree of a tree
can be bounded by a polynomial of N , Algorithm 1 runs in
polynomial time of problem size and 1

ε .
For a given strategy x, let L̂(x) denote the quantized latency

and L(x) denote the original one. Further, let x̃ denote the
strategy given by Algorithm 1 and x∗ denote the optimal
strategy. As x̃ is the strategy with minimum latency solved
by Algorithm 1, we have L̂(x̃) ≤ L̂(x∗). For a task graph
with depth l, only at most l quantization procedures are taken.
By the quantization defined in Eq. (4), it always over estimates
by at most δ. Hence, we have

L(x̃) ≤ δL̂(x̃) ≤ δL̂(x∗) ≤ L(x∗) + lδ (6)
Let Tmin = cmmax

rmax
, that is, the latency when the most

intensive task is executed at the fastest device. As the most
intensive task must be assigned to a device, the optimal
latency, L(x∗), is at least Tmin. From Eq. (6), we have

L(x̃) ≤ L(x∗) + lδ = L(x∗) + εTmax ≤ (1 + ε
rmax
rmin

)L(x∗). (7)

For realistic resource network, the ratio of the fastest CPU
rate and the slowest CPU rate is bounded by a constant c′.
Let ε′ = 1

c′ ε, then the overall complexity is still bounded by
O(dinNM

2 l2

ε) and Algorithm 1 admits an (1 + ε) approxi-
mation ratio. Hence, Algorithm 1 is an FPTAS.

As chain is a special case of a tree, the Hermes FPTAS
Algorithm 1 also applies to the task assignment problem of
serial tasks. Instead of using the ILP solver to solve the
formulation for serial tasks proposed previously in [8], we
have therefore provided an FPTAS to solve it.

B. Serial Trees

Most applications start from an unique initial task, then split
to multiple parallel tasks and finally, all the tasks are merged
into one final task. Hence, the task graph is neither a chain
nor a tree. In this section, we show that by calling Algorithm
1 in polynomial number of times, Hermes can solve the task
graph that consists of serial of trees.

chain tree tree
i1 i2 i3

Fig. 5: A task graph of serial trees

The task graph in Fig. 5 can be decomposed into 3 trees
connecting serially, where the first tree (chain) terminates in
task i1, the second tree terminates in task i2. In order to find
C[i3, j3, k3], we independently solve for every tree, with the
condition on where the root task of the former tree ends. For
example, we can solve C[i2, j2, k2|j1], which is the strategy
that minimizes the cost in which task i2 ends at j2 within delay
k2 and given task i1 ends at j1. Algorithm 1 can solve this
sub-problem with the following modification for the leaves.

C[i, j, k|j1] ={
C

(j)
ex (i) + C

(j1j)
tx (di1) ∀k ≥ qδ(T (j)

ex (i) + T
(j1j)
tx (di1)),

∞ otherwise
(8)

To solve C[i2, j2, k2], the minimum cost up to task i2, we
perform the combining step as

C[i2, j2, k2] = min
j∈[M]

min
kx+ky=k2

C[i1, j, kx] + C[i2, j2, ky|j].
(9)

Similarly, by combining C[i2, j2, kx] and C[i3, j3, ky|j2] gives
C[i3, j3, k3]. Algorithm 2 summarizes the steps in solving the
assignment strategy for serial trees. To solve each tree involves
M calls on different conditions. Further, the number of trees
n can be bounded by N . The latency of each tree is within
(1 + ε) optimal, which leads to the (1 + ε) approximation of
total latency. Hence, Algorithm 2 is also an FPTAS.

C. Parallel Chains of Trees

We take a step further to extend Hermes for more com-
plicated task graphs that can be viewed as parallel chains of
trees, as shown in Fig. 1. Our approach is to solve each chains
by calling FPTASpath with the condition on the task where
they split. For example, in Fig. 1 there are two chains that can
be solved independently by conditioning on the split node.
The combining procedure consists of two steps. First, solve
C[N, j, k|jsplit] by Eq. (5) conditioned on the split node. Then
C[N, j, k] can be solved similarly by combining two serial
blocks in Eq. (9). By calling FPTASpath at most din times,
this proposed algorithm is also an FPTAS.

D. Stochastic Optimization

The dynamic resource network, where server availabilities
and link qualities are changing, makes the optimal assignment
strategy vary with time. For Hermes, which solves the opti-
mal strategy based on the profiling data, it is reasonable to
formulate a stochastic optimization problem of minimizing
the expected latency subject to expected cost constraint. If
both latency and cost metrics are additive over tasks, we
can directly apply the deterministic analysis to the stochastic
one by assuming that the profiling data is the 1st order
expectations. However, it is not clear if we could apply our
deterministic analysis for parallel computing as the latency
metric is nonlinear. For example, for two random variables X
and Y , E{max(X,Y)} = max(E{X},E{Y }) is in general
not true. In the following, we exploit the fact that the latency
of a single branch is still additive over tasks and show that our
deterministic analysis can be directly applied to the stochastic
optimization problem.

Let C̄[i, j, k] be the minimum expected cost when task
i finishes on device j within expected delay k. It suffices
to show that the recursive relation in Eq. (5) still holds for
expected values. As the cost is additive over tasks, we have

C̄[i, j, k] = E{C(j)
ex (i)}

+
∑

m∈C(i)

min
xm∈[M]

{C̄[m,xm, k − k̄m] + E{C(xmj)
tx (dm)}}.

The k̄m specifies the sum of expected data transmission delay
and expected task execution delay. That is,

k̄m = qδ

(
E{T (j)

ex (i) + T
(xmj)
tx (dm)}

)
.

Based on the fact that Hermes is tractable with respect to
both the application size (N) and the network size (M),
we propose an update scheme that is adaptive to dynamic
resource network. The strategy is updated every period of
time, which aims to minimize the expected latency in the
following coherence time period. We will show how the
proposed scheme adapts to the changes of network condition
in Section IV.

E. More General Task Graph

The Hermes algorithm in fact can be applied to even more
general graphs, albeit with weaker guarantees. In this section,
we outline a general approach based on identifying the “split
nodes” in a task graph — nodes in the task graph with more
than one outgoing edge. From the three categories of task
graph we have considered so far, each split node is only
involved in the local decision of two trees. That is, in the
combining stage shown in Eq. (9), there is only one variable
on the node that connects two serial trees. Hence, the decision
of this device can be made locally. Our general approach is
to decompose the task graph into chains of trees and call
the polynomial time procedure FPTASpath to solve each of
them. If a split node connects two trees from different chains,
then we cannot resolve this condition variable and have to
keep it until we make the decision on the node where all of
involved chains merge. We use the task graph in Fig. 1 to

show an example: as the node (marked with split) splits over
two chains, we have to keep it until we make decisions on
the final task, where two chains merge. On the other hand,
there are some nodes that split locally, which can be resolved
in the FPTASpath procedure. A node that splits across two
different chains requires O(M) calls of the FPTASpath.
Hence, the overall complexity of Hermes in such graphs would
be O(MS), where S is the number of “global” split nodes. If
the task graph contains cycles, similar argument can be made
as we classify them into local cycles and global cycles. A cycle
is local if all of its nodes are contained in the same chain of
trees and is global otherwise. For a local cycle, we solve the
block that contains it and make conditions on the node with
the edge that enters it and the node with the edge that leaves
it. However, if the cycle is global, more conditions have to be
made on the global split node and hence the complexity is not
bounded by a polynomial.

The structure of a task graph depends on the granularity of
partition. If an application is partitioned into methods, many
recursive loops are involved. If an application is partitioned
into tasks, which is a block of code that consists of multiple
methods, the structure is simpler. As we show in the following,
Hermes can tractably handle practical applications whose
graph structures are similar to benchmarks in [10].

IV. EVALUATION OF HERMES

First, we verify that indeed Hermes provides near-optimal
solution with tractable complexity and performance guarantee.
Then, we measure the CPU time for Hermes to solve the
optimal strategy as problem size scales. Finally, we use the
real data set of several benchmark profiles to evaluate the
performance of Hermes and compare it with the heuristic
Odessa approach proposed in [10].

A. Algorithm Performance

From our analysis in Section III, the Hermes algorithm
runs in O(dinNM

2 l2

ε) time with approximation ratio (1 + ε).
In the following, we provide the numerical results to show
the trade-off between the complexity and the accuracy. Given
the task graph shown in Fig. 1, the performance of Hermes
versus different values of ε is shown in Fig. 6. When ε = 0.4
(K = 98), the performance converges to the minimum latency.
Fig. 6 also shows the bound of worst case performance in
dashed line. For our simulation profile, rmax

rmin
= 4, the actual

performance is much better than the worst case bound in Eq.
6. Fig. 7 shows how the solution converges to the optimal
strategy. Although the strategy is slightly different from the
optimal one, it provides the same minimum latency. In order
to save the budget, we can choose the one with lower cost.

Fig. 8 shows the performance of Hermes on 200 samples
of application profiles. Each sample is driven independently
and uniformly from the application pool with different task
complexities and data communications. The result shows that
for every sample, the performance is much better than the
worst case bound and converges to the optimum, that is, the
approximation ratio converges to 1. On the other hand, if we

0.20.30.40.5123456

1

1.5

2

2.5

3

ε

ra
ti
o

bound

Hermes

optimal

Fig. 6: The evaluation result shows that Hermes performs
much better than the worst case bound. When ε = 0.4, the
objective value has converged to the minimum.

0

1

2

ε = 6

0

1

2

ε = 3.4

0

1

2

ε = 0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

tasks

d
e
v
ic

e
s

optimal

Fig. 7: The optimal strategy converges as ε is decreasing

0.20.30.40.513
0.8

1

1.2

1.4

1.6

1.8

2

ε

ra
ti
o

optimal

bound

Fig. 8: The performance of Hermes over
200 samples of application profiles

20

25

30

35

40

a
v
g
 l
a
te

n
c
y

123456
0

20

40

60

ε

a
v
g
 c

o
s
t

Hermes

optimal

Fig. 9: The expected latency and cost
over 10000 samples of resource network

12 13 14 15 16 17 18 19 20
10

2

10
3

10
4

10
5

10
6

10
7

number of tasks

C
P

U
 t
im

e
 (

m
s
)

Brute−Force

Hermes

Fig. 10: The CPU time overhead for Her-
mes as the problem size scales (ε = 0.01)

fix the application profile and simulate the performance of
Hermes under dynamic resource network, Fig. 9 shows that
the solution converges to the optimal one, which minimizes
the expected latency and satisfies the expected cost constraint.

B. CPU Time Evaluation

Fig. 10 shows the CPU time for Hermes to solve for the
optimal strategy as the problem size scales. We use Apple
macbook Pro equipped with 2.4GHz dual-core Intel Core i5
processor and 3MB cache as our testbed and use java man-
agement package for CPU time measurement. As the number
of tasks (N) increases in a serial task graph, the CPU time
needed for the Brute-Force algorithm grows exponentially,
while Hermes scales well and still provides the near-optimal
solution (ε = 0.01). From our complexity analysis, for serial
task graph l = N , din = 1 and we fix M = 3, the CPU time
of Hermes can be bounded by O(N3).

C. Benchmark Evaluation

In [10], Ra et al. present several benchmarks of percep-
tion applications for mobile device and propose a heuristic
approach, called Odessa, to improve both makespan and
throughput with the help of a cloud connected server. They
call each edge and node in the task graph as stages and record
the timestamps on every stages. To improve the performance,
for each data frame, Odessa first identifies the bottleneck,
evaluates each strategy with simple metrics and finally select
the potentially best one to mitigate the load on the bottleneck.

However, this greedy heuristic does not offer any theoretical
performance guarantee, as shown in Fig. 11 Hermes can im-
prove the performance by 36% for task graph in Fig. 1. Hence,
we further choose two of benchmarks, face recognition and
pose recognition, to compare the performance between Hermes
and Odessa. Taking the timestamps of every stage and the
corresponding statistics measured in real executions provided
in [10], we emulate the executions of these benchmarks and
evaluate the performance.

In dynamic resource scenarios, as Hermes’ complexity is
not as light as the greedy heuristic (86.87 ms in average) and
its near-optimal strategy needs not be updated from frame
to frame under similar resource conditions, we propose the
following on-line update policy: similar to Odessa, we record
the timestamps for on-line profiling. Whenever the latency
difference of current frame and last frame goes beyond the
threshold, we run Hermes based on current profiling to update
the strategy. By doing so, Hermes always gives the near-
optimal strategy for current resource scenario and enhances
the performance at the cost of reasonable CPU time overhead
due to resolving the strategy.

As Hermes provides better performance in latency but larger
CPU time overhead when updating, we define two metrics
for comparison. Let Latency(t) be the normalized latency
advantage of Hermes over Odessa up to frame number t. On
the other hand, let CPU(t) be the normalized CPU advantage
of Odessa over Hermes up to frame number t. That is,

Latency(t) =
1

t

t∑
i=1

(
LO(i)− LH(i)

)
, (10)

CPU(t) =
1

t

(C(t)∑
i=1

CPUH(i)−
t∑
i=1

CPUO(i)
)
, (11)

where LO(i) and CPUO(i) are latency and update time of
frame i given by Odessa, and the notations for Hermes are
similar except that we use C(t) to denote the number of times
that Hermes updates the strategy up to frame t.

To model the dynamic resource network, the latency of
each stage is driven independently and uniformly from a
distribution with its mean and standard deviation provided by
the statistics of the data set measured in real applications. In
addition to small scale variation, the link coherence time is
20 data frames. That is, for some period, the link quality
degrades significantly due to possible fading situations. Fig.
12 shows the performance of Hermes and Odessa for the face
recognition application. Hermes improves the average latency
of each data frame by 10% compared to Odessa and incurs
CPU computing time by only 0.3% of overall latency. That is,
the latency advantage provided by Hermes well-compensates
its CPU time overhead. Fig. 13 shows that Hermes improves
the average latency of each data frame by 16% for pose
recognition application and incurs CPU computing time by
0.4% of overall latency. When the link quality is degrading,
Hermes updates the strategy to reduce the data communication,
while Odessa’s sub-optimal strategy results in significant extra
latency. Considering CPU processing speed is increasing under
Moore’s law but network condition does not change that fast,
Hermes provides a promising approach to trade-in more CPU
for less network consumption cost.

V. RELATED WORK ON MACHINE SCHEDULING

To our knowledge, no prior work has studied the polynomial
time algorithm to solve the task assignment problem on
multiple devices, taking both latency and costs into account.
The linear integer programming is a common formulation,
however, it is NP-hard to solve in general.

In this section, we compare our task assignment problem
with the machine scheduling problems, which are mostly
NP-hard. Theoretically, researchers have become interested in
better understanding about their approximability. That is, the
existence of polynomial time approximation algorithm and
corresponding approximate ratio. In [14], Schuurman et al.
study the approximation algorithms and propose ten open
problems. The most related category to our problem, called
the makespan minimization problem, is defined as

Definition 1. Given a set of machinesM = {1, · · · ,m} and a
set of jobs J = {1, · · · , n}, and pij specifying the processing
time for job j being executed at machine i, the goal is to
assign each job to one of machines such that the makespan is
minimized. That is,

0 20 40 60 80 100 120 140 160 180 200
20

25

30

35

40

45

frame number

la
te

n
c
y

Odessa

Hermesavg: 36.0095

avg: 26.4896

Fig. 11: Hermes can improve the performance by 36% com-
pared to Odessa for task graph shown in Fig. 1.

0 20 40 60 80 100 120 140 160 180 200
300

400

500

600

700

800

900

1000

1100

la
te

n
c
y
 (

m
s
)

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

frame number
ti
m

e
 (

m
s
)

Odessa

Hermes

Odessa extra latency

Hermes extra CPU overhead

avg: 621

avg: 682

Fig. 12: Top: Hermes improves the average latency of each
data frame by 10%. Bottom: the latency advantage of Hermes
over Odessa (Latency(t)) is significant enough to compensate
its CPU time overhead (CPU(t)) of solving the strategy.

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

la
te

n
c
y
 (

m
s
)

0 50 100 150 200
10

1

10
2

10
3

frame number

ti
m

e
 (

m
s
)

Odessa

Hermes

Odessa extra latency

Hermes extra CPU overhead

avg: 6261

avg: 5414

Fig. 13: Hermes improves the average latency of each data
frame by 16% and well-compensates its CPU time overhead.

min max
i∈M

∑
j∈Si

pij

s.t. ∪i∈M Si = J .

If the job processing time does not depend on machines, that
is, pij = pj for all ij, then the problem is called the makespan
minimization on identical machines. On the other hand, if

pij =
pj
si

, where si is the speed metric of the ith machine, then
it is the scheduling problem on uniform machines. The devices
in our model are uniform machines. The precedence con-
straints make the problem more interesting and harder to solve.
In general, the task precedence can be described by a DAG,
which is equivalent to our task graph. In the following, we
use the standard three-field notation P |prec|Cmax to denote
the problem of makespan minimization on identical machines
under precedence constraints. Similarly, Q|prec|Cmax denotes
the case for uniform machines.

There are some positive and negative results. We only list
the most related results to our problem and direct the readers
to more relevant literature [14], [15]. The negative results
disprove the existence of the polynomial time approximation
algorithm under the assumption P 6= NP. For example, a
strongly NP-hard problem remains NP-hard even if the num-
bers in its input are unary encoded. Garey et al. [16] show
that if P 6= NP, a strongly NP-hard problem cannot have an
FPTAS. For simpler problem where the precedence constraints
are chains, Du et al. [17] show that Q|chain|Cmax is strongly
NP-hard. On the positive side, Graham et al. [18] design the
list scheduling algorithm for Q|prec|Cmax and show that it
is a (2 − 1

m) approximation algorithm. There also have been
some improved results recently [19], [20].

We further compare our task assignment problem with
a specific category of machine scheduling problems,
Q|prec|Cmax. From complexity respective point of view, the
number of quantization levels, K = lTmax

δ , can be encoded in
polynomially many unary bits, hence, the overall complexity
O(dinNM

2K) implies that our problem is not strongly NP-
hard. On the other hand, our task graph is a subset of general
DAG, in which the application starts from an initial task and
terminates at a single task. Moreover, we do not consider the
maximum number of available processors on each device. That
is, the number of tasks being executing at the same time must
not exceed the number of processors on the device. If our
offloading strategy leads to this situation, some of tasks must
have to be queued, which results in longer latency. Considering
the modern mobile devices have up to 8 cores of processing
cores [21] and is applicable to multi-threading computing,
and the observation that the task graphs are in general more
chain-structured with narrow width, we argue that Hermes is
tractable and applicable to real-world applications.

VI. CONCLUSIONS

We have formulated a task assignment problem for compu-
tational offloading and provided a FPTAS algorithm, Hermes,
to solve for the optimal strategy that makes the balance be-
tween latency improvement and energy consumption of mobile
devices. Compared with previous formulations and algorithms,
to our best knowledge, Hermes is the first polynomial time
algorithm to address the latency-resource tradeoff problem
with provable performance guarantee. Moreover, Hermes is
applicable to more sophisticated formulations on the latency
metrics considering more general task dependency constraints
as well as multi-device scenarios. The CPU time measurement

shows that Hermes scales well with problem size. We have
further emulated the application execution by using the real
data set measured in several mobile benchmarks, and shown
that our proposed on-line update policy, integrating with
Hermes, is adaptive to dynamic network change. Furthermore,
the strategy suggested by Hermes performs much better than
greedy heuristic so that the CPU overhead of Hermes is
well compensated. Existing works have been using pipelining
techniques to improve both makespan and system throughput.
It would further improve the performance if we can extend
Hermes to also make decisions on pipelining strategies.

REFERENCES

[1] M. Kolsch et al., Vision based hand gesture interfaces for wearable
computing and virtual environments. University of California, Santa
Barbara, 2004.

[2] E. Miluzzo, T. Wang, and A. T. Campbell, “Eyephone: activating mobile
phones with your eyes,” in ACM SIGCOMM. ACM, 2010, pp. 15–20.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[4] D. Shivarudrappa, M. Chen, and S. Bharadwaj, “Cofa: Automatic and
dynamic code offload for android,” University of Colorado, Boulder.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in ACM Computer
systems. ACM, 2011, pp. 301–314.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in IEEE INFOCOM. IEEE, 2013, pp. 1285–1293.

[7] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in ACM MobiHoc. ACM, 2012, pp. 145–154.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in ACM MobiSys. ACM, 2010, pp. 49–62.

[9] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” ACM SIGPLAN, vol. 39, no. 6, pp. 119–130, 2004.

[10] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in ACM MobiSys. ACM, 2011, pp. 43–56.

[11] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial opti-
mization. Wiley New York, 1988, vol. 18.

[12] O. Goldschmidt and D. S. Hochbaum, “A polynomial algorithm for the
k-cut problem for fixed k,” Mathematics of operations research, vol. 19,
no. 1, pp. 24–37, 1994.

[13] G. Ausiello, Complexity and approximation: Combinatorial optimization
problems and their approximability properties. Springer, 1999.

[14] P. Schuurman and G. J. Woeginger, “Polynomial time approximation
algorithms for machine scheduling: Ten open problems,” Journal of
Scheduling, vol. 2, no. 5, pp. 203–213, 1999.

[15] K. Jansen and R. Solis-Oba, “Approximation algorithms for scheduling
jobs with chain precedence constraints,” in Parallel Processing and
Applied Mathematics. Springer, 2004, pp. 105–112.

[16] M. R. Garey and D. S. Johnson, ““strong”np-completeness results:
Motivation, examples, and implications,” Journal of the ACM (JACM),
vol. 25, no. 3, pp. 499–508, 1978.

[17] J. Du, J. Y. Leung, and G. H. Young, “Scheduling chain-structured
tasks to minimize makespan and mean flow time,” Information and
Computation, vol. 92, no. 2, pp. 219–236, 1991.

[18] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
Journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[19] M. Kunde, “Nonpreemptive lp-scheduling on homogeneous multiproces-
sor systems,” SIAM Journal on Computing, vol. 10, no. 1, pp. 151–173,
1981.

[20] D. Gangal and A. Ranade, “Precedence constrained scheduling in
optimal,” Journal of Computer and System Sciences, vol. 74, no. 7,
pp. 1139–1146, 2008.

[21] S. Knight, “Mediatek’s new octa-core processor will be powered by the
new arm cortex-a17,” February 2014, online; accessed 3-March-2014.

