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Abstract— The current practice in wireless sensor networks
is to develop functional system designs and protocols for
information extraction using intuition and heuristics, and
validate them through simulations and implementations.
We address the need for a complementary formal methodol-
ogy by developing non-linear optimization models of static
WSN that yield fundamental performance bounds and op-
timal designs. We present models both for maximizing the
total information gathered subject to energy constraints (on
sensing, transmission and reception), and for minimizing
the energy usage subject to information constraints. Other
constraints in these models correspond to fairness and
channel capacity (assuming noise but no interference). We
also discuss extensions of these models that can handle
data aggregation, interference and even node mobility.
We present results and illustrations from computational
experiments using these models that show how the optimal
solution varies as a function of the energy/information con-
straints, network size, fairness constraints, and reception
power. We also compare the performance of some simple
heuristics with respect to the optimal solutions.

Keywords: wireless sensor networks, network flow op-
timization, maximum information extraction.

I. INTRODUCTION

Wireless sensor networks (WSN) are an emerging tech-
nology which seem ready to revolutionize the avail-
ability and quality of information in a wide array of
application areas. This new technology has come about
due to the rapid advances in embedded microprocessors,
wireless communications, and MEMS sensors over the
past decade.

As we set out to design and implement these kinds
of systems, however, one fact becomes clear. In the
area of WSN there is a significant gap between practice
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and formal understanding: proposed system designs and
protocols are rapidly out-pacing analysis. There are
very few formal models for analyzing the fundamental
performance of information routing in wireless sensor
networks.

Such models are necessary to understand the theoretical
bounds on performance and how they are affected by
different design parameters such as topology, number
of nodes, energy levels, and fairness. We take an op-
timization approach in this paper. Due to the underlying
equations that describe the capacity of physical channels,
we will rely on convex non-linear programming tech-
niques. We present models both for maximizing the total
information gathered subject to energy constraints (on
sensing, transmission and reception) and for minimizing
the energy usage subject to information constraints.
Fairness constraints are also modeled. We will also
discuss extensions of these models that can handle data
aggregation, interference and even node mobility.

Optimization models can aid us in two complemen-
tary ways. The first involves designing a WSN for a
given application. The best network configuration for
an application is often difficult to determine due to
the variability in problem parameters that characterize
the diverse applications to which this technology can
be applied. These parameters include the quality of
information requested, the energy cost of sensing and
receiving information, and node positions. The most
appropriate network parameters for the application in
question can be determined by comparing the optimal
performance for different parameter settings.

The second way in which optimization models can
improve our understanding of WSN concerns the op-
eration of a sensor network. Here an optimization model
provides the means to evaluate proposed protocols for
information routing. Much of the current literature in



sensor and ad-hoc wireless networks consists of practical
proposals for new protocols for information routing.
Typically, simulation results are used to examine the
impact of various parameters on the effectiveness of
the protocol. Comparisons are usually performed with
respect to some baseline heuristic strategies or with
alternative protocols. Iterated over time, this procedure
yields practical, implementable protocols with succes-
sively better performance characteristics. However, if
we do not know the fundamental bounds imposed by
the underlying problem structure, then it will not be
clear how the implemented protocol differs from optimal
performance. It is important to know the fundamental
performance bounds and optimal solutions to determine
if there is room for additional improvement of a given
protocol.

The rest of the paper is organized as follows. In section
I1, we discuss some recent papers on information routing
in wireless sensor networks and optimization models
of wireless networks to place our work in context. In
section 111, we define our notation and present a basic
operational optimization model. We expand this model
in section IV to a more general pair of optimization
problems that can be used for WSN design problems
and discuss extensions. We present computational results
based on these models in section V, and conclude with
a discussion in section VI.

Il. RELATED WORK

Wireless sensor networks, consisting of large numbers
of unattended devices capable of communication, com-
putation and sensing are a subject of significant ongoing
research [1]. In most of the prior work, however, the
performance of proposed querying and routing mech-
anisms is validated through simulations or implemen-
tation, without any notion of fundamental performance
bounds or reference to an optimum benchmark solution.

Most closely related to our work presented here are
papers relating to optimization models of general multi-
hop wireless networks as well as wireless sensor net-
works (which can be considered a special case of
the former with a many-to-one data flow instead of
arbitrary communication between pairs of nodes). The
most important work in this area in recent years has
been the work by Toumpis and Goldsmith on capacity
regions for wireless networks [2], [3]. Using a linear-
programming optimization based formulation (similar in
spirit to our work), the authors study the characteristics
of the maximum information throughput that can be
obtained in a network with arbitrary topology. One key

difference from our work is that Toumpis and Goldsmith
focus on general-purpose wireless networks and do not
incorporate energy or fairness constraints in their mod-
eling. They also do not use constraints corresponding to
the non-linear channel capacity.

The non-linear physical channel constraints are consid-
ered in the optimization models discussed in [10], [11].
In these works the authors consider a similar model to
ours (jointly optimizing the routing as well as power
control and bandwidth allocation). They also treat the
constraints imposed by interference in their models.
Again a significant difference between our work and
these models is that they do not focus on sensor networks
where energy and fairness constraints are important.

Optimization models have also been used to study maxi-
mum lifetime conditions for ad hoc and sensor networks.
Bhardwaj and Chandrakasan [6] develop upper bounds
on the lifetime of networks based on optimum role
assignments to sensors (e.g. whether they should act as
routers or aggregators). Kalpakis et al. [7] formulate a
linear programming problem to schedule flows within
the network in such a way as to maximize the network
lifetime. Chang and Tassiulas [8] also formulate a flow-
based linear programming problem and related heuristics
to maximize the network lifetime. Our work incorporates
and investigates a number of different constraints from
these, such as the non-linear physical channel constraint
(which allows for joint optimization of power control and
routing) and fairness constraints. This work also builds
on our some of our previous analysis concerning the
impact of fairness constraints [5].

I1l. NOTATION AND PRELIMINARY MODEL

Our first optimization model considers the problem of
operating an existing WSN in the most efficient manner.
Assume we have placed n sensor nodes in fixed loca-
tions, each with a limited energy supply £;, and let d;;
denote the physical distance between nodes ¢ and j. The
purpose of this network is to extract as much information
as possible to a sink node (node n + 1 with unlimited
energy resources — a reasonable assumption if the sink
is “plugged in”). Each node consumes C' units of energy
per-bit received and 3 units of energy per-bit sensed.

We assume that the sensor nodes can adjust both the
information flow rate and the transmission power, which
are denoted f;; and P;; for the link between nodes ¢
and j, respectively. The relation between the flow rate
and transmission power on a link is given by Shannon’s
capacity equation for an AWGN channel, assuming a



square-law signal decay d;ﬁ, a noise of 7 on the commu-
nication channel, and that all transmissions are scheduled
(either through time or frequency division multiplexing)
such that they are non-interfering.

The objective is to find the coordinated operation of
all nodes by setting transmission powers and flow rates
in order to maximize the amount of information that
reaches the sink. We assume that there is no data aggre-
gation in this model, and additionally we guarantee end-
to-end fairness of our solution by explicitly enforcing
that each node sends at most a fraction «; of the
total information that reaches the sink. The total energy
consumed at node ¢, which we denote ¢;, is the sum of
the energy consumed sensing, transmitting and receiving.
There is a constraint that this energy should not exceed
the available energy E; for each sensor node.

Under these assumptions, the problem is expressed by
the following non-linear program
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IV. DESIGN MODELS

Consider now the problem of designing a WSN for
a given application. In this context we now have the
liberty to determine the position of the nodes and the
amount of energy to place at each node. The problem of
actively optimizing the location of the nodes poses seri-
ous difficulties, as for example the non-linear inequality
representing the Shannon capacity bound becomes non-
convex. We avoid this problem in the current work.

The problem of deciding how to distribute a given overall
amount of energy is easier to implement. Adding the
consumption of energy for every node ¢ we obtain the
following expression for the total energy consumed by

the sensor nodes of the WSN:
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Note that this expression for the total energy consumed
has a nice interpretation: the first term represents the cost
of sensing the information that is sent to the sink and the
cost of transmitting it to the sink, while the second term
represents simply the cost of transmitting information
among all pairs of nodes i — j.

We assume that there is an overall energy budget of
E..x to distribute among the sensor nodes, which
bounds the total energy consumption. Replacing the
energy constraints in Problem (1) by this global energy
constraint leads to the following non-linear optimization
problem, which automatically determines the optimal
energy distribution.

n
max »  fint1
j=1
s.t.
n+1

Zfz’j

n+1

- i fji>0
]z::lfu Zf]v <O‘1§_:fjn+l )

S (Bfinsr + Pingr) + 3.3 (Cfij + Pij) < Funax

i=1 i=1 j=1

fi; <log < >

fij >20,Py; >0

The maximum information that can be obtained from the
WSN is in essence bounded by the total energy available.
We now present a related problem that also pertains
to the trade-off between minimum energy requirements
and maximum information possible for a given network
topology. This problem considers minimizing the total
energy usage, while guaranteeing at least f.,;, informa-



tion to the sink. This problem can be stated as

min Z (Bfin+1 + Piny1) + (Cfi; + Pij)
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The remainder of this section discusses relations between
these two models, some properties, and possible gener-
alizations.

A. Relation between design problems

The relationship between Problems (2) and (3) above
is the subject of the following propositiont. In it we

denote by (f,P) = (fi2,---»funt1, P12y Pany1)
the vector of flow rate and transmission power variables.

Proposition 1: If (f*, P*) is the optimal solution to

Problem (3) with f;,, then (f*, P*) is the optimal

solution to Problem (2) with

Emax = Z (ﬁfz*n-i-l + Piﬂ’(n-kl)—"_z Z (Cfl*J + P:;) :
i=1 i=1 j=1

Conversely, if (f*, P*) is the optimal solution to Prob-

lem (2) with E,.x, then (f*, P*) is the optimal solution

to Problem (3) with foi, = Z;;l 1

The relationship between Problems (2) and (3) can
also be observed computationally. In Figure 1 we plot
both the maximal information extracted as a function
of the energy bound and minimum energy needed as
a function of the information bound. The experiments
that originated these results considered the same WSN
with all nodes placed in a straight line, the sink node at
one end, 10 sensor nodes uniformly distributed from a
distance 1 to 10 of the sink, and the following values for
other problem parameters: 8 = 0.00001, C' = 0.00005,
n = 0.0001, and «; = 0.2 for all <. The minimum
information bound was varied from fi,i, = 1, t0 finin =

1The proof of this and other propositions in the paper are omitted
due to space considerations. Please see [4] for the proofs.

20 when solving Problem (3), and the maximum energy
bound was varied from E, .« = 0.01 t0 F.x = 0.2
when solving Problem (2).
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Fig. 1. Optimal energy versus information

However there is one striking difference between these
two optimization problems, Problem (3) exhibits con-
sistently a faster convergence than Problem (2). This
is illustrated by the following table which summarizes
the number of interior point method (IPM) iterations it
takes to solve each problem, as we increase the number
of nodes. Here we used the same problem parameters
as in the prior experiment, except a; = 0.25 for all ¢
and we varied the number of sensor nodes uniformly
distributed from a distance 1 to 10 of the sink. The
minimum information bound was 10 for Problem (3) and
the maximum energy bound was 0.01 for Problem (2).

TABLE |
IPM CONVERGENCE FOR PROBLEMS (2) AND (3)
No. nodes Problem (2) Problem (3)
IPM iterations | IPM iterations
4 19 19
7 21 19
10 19 20
15 22 21
20 22 27
25 24 22
30 116 27
40 447 39
50 272 31
60 89 39
70 371 49
80 347 34

B. Problem properties

The discussion in this subsection highlights some impor-
tant properties of Problem (3), which can be reduced to



a much simpler form. This simplification, which can’t
be translated to Problem (2), provides insight into the
difference in the observed computational convergence.

To simplify our presentation we will use the arc-
incidence matrix, as it is used in the Network Flows
literature; see for example [9]. For a network with n+1
nodes and m arcs, the arc-incidence matrix, usually
denoted by N, is a n+ 1 by m matrix with coefficients
equal to 0, 1 or —1. The matrix is defined by

1 ifi=k

Nigpy =3 -1 ifi=1
0 otherwise .

We can write the flow constraints (the first two con-
straints in Problems (2) and (3)) using matrix IV as

0SNf<a) fin -

j=1

Proposition 2: Define k; =C if j =1:n and k41 =
(. Problem (3) obtains the same optimal solution as
Problem (4) below:

n n+l
min Z Z "{jfij + ndfj (ef” — 1)
i=1 j=1
S.t. ’
0 S Nf S afmin (4)

Z fjn+1 = fmin
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For f a vector of flow rates, let us denote by z(f) the
objective function of Problem (4),
n n+l
z(f) = ZZKjfij —l—d?j (ef”' -1)
i=1 j=1

note that z(f) is a convex function. We also denote by
S(y) the feasible region of Problem (4) and ¢(y) the
optimal objective function value of Problem (4), both as
a function of the information bound f,,;, = y. Therefore
Problem (4) can be rewritten as

(rb(fmin) = min Z(f) (5)

st.  f € S(fmin)

Proposition 3: The function ¢(y) is convex for all y > 0

C. Model variations

Below we discuss some possible variations on the mod-
els considered above:

o We can formulate the problem only in terms of
variables f;; representing the number of bits trans-
mitted from i to j (rather than the bit rate). This
implies that each sensor node transmits with a fixed
power, and therefore at a fixed rate. More bits are
transmitted by taking a longer period of time. The
resulting problem is a simpler linear program. This
bit model is obtained by replacing upper bound on
the flow rate by f;; < B and the energy bound by

n+1 n n+1 n

B Zfij - iji +Z Tijfij‘i‘z Clji < Ei,
=1 =1 =1 =1

where T;; is the per-bit transmission energy cost.
The upper bound on the total bits effectively limits
the length of a round. An interesting open question
is to quantify the loss of efficiency on the network
by considering this more constrained model.

o An alternate objective can be to maximize a
weighted fairness. This could be achieved by replac-
ing the objective in Problem (1) by max Y7 | w;c;
and by replacing the flow constraints by

n+1

n
D fi=Y fiza.
=1 =1

« Additional requirements that can be modeled by
incorporating a simple linear constraint are: a per
node limit on the total energy available to each node
and a limit on the amount of information that can
be sensed by each node during a round.

o Multiple time periods can be easily represented
in these models. The only constraint that links
different time periods is the energy constraint The
total energy available has to be distributed across
all time periods.

o The problems above do not allow for data aggre-
gation, i.e. all data that is sensed must leave the
network through the sink. Data aggregation can be
accommodated using multiple flows in the same
network to represent separately the flow of data
and the usage of a communication channel, and to
identify which data can be aggregated together.

The variations on the problem above are fairly straight-
forward and the only potential complications in solv-
ing the new models are that considering multiple time
periods or multi-commodity flows makes the problem
larger. Below are a pair of variations on the model
that create non-convex optimization problems, and are
therefore much harder to solve. We mention them here
to show possible future research directions.

e The models above assume that the network has
scheduled communications on all links (using



TDMA or FDMA). For a CDMA like environment,
interference poses a non-convex constraint. There
are some techniques that can be used to handle such
constraints approximately [11].

o Models can also consider the possibility of mobile
nodes, in which locations and therefore inter-node
distances can be varied as a design parameter at the
expense of some energy for motion. However, this
also introduces a non-convex constraint.

V. COMPUTATIONAL EXPERIMENTS

Throughout our computational experiments we have con-
sidered two different types of network topologies that
are easily scalable: the line topology and the square
topology. In the line topology we considered WSN where
all sensor nodes lie uniformly distributed in a line of
length L, with the sink node placed at one end. The
square topology considers n = k2 nodes uniformly
distributed on a square grid with sides of length L
([0, L] x [0, L]) with the sink located outside that square.
We performed our computational experiments with the
non-linear solver LOQO 6.02 called from AMPL scripts.
We used the NEOS server for optimization to perform
our computations; see [12].

Our computational experiments illustrate different possi-
ble uses of optimization models for WSN. We first show
how to use Problem (4) to determine the optimal amount
of information that can be extracted from a given WSN.
We then point out that optimization models give bench-
marks for routing heuristics, we present comparisons
against two simple heuristics for illustration. Our last
three studies investigate the effect of different problem
parameters on the performance of the sensor network.
We study the effect of the fairness pattern on the mini-
mum energy required, the effect of the fairness patterns
on optimal energy distribution and routing patterns, and
the effect of the reception cost on the routing behavior.

A. Optimal level of information extraction

From Figure 1 above we note that, for that particular
WSN, each extra unit of information demands an in-
creasing amount of energy. We now address the question
of whether for any WSN each extra unit of information
demands an increasing amount of energy. The answer
is yes and we show this by proving that for any WSN
the subgradient of ¢(y), d¢(y), is an increasing positive
multifunction. The fact that d¢(y) is monotonic increas-
ing is due to the convexity of ¢(y) (Proposition 3), so
we simply have to show that it is positive. We work

with subgradients because ¢(y) could be a continuous
piece-wise convex function.

Proposition 4: Assume that either 3 > 0 or d;p,+1 > 0
for all i = 1 : n. Then for any y > 0, all subgradients
of ¢(y) are positive.

Given the increasing energy cost of additional informa-
tion for any WSN, it natural to look for the optimal
amount of information to extract from a given WSN. In
a commercial setting it is reasonable to assume that there
is some monetary value for information from a WSN, i.e.
a dollars per unit of information, and a monetary value
for the cost of energy, i.e. b dollars per unit of energy.
Thus we can explicitly compare the trade-off between
information extraction and energy consumption by max-
imizing the net return function V(y) = ay — bo(y),
where y is the amount of information extracted. The
maximum level of net return is obtained for the solution
y* that satisfies 0 € 9V (y*), since ¢(y) is convex. This
implies that the optimal information level satisfies a/b €
O¢(y*). Optimization solvers also provide subgradient
values of d¢(y) as the dual variable on the information
constraint. The values in 9¢(y) quantify the change
in the objective function with respect to changes in .
Because of the monotonicity of the subgradient, we can
perform a binary search to obtain the information level
y* which has a/b € 0¢(y*) and thus gives the optimal
level of return. This leads to an approach where to obtain
asolution ¢ such that [y*—7| < ¢, we solve a polynomial
number (O(log(1)) of Problems (4).

B. Comparison of Optimal Performance v.s. Heuristics

In this subsection we explore how the optimal perfor-
mance given by Problem (4) compares to two very sim-
ple heuristics for assigning energy to nodes and distribut-
ing the information. The purpose of this comparison is
only to illustrate how an optimization model can provide
benchmarks. Benchmarking efficient heuristics, which
have been proposed, requires unifying the assumptions of
the optimization model with those made by the heuristics
and is part of our future work.

In our first heuristic we only allow transmissions from
nodes directly to the sink. Problem (4) under this as-
sumption is to minimize YU, (3f; + nd?el —nd?),
SUbjECt to Z?:l fz = fmin: fz < O‘ifmin’ and jl Z 01
where f; is the flow rate from ¢ to the sink. A seem-
ingly efficient solution to this problem is to assign as
much information as possible to the nodes with smallest
objective function contribution. We achieve this solution
by the following heuristic, which we denote the Direct



Heuristic: (1) sort the nodes according to their distance
to the sink, that is d; < ds < ... < d,, (2) set the flow
from i =110 n t0 f; = a; fmin UNtl D°0 1 fi = fiin,
and (3) set all remaining flows to zero.

Our second heuristic, which we denote the Hop Heuris-
tic, routes all information from a node to the closest
node in the direction of the sink. This heuristic can be
generally described as follows, Hop Heuristic: (1) sort
the nodes according to their distance to the sink, (2) set
the amount of flow generated at « from i = 1 to n to
@ frin until Z?:l fi = fmin, (3) determine the shortest
path from every node providing information to the sink,
(4) send all the information from i to the next node on
the shortest path from i to the sink.

In Figures 2 and 3 below we present how the optimal
energy levels compare with the energy levels obtained
from the heuristic procedures. The experiments con-
sidered linear and square topologies, and present the
different energy levels as we increase the number of
nodes in the network. For the both types of problems
we considered the following problem parameters g =
0.00001, C = 0.00005, n = 0.0001, and fi,i, = 10. The
linear topologies example considered from 4 to 80 sensor
nodes placed in a line uniformly distributed a distance
1 to 10 from the sink. The square topologies considered
from 4 to 81 nodes uniformly distributed on a grid in
the square [0,100] x [0,100] with the sink located at
(=30, 50). For both types of problems we considered a
uniform fairness pattern with «; = 2/n for all .

3 L L L L L L L
0 10 20 30 40 50 60 70 80
Number of sensor nodes

Fig. 2. Minimal Energy and Heuristics, for variable fairness 2/n as
a function of the number of nodes, linear topology

A striking observation from Figure 2 is the poor perfor-
mance of the Hop Heuristic. The reason for this is that in
the line topology all the information is routed through the
node that is closest to the sink, this node then is forced to
spend a significant amount of energy to transmit it to the

10° —

\ —— Optimal
\ — - Direct
\ — - Hop

10° L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Number of sensor nodes

Fig. 3. Minimal Energy and Heuristics, for variable fairness 2471 as
a function of the number of nodes, square topology on [0, 100]

sink. In the Direct Heuristic and in the optimal solution
no node transmits all the information, so the transmission
powers can be much smaller. The performance of the
Hop Heuristic for the square topology is better, as can be
noted in Figure 3. In this example, all the information is
first routed to the nodes that are on the face of the square
next to the sink, from where they can be transmitted
directly. Therefore there is no “bottleneck” node.

Note that the energy is plotted in a log axis, therefore
although in general the differences persist, the Direct
Heuristic provides a reasonable approximation to the
optimal solution for large n. This statement however
should be taken with a grain of salt, as the topology
of the problem and problem parameters do influence the
proximity of the heuristic to the optimal solution.

C. Effect of fairness on optimal energy

From Problem (4) we note that the energy needed to ex-
tract a certain amount of information, depends exponen-
tially on the amount of information to extract. Consider a
WSN with n sensor nodes, a fixed topology, energy cost
coefficients 3 and C, and on a communication channel
with noise 7. We now obtain an upper bound on the
energy needed to extract an information level f.;, with
any fairness pattern «, such that a; > % for all <. The
optimal energy level E* for the WSN will be less than or
equal to F, the energy needed to route the information
for a completely fair WSN, that is when o; = < for all i.
Analogously E will be less than or equal to the energy
needed to have each node route % fmin directly to the
sink, as this is a feasible way of routing that information.



This means that

n
E < Bfmin + Zdz27b+177 (e%fmin — 1) .
=1

This provides an upper bound on the energy needed
to extract f,;, from a WSN with any fairness pattern
«. We plot this upper bound, as well as the energy
needed for a WSN with uniform alpha patterns (we
considered «; = 0.1,0.2 and 1 on every sensor node)
in Figure 4. The experiment considered a network with
11 nodes, equally spaced on a line a distance .1 to 1.1
from the sink, and other problem parameters at C' =
0.00005, 8 = 0.00001, and n = 0.001. We present the
minimal energy needed for different information bounds.
A lower bound is trickier, as the optimal solution for
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Fig. 4. Information versus energy for different «

the completely unfair WSN (i.e. «; = 1 for all 7) still
uses the shortest route and source to obtain its infor-
mation. Simple strategies, such as all the information
from the node closest to the sink, which has a cost
of ﬁfn1i11+77(min{d1n+1, ey d?m-‘rl})2 (ef"”’" — 1), do
not provide bounds and in fact increase sharply.

D. Effect of fairness patterns on performance

In this subsection we study how different fairness pat-
terns affect the optimal energy distribution in the WSN
and also the form of the optimal information routing.

We consider an example with 25 sensor nodes uniformly
distributed on a grid [0,10] x [0,10] and a sink node
located at (—3, 5). Other problem parameters were set at
£ = 0.00001, C' = 0.00005, n = 0.0001, and fui, = 10.
Below we present two examples with different fairness
pattern on the network. The first pattern considered
is a totally unfair network, where every node could
potentially send all the information, o; = 1 for all

i, The optimal energy distribution and flow rates are
presented in Figure 5. We note that although all the
information could potentially originate from a single
node, the optimal is to use several nodes, the ones
that are within a certain radius from the sink to obtain
all the information. Also note that in this solution the
information is routed directly to the sink.

Fig. 5. Optimal energy distribution and flow rates, o; = 1

Our second experiment considers a more restrictive
uniform fairness pattern. We set a; = 0.05 for all 7.
Although this is not a totally fair system, now every node
can send at most 5% of the total information. We present
the optimal energy distribution and flow rates in Figure
6. Note that some information originates far enough that
it is beneficial to route the information through other
nodes, for example information that originates in nodes
on the 4th column is not routed directly to the sink.

Both, the reason for not sending all the information
from a single node in the first example and deciding
to route the information in the second, are decisions
that minimize the transmission cost, which from the
objective function of (4) is nd;(efis — 1). The reason
to send information from nodes that are further away
than available capacity is not to increase the exponent
fi; too much, and the reason to route the information
that is far away is to keep at zero the contribution of
terms which have a big d;;.



Fig. 6. Optimal energy distribution and flow rates, «; = 0.05

E. Types of solution

In this section we investigate when the optimal solution
prefers to route the information directly and when it
is more efficient to hop through a different node. An
alternative is to use the optimization model to study
how the hopping behavior of the optimal routing is
affected for different parameter values. Here we take a
different approach, we plan to study the effect of the
reception cost C' on the hopping behavior for a very
simple example that allows an analytical solution which
can be verified computationally.

We consider a problem with two sensor nodes with
all the information to be extracted on the one furthest,
distance 1, from the sink (i.e. «; = 0, as = 1). The
question is when node 2 prefers to send the information
directly to the sink and when it prefers to route it through
node 1. For simplicity we place node 1 exactly mid-way
between node 2 and the sink. Assume also that f,;, = 1.

Here we are simply comparing the solution in which
we route all the information directly, at a cost hy =
B+ n(e — 1), with the case in which we send f; from
node 2 to node 1 and then to the sink, and fo =1 — f;
directly form node 2 to the sink, at a cost h.(f1) =
B+Cfi+ in(efr — 1) +n(e'~/+ — 1). The amount of
information that will be routed will be the minimizer of

he(f1) on the domain [0, 1].

We now determine the value of C for which Ho(f1) =
he(f1) —hs >0 for all f; € [0,1]. These are the values
of C for which any amount of hopping is more expensive
than routing directly. It is easy to show that Ho(f1) is a
convex function and H(0) = 0, therefore to guarantee
that Ho(f1) > 0 for all f; > 0 it is sufficient to show
that H(.(f1) > 0. This is equivalent to C' > n(e — 3).

Direct flow from (1,0) to (0,0)

.
10° 10" 10°
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Fig. 7. Direct flow to the sink as a function of the reception cost C'
In Figure 7 we plot the total value of flow that is
sent directly to the sink from node 2 for different
reception cost values. This computational example has
G = 0.00001 and n = 0.1. The critical value for the
reception cost is C' = 0.2218, which is plotted as a
vertical line in Figure 7. Note that the computational
experiment validates this critical value, and that for any
value of C node 2 sends information directly to sink.

V1. CONCLUSIONS

In this paper we addressed the need for a systematic
methodology by developing formal non-linear optimiza-
tion models of static WSN that yield fundamental per-
formance bounds and optimal designs. We presented
models for two problems: 1. maximizing the total infor-
mation gathered subject to energy constraints (on sens-
ing, transmission and reception) and 2. minimizing the
energy usage subject to information constraints. Other
constraints in these models correspond to fairness and
channel capacity (assuming noise without interference).
We showed that the two problems are in fact equivalent
to each other in terms of a correspondence between
optimal solutions and constraints. However, we showed
that the second model is computationally more efficient.



We then conducted several studies with these optimiza-
tion models. (1) We discussed how the dual variable
of the information constraint can be used to determine
the optimal trade-off between information extraction
and energy expenditure. (2) We presented computational
results of how simple heuristics (sending directly to sink
and shortest multi-hop paths) compare to the optimal
solution as network size increases. While these were
illustrative examples, in our future work we would like
to compare more sophisticated heuristics similar to those
presented in [8]. (3) We investigated the effect of fair-
ness pattern on minimum energy requirements, optimal
energy distribution, and flow patterns. One interesting
result is that when there are no fairness constraints the
optimal way for all nodes to send directly to the sink
is for them to send information in such a way that
their contributions to the objective function are all equal.
(4)Our final result pertains to the effect of reception cost
on whether the the optimal routing solution sends its
information directly to the sink. We identified a threshold
for the reception cost beyond which the optimal solution
routes all information directly to the sink.

There are a number of natural extensions of this work we
plan to undertake in the future. Many of these involve
the model variations we mentioned in section IV-C —
in particular enriching our models to incorporate data
aggregation, mobility and interference (which would be
meaningful in a CDMA environment as opposed to
the interference-free TDMA/FDMA scheduled access
assumed in this paper).
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