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ABSTRACT

The efficacy of data aggregation in sensor networks is a func-
tion of the degree of spatial correlation in the sensed phe-
nomenon. While several data aggregation (i.e., routing with
data compression) techniques have been proposed in the lit-
erature, an understanding of the performance of various data
aggregation schemes across the range of spatial correlations
is lacking. We analyze the performance of routing with com-
pression in wireless sensor networks using an application-
independent measure of data compression (an empirically
obtained approximation for the joint entropy of sources as a
function of the distance between them) to quantify the size
of compressed information, and a bit-hop metric to quantify
the total cost of joint routing with compression. Analyti-

cal modeling and simulations reveal that while the nature of _

optimal routing with compression does depend on the corre-
lation level, surprisingly, there exists a practical static clus-
tering scheme which can provide near-optimal performance
for a wide range of spatial correlations. This result is of
great practical significance as it shows that a simple cluster-
based system design can perform as well as sophisticated
adaptive schemes for joint routing and compression.
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1. INTRODUCTION

In view of the severe energy constraints of sensor nodes,
data aggregation is widely accepted as an essential paradigm
for energy-efficient routing in sensor networks. For data-
gathering applications in which data originates at multiple
correlated sources and is routed to a single sink, aggregation
would primarily involve in-network compression of the data.
Such compression, and its interaction with routing, have
been studied in the literature before; prior work has exam-
ined distributed source coding techniques such as Slepian-
Wolf coding [10], [6], joint source coding and routing tech-
niques [5], and opportunistic compression along the shortest
path tree [4]. What is missing, though, is an understanding
of how well these schemes perform across a broad range of
spatial source correlations. :

We begin our paper by using simplified models of these
schemes in order to examine their performance across a wide
range of spatial correlations. To do so, we need application-
independent abstractions for compression and routing cost.
The novel methodology we employ in this paper uses joint-
entropy (using an empirically obtained approximation for
the joint entropy of sources as a function of the distance
between them) to quantify the size of compressed informa-
tion, and a bit-hop metric to quantify the total cost of joint
routing with compression.

Using these measures, we then evaluate three qualitatively
different schemes that help us understand the space of inter-
actions between routing and compression. In routing-driven
compression data is routed through shortest paths to the
sink, with compression taking place opportunistically wher-
ever these routes happen to overlap [3] [4]. In compression-
driven routing the route is dictated in such a way as to
compress the data from all nodes sequentially - not nec-
essarily along a shortest path to the sink. Our analysis of
these schemes shows that they each perform well when there
is low and high spatial correlation respectively. As an ideal



performance bound on joint routing-compression techniques,
we consider distributed source coding in which perfect source
compression is done a priori at the sources using complete
knowledge of all correlations.

‘We use insights obtained from this analysis to develop a
simpler scheme based on static, localized clustering that gen-
eralizes these techniques. Analysis shows that the optimal
cluster size depends on the number of sources, sink position
and the amount of correlation between sources. However, a
surprising result — the principal contribution of this paper
— is that for a fixed network topology, there exists a near-
optimal cluster size that performs well over a wide range
of spatial correlations. The implication, that there exist
relatively simple energy-efficient aggregation protocols for
correlated sources, has obvious practical importance. From
a systems perspective, this is a very desirable result be-
cause it implies that we do not need highly sophisticated
compression-aware routing algorithms that adapt to chang-
ing correlations in the environment (which may even incur
additional overhead for adaptation), and therefore simplifies
the overall system.

The rest of the paper is organized as follows. In Section
2, we describe some of the related work to place our work
in context. We describe our methodology in Section 3, and
then present our evaluation of the three routing schemes
in Section 4. Section 5 describes our simplified clustering
scheme, and Section 6 summarizes the contributions of this

paper.

2. RELATED WORK

Data-centric routing based on attribute naming versus
end-to-end address-centric routing has been recognized as
an important design principle in sensor networks [1], [4].
These include the opportunistic aggregation scheme that we
describe as routing-driven compression (RDC) in this paper.
The use of data aggregation operators to optimize the per-
formance of sensor database-type queries is described in [9].
The possibility of adapting the aggregation routing struc-
tures to data content and availability in the network has
been explored in [7].

In this paper, we consider compression of correlated sources
as the principal form of data aggregation employed in the
network. This is the approach taken by several works with
an information-theoretic perspective. Distributed source cod-
ing (which we refer to as DSC) such as Slepian-Wolf coding
[10] and the techniques proposed in [6] suggest mechanisms
to compress the content at the original sources in a dis-
tributed manner without explicit routing-based aggregation.
However the implementation of DSC in a practical setting
is still an open problem and likely to incur significant addi-
tional costs since it requires the complete knowledge of all
source correlations a priori at each source. We find the idea
of a compression-driven routing (CDR) scheme such as that
described in [5] to be useful for high-correlation scenarios
and we therefore explore it in this paper.

The performance of aggregation under an arbitrary, gen-
eral model is considered in [2]. While [2] takes a more general
view of aggregation functions rather than as compression of
spatially correlated sources, our finding here that there ex-
ists a near-optimal clustering scheme that performs well for
a wide range of correlations is in keeping with the results
presented in [2].

We describe a clustering scheme in this paper that pro-
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vides near-optimal compression performance across a range
of spatial correlations. The motivation of prior studies de-

scribing clustering and hierarchical routing in wireless ad-

hoc networks [12] has been different, focusing primarily on

reduced overhead and scalability. LEACH [11] is an example

of sensor network technique that also utilizes static clusters.

While the authors of LEACH do describe the utilization

of cluster-heads as aggregation points, they do not discuss

compression of spatially correlated data and the dependence

of optimal cluster-sizes on spatial correlations.

3. ASSUMPTIONS AND METHODOLOGY

Our focus is on applications which involve continuous data
gathering for large scale and distributed physical phenom-
ena using a dense wireless sensor network where joint rout-
ing and compression techniques would be useful. An ex-
ample of this would be the collection of data from a field of
weather sensors. If the nodes are densely deployed, the read-
ings from nearby nodes is likely to be highly correlated and
hence contain redundancies, because of the inherent smooth-
ness/continuity properties of the physical phenomenon.

To compare and evaluate different routing-plus-compression
schemes, we will need a common metric. Our focus is on
energy expenditure, and we have therefore chosen to use
the bit-hop metric. This metric counts the total number
of bit transmissions in the network (per cycle). Formally,
let T = (Vr, ET) represent the directed aggregation tree (a
subgraph of the communication graph) corresponding to a
particular routing scheme with compression, which connects
all sources to the sink. Associated with each edge e = (u,v)
is the expected number of bits b. to be transported over
that edge in the tree (per cycle). For edges emanating from
sources that are leaves on the tree, the amount of data gen-
erated by a single source. For edges emanating from ag-
gregation points, the outgoing edge may have a smaller bit
count than the sum of bits on the incoming edges, due to
aggregation. For all other intermediate nodes on the tree,
the outgoing edge will contain the same number of bits as
the incoming edge. The bit-hop metric Er is simply:

ET=Zbe

eeT

(1)

There are two possible criticisms of this metric that we
should address directly. The first is that the total trans-
missions may not capture the “hot-spot” energy usage of
bottleneck nodes, typically near the sink. However, an al-
ternative metric that better captures hot-spot behavior is
not necessarily relevant if the a priori deployment and en-
ergy placement ensure that the bottlenecks are not near the
sink or if the sink changes over time. The second possible
criticism is that the bit-hop metric does not explicitly incor-
porate reception costs. However, the use of bit-hop metric
is justified because it does in-fact implicitly incorporate re-
ception costs. If every bit transmission incurs the same cor-
responding reception cost in the network, the sum of these
transmission and reception costs will be proportional to the
total number of bit-hops.

To quantify the bit-hop performance of a particular scheme,
therefore, we need to quantify the amount information gen-
erated by sources and by the aggregation points after com-
pression. For this purpose we use the entropy H of a source,
which is a measure of the amount of information it orig-
inates [10]. In this paper, we consider only lossless com-
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Figure 1: Empirical data (from the rainfall data-
set [13]) and approximation for joint entropy of lin-
early placed sources separated by different distances

pression of data. In order to characterize correlation in an
application-independent manner, we use the joint entropy
of multiple sources to measure the total uncorrelated data
they originate. Theoretically, using entropy-coding tech-
niques this is the maximum possible lossless compression
of the data from these sources. In general, the extent of cor-
relation in the data from different sources can be expected
to be a function of the distance between them. We used
an empirical data-set pertaining to rainfall’ [13] to exam-
ine the amount of correlation in the readings of two sources
placed at different distances from each other. Since rain-
fall measurements are a continuous valued random variable
and hence would have infinite entropy, we present results
obtained from quantization. The range of values was nor-
malized for a maximum value of 100 and all readings 'binned’
into intervals of size 10. Figure 1 is a plot of the average
joint entropy of multiple sources as a function of inter-source
distance.

The figure shows a steeply rising convex curve that reaches
saturation quickly. This is expected since the inter-source
distance is in multiples of 50km. From the empirical curve,
a suitable model for the average joint entropy of two sources
(H2) as a function of inter-source distance d is obtained as:

2

’ 1

HQ(d) H1+[1 (§+1)]H1

Here c is a constant that characterizes the extent of spatial
correlation in the data. It is chosen such that when ¢ =
d, Hy = %HL In other words, when ¢ = d, the second
source generates half the first node’s amount in terms of
uncorrelated data.

Finally, this leaves open the question of how to obtain a
general expression for the joint entropy of n sources at ar-
bitrary locations. This is an extremely hard problem. How-

'This data-set consists of the daily rainfall precipitation for
the pacific northwest region over a period of 46 years. The
final measurement points in the data-set formed a regular
grid of 50km x 50km regions over the entire region under
study. Although this is considerably larger-scale than the
sensor networks of interest to us, we believe the use of such
“real” physical measurements to validate spatial correlation
models is important.
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ever, as we shall show later, this is precisely what we need
in order to study the performance of various strategies for
combined routing and compression. To this end, we now
present a constructive technique to calculate approximately
the total amount of uncorrelated data generated by a set of
n nodes.

From 2, it appears that on average, each new source con-
tributes an amount of uncorrelated data equal to
1- @—:——ﬁ]Hl’ where we take the d as the minimum dis-

tance to an existing set of sources. This suggests a con-
structive iterative technique to calculate approximately the
total amount of uncorrelated data generated by a set of n
nodes:

1. initialize a set Sy = {v1} where v is any node. We
will denote by H(S;) the joint entropy of nodes in set
Si; where H(S1) = Hi. Let V be the set of all nodes.

2. Iterate the following for i =2:n

(a) Update the set by adding a node v; where v; € V/
Si—1 is the closest (in terms of Euclidean dis-
tance) of the nodes not in S;_; to any node in
Si-1, l.e. set S; = S;—1,v;. ’

(b) Let di be the shortest distance between v; and
the set of nodes in S;_1. Then calculate the joint
N\ = ) _ 1
entropy as H(S;) = H(Si—1) +[1 @]Hl
3. The final iteration yields H(S,) as an approximation
of H,

We should note that the final approximation H(S,) is
guaranteed to be greater than the true joint entropy
H(v1,v2,....,vn). Thus it does represent a rate achievable
by lossless compression. In the simple case when all nodes
are located on a line equally spaced by a distance d, this
procedure would yield the expression:

1

Hu(d) = Hy + (n— 1)[1 — W]H

1 (3)
That this closed-form expression 2 provides a good ap-

proximation for a linear scenario is validated by our mea-
surements from the rainfall data set, as seen in figure 1.

4. ROUTING SCHEMES

Given this framework, we can now evaluate the perfor-
mance of different routing schemes across a range of spatial
correlations. We choose three qualitatively different rout-
ing schemes; these schemes are simplified models of schemes
that have been proposed in the literature.

1. Distributed Source Coding (DSC): If the sensor nodes
have perfect knowledge about their correlations, they
can encode/compress data so as to avoid transmitting
redundant information. In this case, each source can
send its data to the sink along the shortest path pos-
sible without the need for intermediate aggregation.

?In addition to this convex curve, as a precaution against in-
correct generalization, we also used some linear and concave
models for the joint entropy as a function of inter-source dis-
tance and the correlation parameter c. Both analytical and
simulation results from these models were found to provide
similar results to the convex model and are therefore not
included here, due to space considerations.
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2. Routing Driven Compression (RDC): In this scheme,
the sensor nodes do not have any knowledge about
their correlations and send data along the shortest
paths to the sink while allowing for opportunistic ag-
gregation wherever the paths overlap. Such shortest
path tree aggregation techniques are described, for ex-
ample, in [3] and [4].

3. Compression Driven Routing (CDR): As in RDC, nodes
have no knowledge of the correlations but the data is
aggregated close to the sources and initially routed so
as to allow for maximum possible aggregation at each
hop. Eventually, this leads to the collection of data
removed of all redundancy at a central source from
where it is sent to the sink along the shortest possible
path. This model is motivated by the scheme in [5].

4.1 Comparison of the schemes

Consider the arrangement of sensor nodes in a grid, where
only the 2n — 1 nodes in the first column are sources. We
assume that there are n; hops on the shortest path between
the sources and the sink. For each of the three schemes, the
paths taken by data and the intermediate aggregation are
shown in figure 2.

Using the approximation formulae for joint entropy and
the bit-hop metric for energy, the expressions for the energy
expenditure (E) for each scheme are as follows.

For the idealized DSC scheme, each source is able to send
exactly the right amount of uncorrelated data, and each
source can send the data along the shortest path to the sink,
so that:

(4)

Lemma: Epsc represents a lower bound on bit-hop costs
for any possible routing scheme with lossless compression.
Proof: The total joint information of all (2n — 1) sources is
Hay, 1. As discussed before, no lossless compression scheme
can reduce the total information transmitted below this level.
Each bit of this information must travel at least n1 hops to
get from any source to the sink. Thus ny Hz,—1, the cost of
the idealized DSC scheme, represents a lower bound on all
possible routing schemes with lossless compression. O

In the RDC scheme, the tree is as shown in figure 2 (mid-
dle), with data being compressed along the spine in the mid-
dle. It is possible to derive an expression for this scenario:

Epsc =ni1Han-1

n—1 n—2
Erpc = (n1 —n)Haon—1 + 2H Z(l) + Z Hojqa (5)

i=1 =0

For the CDR scheme, the data is compressed along the
location of the sources, and then sent together along the
middle, as shown in figure 2. It can be shown that for this
scenario:

n
Ecpr=mn1Han_1 +2 ZH«;

=1

(6)

The above expressions, in conjunction with the expression
for H, presented earlier, allow us to quantify the perfor-
mance of each scheme. Figure 3 plots the energy expendi-
ture for the DSC, RDC and CDR schemes as a function of
the correlation constant ¢, for different forms of the corre-
lation function. For these calculations, we assumed a grid
with n; = n = 53. :
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Figure 2: Illustration of routing for the three

schemes: DSC, CDR, and RDC
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In our analysis, we ignore the costs associated for each
compressing node to learn the relevant correlations (this cost
is particularly high in DSC where each node must learn the
correlations with all other source nodes, thus our model for
DSC is very idealized). However this still provides a useful
metric for evaluating the performance of the various schemes
and allows us to treat DSC as the optimal policy providing
a lower-bound on the bit-hop metric. From this figure it is
clear that CDR approaches DSC and outperforms RDC for
higher values of ¢ (high correlation) while RDC performance
matches DSC and outperforms CDR for low ¢ (no corre-
lation). This can be intuitively explained by the tradeoff
between compressing close to the sources and transporting
information toward the sink. CDR places a greater empha-
sis on maximizing the amount of compression close to the
sources, at the expense of longer routes to the sink, while
RDC does the reverse. When there is no correlation in the
data (small ¢), no compression is possible and hence it is
RDC that minimizes the total bit-hop metric. When there
is high correlation (large c), significant energy gains can be
realized by compressing as close to the sources as possible
and hence CDR performs better under these conditions.

What is interesting in these figures is that it appears that
neither RDC nor CDR perform well for intermediate correla-
tion values. This suggests that in this range a hybrid scheme
may provide energy-efficient performance closer to the DSC
curve. CDR and RDC can be viewed as two extremes of a
clustering scheme, with CDR having all data sources form
a single aggregation cluster before sending data towards the
sink while RDC has each source acting as a separate cluster
in itself. A hybrid scheme would be one in-which sources
form small clusters and data is aggregated within them at
a cluster head (CDR), which then sends data to the sink
along a shortest path (RDC). This insight leads us to an
examination of suitable clustering techniques.

5. AGENERALIZED CLUSTERING SCHEME

The idea behind using clustering for data routing is to
achieve a tradeoff between aggregating near the sources and
making progress towards the sink. In addition to factors
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Figure 4: Illustration of clustering for a two-
dimensional field of sensors

like number of nodes and position of sink, the optimal clus-
ter size will also depend on the amount of correlation in the
data originated by the sources (quantified by the value of
c). Generally, the amount of correlation in the data is high-
est for sensor nodes located close to each other and can be -
expected to decrease as the separation between nodes in-
creases. Once an optimal clustering based on correlations is
obtained, aggregation of data is required only for the sources
within a cluster, after which the aggregated data can be
routed to the sink without the need for further aggregation.

5.1 Description of the scheme

‘We now describe a simple, location-based clustering scheme.
Given a sensor field and a cluster size, nodes close to each
other form clusters. The clusters so formed remain static
for the lifetime of the network. Within each cluster, the
data from each of the nodes is routed along a shortest path
tree (SPT) to a cluster head node. Data aggregation takes
place at each of the intermediate hodes along the SPT. The
cluster head then sends the aggregated data from its clus-
ter to the sink along a multi-hop path with no intermediate
aggregation. This is illustrated in Figure 4.

We analyze the performance of the clustering scheme for
a orie-dimensional array of sensors first, and then provide
simulation results for both 1D and 2D scenarios.

5.2 Analytical Results

We begin with an analysis of the energy costs of cluster-
ing for a setup involving a linear array of sources to better
understand the tradeoffs. Consider n source nodes linearly
placed with unit spacing (i.e. d = 1) on one side of a 2-D
grid of nodes, with the sink on the other side, and assum-
ing the same correlation model H, = Hi(1 + ('11—;22) that
we have been using. We consider n/s clusters each consist-
ing of s nodes. The cluster head for each cluster is located
at the end of each cluster. Within each cluster, the data
is compressed sequentially from the one end to the cluster-
head end. The cluster head then sends the compressed data
along a shortest path involving D hops to the sink. The
total bit-hop cost for this routing scheme is therefore

Es(C) = %(Eintra + Eea:tra) (7)
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where Eintre and Fezirq are the bit-hop cost within each
cluster and the bit-hop cost for each cluster to send the ag-
gregate information to the sink respectively. We can obtain
expressions for each of these

i—1
H,
1+c) !

8 8
Eintra = ZHi = Z(l +
i=1 i=1
(s—1)s
2(1 +C))H1

s—1
H.\D
l-i—c) !

nH1[1+—(f:——1—)— +

21 +¢)
D (s—1)D
— 10
s T oara (10)
The optimum value of the cluster size s,p: can be deter-

mined by setting the derivative of the above expression equal
to zero. It can be shown that this

2Dc

= (s+

®)

1+ 9)

Eeztra =

- = E.(c)

Sopt =

(11)

Note that sop: depends on the distance from the sources to
the sink® and the degree of correlation c¢. This expression
makes it clear why RDC (which corresponds to s = 0) per-
forms better than CDR (which corresponds to s = n) when
the correlation is low and vice versa.

Figure 5 shows (based on the analysis) how different clus-
ter sizes perform across a range of correlation levels, based
on the analysis presented above for a set of 105 linearly
placed nodes. As expected the small cluster sizes and large
cluster sizes perform well at low and high correlations re-
spectively. However, it appears that an intermediate cluster
size near 15 would perform very well across the whole range
of correlation values. We now try to quantify this notion of
a “near-optimal” static cluster size.

Let E*(c) = Es,,. (c) represent the optimal energy cost for
a given correlation ¢. We can formalize the notion of near-
optimal as finding a cluster size s = sp, that minimizes the

31t is, however, assumed that D > n, so there is an implicit
dependence on n.
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maximum difference metric, i.e.

min max |Es(c) — E*(c)] (12)
s c€[0,00)
It can be shown that for any arbitrary s, this difference
is maximum at one of the two extremes (i.e. at ¢ = 0 and
¢ — 00). To minimize the above metric it suffices to find

8 = Sno such that

E,,,(0) — E*(0) = Es,,(c0) — E*(c0) (13)

From Equation (10), we can derive the following expres-
sions for energy costs of clustering schemes for the two ex-
treme correlation values:

E,(0) :nHl(l-i—s—;l‘-i-D) (14)
E*(0) =nH:1(1+ D) (15)
Bu(o0) = nHi(14 2) (16)
E*(oco0) =nHi(1 + %) (17)
Therefore to satisfy condition (13), we have that
(1+252+D-(+D) = (1+2-(1+2)
ek T

Solving the quadratic expression that results from the
above equation, and simplifying by letting D = n, we get
that

' Vn+1-1

Sno = ———5——— (19)

From Equation (19), we can also determine the worst case
maximum difference between this near-optimal solution and
the optimal solution (which occurs at the two extremes, ¢ =
0 and ¢ = 00):

max Es,. (c)—E*(c) =
c€[0,00)

E,,, (0) — E*(0)

_ nHl(\/8n+1-—1)
= — 0 @
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Figure 7: Comparisons of the performance of differ-
ent cluster-sizes for a two-dimensional field of ran-
domly placed sources, showing the impact of both
(a) sink position and (b) network size.

This is illustrated in Figure 6, in which the costs are plot-
ted with respect to the cluster sizes for a few different val-
ues of the spatial correlation. The figure shows clearly that
although the optimal cluster size does increase with cor-
relation level, the near-optimal static cluster size performs
very well across a range of correlation values. In this fig-
ure the near optimal cluster size is sno = 14 (assuming
D = n = 105) and is indicated by the vertical line in the
plot — the marks on the vertical line show the energy cost
of the optimal solution corresponding to the nearest ¢ curve
for comparison.®.

“We should note that our difference metric for near-
optimality, i.e. F — E* is different from the ratio metric
E/E* that is treated in [2]. For the latter metric, it turns out
that s = n is the best choice and offers a constant approx-
imation ratio of 2 (lower than the O(logn) ratio described
in [2], due to the restricted topology we consider here).
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5.3 Simulation Results

We now consider a two-dimensional arrangement where
each node is both a data source and router. This removes
the rather artificial constraint of having only a linear array of
sources which we considered earlier for ease of analysis. The
simulated networks consist of sensor nodes placed at random
positions with a uniform density of one node per unit area
within a N X N unit square region, which is then divided
into smaller grids of size g X g units. The nodes within
each of the smaller grids form a cluster. In our results, the
cluster size denotes the area of each cluster, i.e, a g X g unit
grid is said to have cluster size ¢g> (with a uniformly random
distribution, this is equal to the average number of sensor
nodes in the cluster).

Figure 7 shows the energy performance of the scheme for
various cluster sizes. The trends are similar to those ob-
served in the mathematically-analyzed case of the linear ar-
ray of sources. As expected, a large cluster size is optimal
for low correlation (small ¢) and a small cluster size per-
forms optimally for high correlation (large c¢). While the
optimal cluster size depends on the value of ¢, we again find
that there are certain intermediate cluster sizes that perform
near optimally over a wide range of spatial correlations. This
near-optimal cluster size depends only on network topology
(sink position) and network size (total number of nodes).

Figure 7(a) compares the performance of the scheme for
different sink positions. It shows gradual increase in the near
optimal cluster size from 4x4 for sink position (72,72) to 9x9
for sink position (288,288). As the sink moves farther from
the sources, it is useful to spend more energy trying to ag-
gregate close to the sources and to have a smaller number of
clusters(larger cluster size) in order to minimize the number
of long-haul data routes to the sink. Figure 7 (b) shows the
performance of the scheme for two different network sizes.
It should be noted that the average distance to the sink also
increases with network size. For the 72x72 network, the near
optimal cluster size is about 6x6 while for the 36x36 network
it is about 4x4. In general, the performance of larger cluster
sizes improves for larger networks, as expected. .

Other experiments we have conducted, for which we do
not present results here due to space limitations, show that
the results are also robust to the form of the joint entropy
function (i.e. whether it is linear, convex or concave with
respect to inter-node distances).

An important feature of our clustering scheme is that it is
static (non-adaptive) and the memberships of a cluster do
not change over time. We performed extensive simulations
to examine the sensitivity of the scheme to various factors.
We also found that the results do not vary with the choice of
cluster head within each cluster. Hence, rotating the clus-
ter head (as discussed, for example, in [11]) would ensure
a longer network lifetime. This also allows the clustering
to be static over time. This cluster size is relatively small
compared to the total network size and hence clustering is
simple to implement and does not involve much communi-
cation overhead for setup and maintenance.

6. CONCLUSION AND FUTURE WORK

In this paper, we have argued that, for a given network
size, there exists a simple, static clustering scheme that is
near-optimal (in terms of energy efficiency) across a wide
range of spatial correlations. We have also sketched a simple



implementation of this clustering that leverages geographic
routing techniques. Our result has important consequences—
it obviates the need for sophisticated adaptive routing and
compression schemes.

There are several promising avenues of research that this
work can lead to. We have not considered temporal cor-
relations and temporal compression in this work; whether
our conclusions hold up under these circumstances remains
to be seen. Similarly, our work has ignored lossy compres-
sion; it is conceivable that our clustering scheme can provide
bounded distortion under lossy compression.
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