
SenZip: An Architecture for Distributed En-route
Compression in Wireless Sensor Networks ∗

Sundeep Pattem, Godwin Shen, Ying Chen, Bhaskar Krishnamachari, Antonio Ortega
Department of Electrical Engineering - Systems

University of Southern California, Los Angeles, CA, USA.

ABSTRACT
In-network compression is essential for extending the
lifetime of data gathering sensor networks. The progress
made in designing distributed schemes for en-route com-
pression has not been followed by their adoption in de-
ployments. This can be attributed to the lack of devel-
opment of software that permits code-reuse and inter-
operability, while also retaining the flexibility to incor-
porate future developments. To address this gap, we
propose SenZip, an architectural view of compression as
a service that interacts with standard networking com-
ponents. SenZip is designed for achieving completely
distributed en-route compression and its utility is illus-
trated by presenting (a) details of how it helps map
specific algorithms to software modules, and (b) results
from mote experiments for data gathering with two dif-
ferent compression schemes, DPCM and 2D wavelets.

1. INTRODUCTION
Sensor networks are aiding the evolution of monitor-

ing systems for earth and space science applications [7,
15, 20]. Frequently, these systems require continuous
gathering of correlated data. It is possible to exploit
the correlations for efficient and long-lived operation
via in-network compression, and since this compression
will happen en-route to the sink, the relationships be-
tween compression and routing have been studied exten-
sively [3, 4, 10, 11, 13, 18, 22].Algorithms for in-network
compression of sensor data are by definition spatially

∗This work was supported in part by NASA under grant
AIST-05-0081 and by the NSF through CAREER award
CNS-0347621.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESSA Workshop ’09, April 16, 2009, San Francisco, California, USA
Copyright c©2009 ACM 978-1-60558-533-8/09/04... $5.00

distributed, i.e., the data-set itself is distributed across
sensors, so that each sensor performs different coding
tasks as data is transmitted. Recent work has shown
that it is possible to achieve distributed compression
with elementary computations and over well-known rout-
ing structures [13, 21]. However, only limited efforts
have been devoted to understanding the problems asso-
ciated with distributed node configuration for compres-
sion. For efficiency and scalability, only a small amount
of “local” communications should be needed to deter-
mine which nodes exactly perform which compression
computations, over what data and how the data is then
routed to them. Distributed configuration is also desir-
able as it can help reduce initialization and reconfigu-
ration times since it is not necessary for a sink node to
first gather information about all nodes.

Most earlier work has focused on theory and simula-
tions to understand performance limits. These studies,
and some limited system implementations (e.g., [21]),
have therefore had limited impact on technology adop-
tion and sensor network software development because
they have not yielded modular and inter-operable soft-
ware. In this paper we move towards addressing this
problem by (i) proposing a novel architecture, SenZip,
that fits into the overall networking software architec-
ture for sensor networks and (ii) demonstrating that a
practical design based on this architecture can be de-
ployed on motes and can achieve distributed configura-
tion and modularity.

The SenZip architecture specifies a compression ser-
vice that can encompass different compression schemes
and its modular interactions with standard networking
services such as routing. This architecture enables a
distributed node configuration for compression, just as
existing systems make it possible for sensors to config-
ure themselves for routing in a distributed manner. The
architecture proposal is based on (a) lessons from over-
all architectural principles for sensor networks [14], (b)
our own experience in implementing a practical wavelet-
based distributed compression system, and (c) identify-
ing common patterns in existing compression schemes.

To concretely illustrate the utility of the architecture,
we show how it can incorporate two different compres-
sion schemes, DPCM and 2D wavelets and present re-
sults from mote experiments for data gathering in which
nodes can configure themselves for compression under
different routing conditions. This is the first system
demonstration of wavelet-based distributed compression
for multi-hop sensor networks.

2. MOTIVATION AND APPROACH
In order to achieve the potential gains from existing

schemes in practice, we believe that a heuristic but prin-
cipled view of a common architecture for distributed en-
route compression has to be arrived at. The key moti-
vation is to spur the development of modular and inter-
operable software that will lead to the rapid adoption
and deployment of efficient data gathering sensor net-
works. We also believe that such an architecture will
allow the development of novel approaches and schemes
for distributed compression. Our approach is informed
by a system implementation that is described in Sec-
tion 5 and principles of an overall sensor network archi-
tecture [5, 14]. With this background, we first obtain
a broad, minimal abstraction that encompasses several
existing compression schemes and their routing struc-
tures. This abstraction forms the core of our proposal
for an architecture that defines a compression service
and its modular interactions with standard routing com-
ponents, possibly with well-defined, modest extensions.

2.1 Proposed Abstraction
In what follows, we focus only on compression tools

to exploit spatial correlation. Note that exploiting tem-
poral correlation is a simpler problem, since this can
generally be achieved via local processing at each sen-
sor. We now abstract components that are necessary for
a range of spatial compression system.

First, spatial compression requires data exchange be-
tween nodes in the vicinity of each other. In what follows
we call aggregation graph a graph specifying those
data transfers between nodes that are needed to per-
form joint encoding (different from those data trans-
fers whose sole purpose is to relay already encoded data
to the sink). For example, in a predictive compression
scheme data at a certain node is encoded after subtract-
ing a prediction based on data from neighboring nodes
(those specified by the graph).

Second, nodes that “collaborate” to perform joint en-
coding will have to carry out computations that in many
cases, e.g., distributed wavelets, will be different for dif-
ferent sets of nodes. Thus, we will discuss a notion of
role assignment: each node has to determine which
part of the computation it has to perform in order to
achieve a common compression goal. A role assignment

is also necessary, otherwise nodes will not know how to
properly process their own data nor data of their neigh-
bors. For example, a distributed wavelet transform will
not be invertible unless the roles of the nodes are prop-
erly assigned.

Third, in a distributed compression system the goal
is to accumulate all compressed data in one or more fu-
sion centers. Thus, since data eventually has to flow
towards the fusion center, an ordering of communica-
tion and compression operations along the aggregation
graph is necessary to carry out distributed compression
correctly and efficiently. Thus, a transmission sched-
ule1 must be defined to allow each node to collect data
from its neighbors in the aggregation graph before com-
pressed data can even be generated, let alone forwarded
to the sink. Moreover, since compression is done in a
distributed manner, compression computations are not
done at a central node but instead must be carried out
in a particular order across multiple nodes. The order
in which communications and computations are carried
out also impacts the overall efficiency of a distributed
compression scheme.

Finally, once data from a given node is fully com-
pressed it is then routed to the sink along a routing
tree using standard routing protocols like CTP [8]. Thus,
an efficient routing tree is also necessary to forward com-
pressed data to the sink. The generality of this abstrac-
tion is discussed as part of related work.

3. THE SENZIP ARCHITECTURE
We propose and detail SenZip, an architecture for dis-

tributed en-route compression in sensor networks. The
primary goals of SenZip are are flexibility, modularity,
and distributed configuration and reconfiguration. In
addition to the lessons from the principles of an overall
architecture for sensor networks and common abstrac-
tion identified for existing compression schemes, our de-
sign of the SenZip architecture is based on a system
implementation effort.

3.1 SenZip Specification
The SenZip architecture specifies:

1. a compression service that can encompass different
compression schemes and,

2. its interactions with standard routing and other
networking services.

Figure 1 is a block diagram representation of the Sen-
Zip architecture. It needs to be emphasized that a sys-
tem based on SenZip would be completely distributed
and components shown in Figure 1 would reside on each
1A transmission schedule defines the order in which nodes
transmit data

 FORWARDING ROUTING LINK ESTIMATION

COMPRESSION AGGREGATION

 APPLICATION (sensing)

 MAC

COMPRESSION SERVICE

measurements

consistency
 partial, full
data packets partial data

 packets

metric

 parent,
hop count

aggregation
 table

Figure 1: The SenZip architecture. A completely distributed compression service is enabled by having
the interacting components shown here at each network node.

network node. Of course, compressed data from all
nodes in the network finally reaches the base station
where it is jointly reconstructed. We now describe the
services, their responsibilities and interactions.

3.1.1 Compression Service

The compression service consists of the aggregation
module and the compression module.

1. Aggregation module: The aggregation module dis-
seminates and gathers information for maintaining the
local aggregation tree by exchanging messages. This
information is collated in an aggregation table. The
aggregation graph abstraction allows the definition of a
generic table that works for different compression schemes.
Pseudo-code for such a table is shown in Figure 2.

2. Compression module: This module has the fol-
lowing functions: (a) From the aggregation tree struc-
ture provided by routing, this module obtains the role
played by the node - which computations to perform and
for which nodes, the parameters involved in computa-
tion and ordering information - the sequence in which
nodes process and forward data. (b) It receives raw
measurements from the application and packets with
data that needs further processing from forwarding. (c)
This module performs further processing over the par-
tially processed data in storage and initiates processing
for data of the node itself. The computations will be
specific to the compression scheme and based on the

struct attributes {
int upstreamOnehopNeighborhoodSize;

int downstreamOnehopNeighborhoodSize;
...

} weight_attributes;

struct entry {
int node_id;

weight_attributes weights;

int further_hops;

tableEntry *neighborEntry[MAX_NHOOD_SIZE];

} tableEntry;

AggregationTable tableEntry[MAX_NHOOD_SIZE];

Figure 2: Aggregation table example. The re-
cursive entry structure allows the same defini-
tion for different compression schemes.

role and parameter information. (d) Data that is still
partially processed is packetized and sent to forwarding.
For data that is fully processed, it checks if enough has
been buffered in storage to fill a packet. If yes, per-
forms quantization and bit reduction operations, and
sends the packet to forwarding.

3.1.2 Networking components

1. Routing engine: In addition to the standard rout-

ing functionality, this component in SenZip has an extra
interface to the compression service. It reports informa-
tion of path routing that is relevant for the local aggre-
gation, for example, the parent and hop count in a tree
topology. Optionally decisions on changing parent can
be coordinated with the compression service, which can
also provide a specific metric for the routing cost.

2. Forwarding engine: While partially processed data
from nodes in the local aggregation tree is allowed to
be intercepted by the compression service, fully pro-
cessed data is forwarded directly along the route to the
sink. Optionally, it might apply different settings, such
as power, number of retries etc., for the different types
of packets.

3. Link estimator: Efficient link estimation requires
a limited choice of links to monitor [6]. To remove a
link (or node in the neighbor table) that is part of the
current aggregation tree, joint decision has to be made
with the compression service to maintain consistency in
the data processing.

3.2 Discussion
We emphasize that the configuration of roles, param-

eters and ordering is to be achieved purely locally from
the aggregation graph and based on the compression
scheme. There is no centralized decision and dissemina-
tion. This is a design criteria for compression schemes
that can fit into the architecture. There is an overhead
cost for the exchange of beacons to maintain the ag-
gregation table. Whether the overhead is acceptable or
not depends on the relative frequency of measurement
versus the frequency of topology changes. If the fre-
quency of topology changes is very high, the potential
gains from compression might be overwhelmed by the
cost of packet exchanges to maintain the table.

Which component is best suited for constructing and
maintaining the local aggregation graph? One option
is to give this additional responsibility to the routing
engine, which already generates and receives messages
to setup path routing. However, we believe it is much
better for the compression service to handle the aggre-
gation graph operations. This will aid code-reuse and
flexibility by restricting the changes to the routing en-
gine to providing a single extra interface.

To ensure flexibility and extensibility, important goals
for an overall sensor network architecture [5, 14], Sen-
Zip only details the interactions between compression
and networking services and not the interfaces. The
components within the compression service also follow
the larger goal of “meaningful separation of concerns”.
The abstraction helps avoid over-specification, by en-
suring that the compression components are required
by most existing schemes. Overall, the specification
of SenZip has the features of a desirable programming

paradigm described by Tavakoli et al. [14].

4. ALGORITHMS TO ARCHITECTURE
We now discuss two compression schemes that work

over tree routing topologies - a simple differential en-
coding scheme, DPCM, and a more sophisticated 2D
wavelet scheme developed by Shen and Ortega [13]. We
describe how these schemes fit into the SenZip architec-
ture.

4.1 Algorithm details
Assume a given graph G(V, E) with vertices defined

by node locations and edges defined by communica-
tion links between nodes. Assume a tree graph T (V, R)
(R ⊂ E) rooted at a single sink node. Suppose every
node is indexed by an integer n ∈ V , Cn is the set of
child indices of n, and ρ(n) is the parent index of n in T .
We say that that node n has depth k when it is k-hops
from the sink. Also let xn denote the data measured
at node n. For simplicity, we assume data is forwarded
and compressed along the same tree T , i.e., the aggrega-
tion graph is T . In both schemes, we define the following
transmission schedule. Initially, nodes without any chil-
dren (leaf nodes) forward raw data to their parents in T .
Then, every node n waits until it receives data from all
children m ∈ Cn before it transmits its own data. This
induces an ordering of the communications which is nec-
essary for nodes to compress data as it is forwarded to
the sink.

4.1.1 DPCM

Leaf nodes first forward raw data to their parents.
Each node n waits to receive raw measurements from
all its children in T and then computes residual predic-
tion errors as differences from its own measurement as
follows:

dm = xm − xn ∀m ∈ Cn

sn = xn. (1)

Node n then forwards the compressed prediction resid-
uals of its children (and other descendants) and its own
raw measurements to its parent ρ(n).

4.1.2 2D wavelet

This transform is constructed as follows for a single
level of decomposition. First, vertices of G are assigned
roles by being split into disjoint sets of predicts (odd
depth) and updates (even depth) based on depth in T .
Next, a high-pass “detail” coefficient dm for each pre-
dict node m is computed by subtracting from the data
at node m, xm, a prediction that is based on informa-
tion available at neighboring nodes (where neighbors are

table entry element DPCM 2D wavelet
weight attributes not needed upstreamOnehopNeighborhoodSize ≡

number of children in tree
downstreamOnehopNeighborhoodSize ≡
1 (for parent in tree)

further hops 1 (upstream only) 2 for upstream node, 1 for downstream

neighborEntry[].further hops 0 1 upstream node, 0 for downstream

Table 1: Aggregation table initialization

defined as nodes that are 1-hop away in the aggregation
graph):

dm = xm −
1

(|Cm| + 1)

∑

k∈Cm

xk −
1

(|Cm| + 1)
·xρ(m) (2)

Finally, a low-pass “smooth” coefficient sn for each
update node n is computed by adding to xn a correc-
tion term based on the detail coefficients of neighboring
nodes:

sn = xn +
1

2(|Cn| + 1)

∑

k∈Cn

dk +
1

2(|Cn| + 1)
· dρ(n) (3)

Under the given transmission schedule, each node only
has access to data from its descendants and only for-
wards its own data and data from its descendants. Since
each node n uses data from its parent, transform com-
putations for n cannot be completed at n. However,
note that terms corresponding to children Cm and par-
ent ρ(m) are explicitly separated in the computations.
This allows us to compute partial wavelet coefficients
and to update partial coefficients as data flows towards
the sink to make them full wavelet coefficients as de-
scribed in [3, 13].

This process is summarized as follows. Leaf nodes first
forward raw data. Each predict node m waits to receive
data from its children, then generates a partial coeffi-
cient dp(m) using data from its children as dp(m) =
xm − 1

(|Cm|+1)

∑
k∈Cm

xk. Then m forwards its partial

dp(m) (and data from descendants) and ρ(m) completes
the computation as d(m) = dp(m) − 1

(|Cm|+1) · xρ(m).

Each update node performs similar operations. This
process is illustrated in Figure 3. Note that this induces
an ordering of the computations.

4.2 Relating algorithms to SenZip
We now describe the operation overview for SenZip

based systems deploying the two algorithms.

4.2.1 Initialization

The aggregation component configures aggregation ta-
ble entries and initiates message exchanges (with its
neighbors) in order to gather information needed to
build the aggregation table. The specifics of table en-
tries for each scheme are shown in Table 1. This is

1

32

4

5 6 Nodes 5 and 6 forward raw
data x5 and x6 to node 4

Node 4:
(a) Generate partials dp(4), sp(5) and sp(6)
(b) Forward [dp(4) sp(5) sp(6)] to node 3

Node 2 forwards raw
data x2 to node 1

Node 3:
(a) Complete partial 4 to get d(4)
(b) Complete partials 5, 6 to get s(5), s(6)
(c) Generate partial sp(3)
(d) Forward [d(4) s(5) s(6) sp(3)] to node 1

Node 1:
(a) Generate partials sp(2) and dp(1)
(b) Forward [dp(1) sp(2) sp(3) d(4) s(5) s(6)]

Figure 3: Partial computations for 2D wavelet. Gray

(white) circles denote even (odd) nodes. Operations at

each node are done in the order listed.

shared with the compression component which can then
identify their role, parent in the tree and children in the
tree, and ordering of computations, to configure each
compression scheme as follows:

DPCM: The roles are uniform i.e. all nodes have the
same role. The ordering is that leaf nodes start for-
warding and intermediate nodes wait for all one-hop
upstream descendants (children) in aggregation tree.

2D wavelet: The roles are decided based on depth in
tree from root, odd depth nodes are predicts nodes and
even depth nodes are updates. The parameters in com-
putation are equal to the weights, the number of one-
hop (children) and two-hop (grandchildren) upstream
descendants. The ordering is that leaf nodes start for-
warding and intermediate nodes wait for partial coef-
ficients of one-hop (children) and two-hop (grandchil-
dren) upstream descendants in the aggregation tree.

4.2.2 Data forwarding and compression

DPCM: At each node n, the partially processed data
to be received is raw data from children and that to be
sent is raw data for node n and fully processed data of
the children is the differentials according to Equation 1.

2D wavelet: At each node, partially processed data
is raw data from children and grandchildren. Sent par-
tially processed data is raw data for node n and all chil-
dren, and fully processed data is the coefficients for all
grandchildren according to Equations 2 and 3.

4.2.3 Reconfiguration

The routing engine informs aggregation component of
a change in parent (and hop count) in the tree.

DPCM: When parent changes at node n, send an ex-
plicit parent change message to the old parent ρold(n)
and initiate a message to the new parent. When a par-
ent change message is received by ρold(n), remove child
form table. The number of children is decremented, so
waiting criteria in ordering changes.

2D wavelet: When parent of node n changes, send
explicit delete message to ex-parent ρold(n) and add
message to new parent. If the hop count changes par-
ity from before, propagate the change to all upstream
nodes (descendants in subtree). When a parent change
message is received by ρold(n), remove child from ta-
ble. The number of children and grandchildren is decre-
mented, so waiting criteria in ordering changes. ρold(n)
sends a grandparent change message to ρ(ρold(n)) where
changes in ordering are made.

5. SYSTEM IMPLEMENTATION
We now present results from the implementation of

a TinyOS [16] system for distributed en-route compres-
sion based on the SenZip architecture. This implemen-
tation effort has informed the design of the SenZip ar-
chitecture and in turn, concretely demonstrates it in
software. The results provide proof of distributed con-
figuration of compression, illustrate the flexibility for de-
ploying different compression schemes within the same
framework and demonstrate for the first time a sophis-
ticated distributed compression scheme (based on 2D
wavelets) for sensor networks.

5.1 Experimental Evaluation
An in-lab testbed with 15 Tmote Sky nodes is used

for the evaluation. Ambient temperature is the sensed
phenomenon and we introduce temperature gradients
switching hot lamps on and off. The setting and topol-
ogy are illustrated in Figure 4. Raw measurements use
16 bits, packet size is 28 bytes, 18 bytes available for
data, i.e., 9 measurements, the time for 9 measurements
defines an epoch, experiments last 24 epochs (216 sam-
ples) and a uniform bit allocation for all nodes is used.

The same experiments (sequence of switches) are re-
peated for the two different tree topologies in Figure 4
with different bit allocations per sample. To enforce a
particular global tree, we bypass the link estimator and
set ETX = 1 for intended parent and ETX = inf for
all other nodes. Also, the maximum power setting is
used and packet losses are not considered.

1.Distributed configuration of compression: In these
experiments, nodes were turned on and exchanged com-
pression beacons and self-configured the roles, parame-

Figure 4: Experiment setting and two different
routing trees, (a) tree 1 and (b) tree 2.

ters and ordering according to the topology. Figures 5
(a) and (b) show the reconstruction at node 7 which
has different depth and hence roles, in the two trees.
Figures 5 (c) and (d) compare the reconstruction error
at the nodes for each topology. The RMS error ranges
between .01oC to .16 oC over the temperature range
of 20oC to 28oC for 3 bit quantization of coefficients for
original sample of 16 bits. Since good and similar recon-
struction is obtained, it is verified that the compression
operations were correctly configured in a completely dis-
tributed manner.

2. Modularity and Flexibility: We are able to suc-
cessfully demonstrate correct operation and good re-
construction with the separate DPCM and 2D wavelet
compression components over the same routing and for-
warding components. This shows the modularity and
flexibility of the implementation based on the SenZip
architecture.

6. RELATED WORK
Work by Scaglione and Servetto was the first to ex-

plicitly consider the problem of joint routing and com-
pression in sensor networks [11]. The correlated data
gathering problem and the need for jointly optimizing
the coding rate at nodes and routing structure were then
established [4, 10]. Pattem et al. analyzed the rel-
ative performance of various routing and compression
schemes based on using an empirically motivated model
for the joint entropy as a function of inter-source dis-
tances [10] and showed that there exist efficient corre-
lation independent routing structures. Zhu et al. have
shown that under many network scenarios, a shortest
path tree has performance that is comparable to an op-
timal correlation aware routing structure [22]. The work
discussed above is mostly theoretical in nature and ig-
nores details of how compression is actually achieved.
We now discuss practical compression schemes and how
they fit the abstraction described in this paper.

One particular class of methods only send trend data
or data models within a given cluster. In Ken [1] and

0 50 100 150 200

21

22

23

24

25

26

27

sample number

te
m

pe
ra

tu
re

 (
ce

nt
ig

ra
de

)

original signal
reconstruction

0 50 100 150 200
21

22

23

24

25

26

27

28

sample number

te
m

pe
ra

tu
re

 (
ce

nt
ig

ra
de

)

original signal
reconstruction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

node id

R
M

S
 e

rr
or

 (
ce

nt
ig

ra
de

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

node id

R
M

S
 e

rr
or

 (
ce

nt
ig

ra
de

)

(a) node 7, tree 1, 2 bits (b) node7, tree2, 2 bits (c) tree1, all nodes, 3 bits (d) tree2, all nodes, 3 bits

Figure 5: Node 7 has different roles in (a) tree 1, as predict node and (b) tree 2, as update node. Sim-
ilar and good reconstruction performance for (c) tree 1 and (d) tree 2 verifies correct and distributed
self-configuration of roles, parameters and ordering for 2D wavelet over different topologies.

PAQ [17] nodes are separated into clusters and assigned
roles as cluster head or non-cluster head. Then, nodes
forward data to cluster heads on some aggregation graph,
model parameters for data in each cluster are estimated
at cluster heads and only model parameters are for-
warded to the sink along a routing tree. Note that an
ordering of communications is implicit in this process.
Another simple form of distributed data compression
is differential encoding. For example, in DOSA [21],
nodes are assigned roles as either correlating (C) or non-
correlating (NC) nodes, NC nodes forward data to C
nodes and C nodes compute and forward differentials
of their NC neighbors. More sophisticated techniques
have also been proposed [9]. Distributed computation
of differentials must be done in a predefined order on an
aggregation graph. Differentials are forwarded along a
routing tree. A variety of distributed 2D wavelet trans-
forms have also been developed [2, 3, 12, 13, 19]. The
computations are defined by a given role assignment
(“even” and “odd” nodes) on a routing tree (or aggrega-
tion graph) and an ordering of computations and com-
munications is needed for unidirectional computations.

Culler et al. [5] advocate the need for an overall sensor
network architecture. In a follow up paper by Tavakoli
et al. [14], a set of design principles is proposed for the
development of elements of the networking software ar-
chitecture. In addition to the traditional goals of code
reuse and interoperability, these include extensibility.
This requirement arises in view of the relative immatu-
rity of the field, where a rigid and complete modulariza-
tion stifles innovation. They recommend a hybrid ap-
proach, with modularity for low level components (un-
derlying infrastructure) and flexibility and extensibility
at the higher layer (programming paradigm). The com-
pression service in SenZip is viewed as a programming
paradigm and the specification does not make strict def-
initions of modules and interfaces to allow for flexibil-
ity. The aggregation graph abstraction allows for newer
compression schemes, providing extensibility.

ApplicationC

CollectionC

CtpP

CtpForwarding
EngineC

CtpRouting
EngineC

Link
EstimationC

SenZipP

CtpP++

CtpForwarding
EngineC

CtpRouting
EngineC++

Link
EstimationC

ApplicationC

CollectionC

CompressionC

Figure 6: CTP extension to support a compres-
sion service.

7. CONCLUSIONS AND FUTURE WORK
We argue that distributed configuration is a key re-

quirement for distributed compression in sensor net-
works. Motivated by this need, we propose the Sen-
Zip architecture, and present preliminary results from
an ongoing system implementation based on it. These
results indicate the potential of SenZip in developing re-
usable, flexible and extensible software for data gather-
ing applications. Our current efforts are on extending
and improving the implementation for a public software
release. A critical milestone is to demonstrate that a
SenZip system can achieve distributed reconfiguration
in the face of network dynamics. Compression schemes
simpler to reconfigure than the 2D wavelet are also be-
ing investigated. We are working on an extension of the
Collection Tree Protocol (TinyOS proposal TEP 123 [8])
to include a modular compression service, along with a
library of compression schemes that can be readily de-
ployed. The code structure of CTP and the extension
are illustrated in Figure 6. For further optimization of
distributed compression, the system needs to include
locally adaptive bit allocation, temporal and entropy
coding. To be fully operational, the system needs to be
integrated with existing synchronization, sleep schedul-
ing and low power listening components.

8. REFERENCES

[1] D. Chu, A. Deshpande, J. Hellerstein, and
W. Hong. Approximate data collection in sensor
networks using probabilistic models. In IEEE Intl.
Conf. on Data Engineering, April 2006.

[2] A. Ciancio and A. Ortega. A distributed wavelet
compression algorithm for wireless multihop
sensor networks using lifting. In Proc. of the IEEE
Intl. Conf. on Acoustics, Speech, and Signal
Processing, March 2005.

[3] A. Ciancio, S. Pattem, A. Ortega, and
B. Krishnamachari. Energy-efficient data
representation and routing for wireless sensor
networks based on a distributed wavelet
compression algorithm. In Proc. of the
ACM/IEEE Intl. Symp. on Information
Processing in Sensor Networks, April 2006.

[4] R. Cristescu, B. Beferull-Lozano, and M. Vetterli.
On network correlated data gathering. In Proc. of
the 23rd Conf. of the IEEE Comm. Society,
March 2004.

[5] D. Culler, P. Dutta, C. T. Eee, R. Fonseca, J. Hui,
P. Levis, J. Polastre, S. Shenker, I. Stoica,
G. Tolle, and J. Zhao. Towards a sensor network
architecture: Lowering the waistline. In Proc. of
the 10th Workshop on Hot Topics in Operating
Systems, June 2005.

[6] R. Fonseca, O. Gnawali, K. Jamieson, and
P. Levis. Four bit wireless link estimation. In
Proc. of the 6th Workshop on Hot Topics in
Networks, November 2007.

[7] GBROOS. Great barrier reef ocean observing
system. http://imos.org.au/gbroos.html/.

[8] TinyOS 2.0 Network Protocol Working Group.
Collection tree protocol, tinyos enhancement
proposal (tep) 123.
http://www.tinyos.net/tinyos-2.x/doc/.

[9] H. Luo, Y. Tong, and G. Pottie. A two-stage
dpcm scheme for wireless sensor networks. In
Proc. of the IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing, April 2005.

[10] S. Pattem, B. Krishnamachari, and R. Govindan.
The impact of spatial correlation on routing with
compression in wireless sensor networks. ACM
Trans. on Sensor Networks, 4(4), August 2008.

[11] A. Scaglione and S.D. Servetto. On the
interdependence of routing and data compression
in multi-hop sensor networks. In Proc. of The 8th
ACM Intl. Conf. on Mobile Computing and
Networking, pages 140–147, August 2002.

[12] G. Shen and A. Ortega. Joint routing and 2D
transform optimization for irregular sensor
network grids using wavelet lifting,. In Proc. of

the ACM/IEEE Intl. Symp. on Information
Processing in Sensor Networks, April 2008.

[13] G. Shen and A. Ortega. Optimized distributed 2D
transforms for irregularly sampled sensor network
grids using wavelet lifting. In Proc. of the IEEE
Intl. Conf. on Acoustics, Speech, and Signal
Processing, April 2008.

[14] A. Tavakoli, P. Dutta, J. Jeong, S. Kim, J. Ortiz,
P. Levis, and S. Shenker. A modular sensornet
architecture: Past, present, and future directions.
In Proc. of the Intl. Workshop on Wireless
Sensornet Architecture, April 2007.

[15] A. Terzis, R. Musaloiu-E., J. Cogan, K. Szlavecz,
A. Szalay, J. Gray, S. Ozer, M. Liang, J. Gupchup,
and R. Burns. Wireless sensor networks for soil
science. Intl. Jrnl. on Sensor Networks on
Environmental Sensor Networks, January 2009.

[16] TinyOS. An operating system for wireless
embedded sensor networks.
http://www.tinyos.net/.

[17] D. Tulone and S. Madden. PAQ: Time series
forecasting for approximate query answering in
sensor networks. In Proc. of the European Conf. in
Wireless Sensor Networks, February 2006.

[18] P. von Rickenbach and R. Wattenhofer. Gathering
correlated data in sensor networks. In Proc. of the
DIALM-POMC Joint Workshop on Foundations
of Mobile Computing, pages 60–66, October 2004.

[19] R. Wagner, R. Baraniuk, S. Du, D.B. Johnson,
and A. Cohen. An architecture for distributed
wavelet analysis and processing in sensor
networks. In Proc. of the ACM/IEEE Intl. Conf.
on Information Processing in Sensor Networks,
April 2006.

[20] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees,
and M. Welsh. Fidelity and yield in a volcano
monitoring sensor network. In Proc. of the 7th
Symp. on Operating Systems Design and
Implementation, December 2006.

[21] Y. Zhang, S. Chatterjea, and P. Havinga.
Experiences with implementing a distributed and
self-organizing scheduling algorithm for
energy-efficient data gathering on a real-life sensor
network platform. In First IEEE Intl. Workshop
on From Theory to Practice in Wireless Sensor
Networks, June 2007.

[22] Y. Zhu, K. Sundaresan, and R. Sivakumar.
Practical limits on achievable energy
improvements and useable delay tolerance in
correlation aware data gathering in wireless sensor
networks. In Proc. of the 2nd IEEE Comm. Soc.
Conf. on Sensor and Ad Hoc Communications
and Networks, September 2005.

http://imos.org.au/gbroos.html/
http://www.tinyos.net/tinyos-2.x/doc/
http://www.tinyos.net/

	Introduction
	Motivation and Approach
	Proposed Abstraction

	The SenZip architecture
	SenZip Specification
	Compression Service
	Networking components

	Discussion

	Algorithms to architecture
	Algorithm details
	DPCM
	2D wavelet

	Relating algorithms to SenZip
	Initialization
	Data forwarding and compression
	Reconfiguration

	System Implementation
	Experimental Evaluation

	Related Work
	Conclusions and Future Work
	References

