
PayFlow: Micropayments for Bandwidth
Reservations in Software Defined Networks

David Chen, Zhiyue Zhang, Ambrish Krishnan, Bhaskar Krishnamachari
Viterbi School of Engineering

University of Southern California
Los Angeles, CA 90089

Email: {chen749, zhiyuezh, ambrishk, bkrishna}@usc.edu

Abstract—We present PayFlow, a fine-granularity QoS micro-
payment system that allows end devices in a software-defined
network to make and pre-pay for guaranteed bandwidth reser-
vations for their flows within the network for an arbitrary period
of time. PayFlow combines payments using digital currency and
storage of transaction records in a distributed ledger with queue-
based QoS management using software-defined networks. While
the PayFlow architecture is agnostic to the choice of digital
currency, ledger technology and SDN platform used, we present
a proof of concept implementation of PayFlow using OpenFlow
and the IOTA cryptocurrency and distributed ledger, that we
evaluate using the Mininet emulator.

Index Terms—Micropayments, QoS, SDN, OpenFlow, Digital
Currency, Distributed Ledger, IOTA

I. INTRODUCTION

We address in this paper the question of how users or
devices in a network could pay at a fine granularity for
quality of service (QoS) guarantees. Specifically, we consider
and address how users or devices could pay for bandwidth
reservation for their flows through switches in a network for an
arbitrary time duration, on the order of seconds. Our proposed
system leverages and combines two significant advances of
the past decade - software defined networking with centrally
controlled open-switches [1] and blockchain, or more broadly,
distributed ledger technology for making electronic payments
and storing pertinent transaction records in an immutable
manner [2]–[4].

Traditionally, such payments have been challenging at a
fine-granularity because of the overhead associated with estab-
lishing a trusted relationship between network users and ad-
ministrators. Consequently, in practice, typically network users
can only request higher quality service on an aggregate basis
over a long period of time after establishing a credible trust-
based customer relationship (e.g. paying monthly subscription
for a particular tier of service that allows transportation of a
specified maximum volume of data at a high rate, with the paid
subscription itself subject to prior credit checks into ensure the
network provider can be paid in a timely manner.)

We believe there is a benefit to a more agile approach to
economic interactions over bandwidth provision that allows
participants (network users and providers) without prior trusted
relationships to transact with each other at a fine temporal
granularity – over short intervals on the order of seconds
– and fine device granularity — between end host devices

and software-defined network controllers in a completely
automated manner (i.e., without requiring human intervention
for each transaction). This will not enable more friction-
less interactions with personal devices carried by mobile or
roaming users, it will also enable more dynamic, decentral-
ized, autonomous interactions between end host devices and
the networks they connect to. We believe such autonomous
interactions between end devices and networks will be an
increasing need for the oncoming age of IoT networks where
the ratio of devices to the humans that administer and own
them is likely to increase by several orders of magnitude
compared to today.

We present PayFlow, a system that allows end hosts in a
software-defined network to make and prepay for bandwidth
reservations for their flows for a defined period of time of
arbitrary length, on the order of seconds or less. We design
PayFlow to work with software defined networks, defining
a standardized way for hosts to interact with the switch
controller to make these reservations with micropayments for
relevant transactions that could be made using a cryptocur-
rency and being recorded on an immutable distributed ledger.
The architecture and design of PayFlow is intended to be
modular and agnostic to the particular choice of blockchain
or distributed ledger protocol used and the particular soft-
ware defined network system or controller. This modularity
and abstraction is particularly important as digital currencies,
distributed ledger technologies and software-defined network-
ing systems continue to evolve technically and mature and
gain in adoption. However, to make our ideas concrete, we
demonstrate it in this work through a reference implementation
that uses the IOTA cryptocurrency and distributed ledger
technology and the OpenFlow SDN controller.

Our present implementation is limited to a single domain,
i.e. a single network provider. As such it is most relevant to set-
tings such as towns, industrial-parks, airports, malls, campuses
or cloud networks where a single provider is managing traffic
and responsible only for QoS provision for all users within its
own domain. We are currently working on generalizing this
work to multi-domain systems, with more complex economic
interactions crossing multiple trust boundaries, certainly a
harder problem but one for which we believe the present work
may be a stepping stone or buiding block.

The rest of the paper is organized as follows. In section II



we present and discuss some relevant prior work. In section III
we present a high level overview of our proposed system
architecture. In section IV, we describe the various messages
exchanged between end hosts and the SDN controller in
PayFlow. In section V we present our reference implemen-
tation of PayFlow using IOTA and OpenFlow SDN. In sec-
tion VI, we demonstrate the functioning of this implementation
using the Mininet emulator. Finally, we present concluding
thoughts including our plans and ideas for future work in
section VII.

II. RELATED WORK

QoS management in networks has a rich history with a lot
of attention paid to the subject particulary in the 1990’s as
multimedia applications started to emerge as a significant use
case for data networks [5]–[8].

In the past decade, a major revolution in networking has
been the introduction of programmable software-defined net-
works, most prominently the OpenFlow architecture which
separates the distributed data plane from a more centralized
control planes to allow for more flexible software-based man-
agement of networks and allowing greater dynamic recon-
figurability of network switches [1], [9], [10]. More recent
works have therefore tackled QoS management specifically
in the context such software-defined networks. Egilmez et
al. [11] propose OpenQoS an OpenFlow controller design
for multimedia delivery with end-to-end Quality of Service
(QoS) support that optimizes routes to fulfill the required QoS.
Akella and Xiong consider SDN-based bandwidth allocation
in a cloud network [12] to meet QoS requirements for priority
cloud users using Open vSwitch. However, like most other
work on SDN, these papers do not describe an micropayment
mechanism to go hand in hand with QoS management.

We build on the prior literature on QoS management in this
work; in particular, the bandwidth reservation over a path of
routers on a per-flow basis that we adopt could be seen as an
extension of integrated services [5]. While integrated services
was originally proposed to be used with a specific distributed
protocol such as RSVP, in our case we are implementing
it for a single-domain network using the centralized control
capabilities inherent in the OpenFlow SDN system. Going
beyond prior work on QoS management in SDN, moreover,
we explicitly address and show, to our knowledge for the first
time, how micropayments can be integrated with bandwidth
reservation in single-domain networks.

There has been prior work on incentives and payment
based routing in the context of mobile ad hoc networks.
As far back as 2000, Buttyan and Hubaux [13] proposed
the use of a digital currency called “nugglets" to provide
incentives for routing in a mobile ad hoc network, and in
our group’s prior work in 2006 [14] we explored the use of
price-based incentives to generate reliable multi-hop routes
in lossy wireless networks. However, these early works did
not have the benefit of the invention and growing adoption
of modern cryptocurrencies which can eliminate the double-
spend problem without requiring centralized trusted third

parties, a likely reason that these early proposals have not
seen adoption in practical systems. PayFlow is designed with
modern distributed ledger/blockchain-based cryptocurrencies
such as Bitcoin [2], Ethereum [3], IOTA [4] in mind. We
borrow some lessons from our recent work on implementing
the streaming data payment protocol (SDPP) [15] which is a
client-server application-layer protocol that allows clients to
pay servers for streaming data in real-time.

III. PAYFLOW SYSTEM ARCHITECTURE

PayFlow is a software defined micropayment for QoS
system that allows clients on end-hosts to connect to a corre-
sponding server on an SDN switch controller to find out about
bandwidth reservation options along with their price and place
an order for a bandwidth reservation for a specified duration
on switches that its flows will traverse. Upon payment, the
switch controller ensures that the desired reservation is made,
and revokes it after the specified duration.

The architecture of PayFlow is shown in figure 1. PayFlow
uses a PAYMENTS channel to make digital currency based
micropayments and a RECORDS channel to store all rele-
vant transaction records in an immutable ledger. These are
similar to the corresponding channels in Streaming Data Pay-
ment Protocol (SDPP) [15]. However, unlike that prior work,
PayFlow also introduces two additional channels (REQUEST,
CONTROL). The REQUEST channel is used by the client on
the end host to exhange messages with the server on the SDN
controller in order to learn about QoS options and pricing
and to place the bandwidth reservation order. The CONTROL
channel is essentially using the control channel of the SDN
to implement the requested reservation once payment for it
has been made. Lastly, the DATA channel in the PayFlow
architecture is the data plane of the network.

IV. PAYFLOW REQUEST MESSAGES

To make a QoS request on the network, the client contacts
the local controller through the REQUESTS channel. A typical
message exchange can be seen in figure 2.

The REQUESTS channel in PayFlow is implemented using
classic client-server software using JSON format. We describe
some of the details of the JSON-formatted messages used for
the REQUESTS channel here. A typical message format is
shown in listing 1.

{
" message_ type " : " " ,
" d a t a " : " " ,
" s i g n a t u r e " : " " ,
" v e r i f i c a t i o n " : " "

}

Listing 1. General message format

First the client establishes TCP connection to the server on
port 6113 and sends a HELLO message (listing 2). The server
then sends a MENU (listing 3) with different QoS options and
their price.



Figure 1. Architecture of PayFlow

{
" message_ type " : " HELLO" ,
" d a t a " : " " ,
" s i g n a t u r e " : " " ,
" v e r i f i c a t i o n " : " "

}
Listing 2. HELLO message

{
" message_ type " : "MENU" ,
" d a t a " : {

" menu " : {
" l e v e l 0 " : " p r i c e o f l e v e l 0 " ,
" l e v e l 1 " : " p r i c e o f l e v e l 1 " ,
" l e v e l 2 " : " p r i c e o f l e v e l 2 " ,
" l e v e l 3 " : " p r i c e o f l e v e l 3"

} ,
" u n i t " : " s " ,
" c u r r e n c y " : " i o t a "

} ,
" s i g n a t u r e " : " s i g n a t u r e o f s e l l e r " ,
" v e r i f i c a t i o n " : " "

}
Listing 3. Example MENU message (pricing in seconds)

The MENU message consists of two main parts. First, the
data consists of the various levels of QoS and their prices
in a certain digital currency (IOTA in case of our reference
implementation). Second, it contains the wallet address of the
controller that the client needs to send the payment to. The
MENU message also includes a signed digest.

The client can then choose to purchase a certain level of
QoS or decline. If it chooses to purchase, it then it must submit
a transaction through the payments channel for the amount
specified.

Once the client has made the payment, it has to send
an ORDER message (listing 4). Note that IP address 1 and
IP address 2 are interchangeable as of now. It is possible
that in the future one way QoS (download/upload) can be
implemented. The controller can check the record transaction
ID to verify the IP address pairing and service level. Then,
the controller can check for payments from the client address
for verification of payment. In addition, the controller must
also confirm by checking the network that the requested QoS
can be implemented (an example is given in section 3). After
the controller has verified the order and the payment, it sends
OPENFLOW ENQUEUE messages to the necessary switches
on the network in order enqueue packets between IP address
1 and IP address 2 in a priority queue. After the time specified



Figure 2. Protocol messages in PayFlow

by the order has elapsed, the controller reverts this action.

{
" message_ type " : "ORDER" ,
" d a t a " : {

" l e v e l " : " r e q u e s t e d l e v e l " ,
" c u r r e n c y " : " c u r r e n c y used " ,
" a d d r e s s " : " c l i e n t a d d r e s s " ,
" p u b l i c−key " : " c l i e n t key " ,
" i p 1 " : " f i r s t IP " ,
" i p 2 " : " second IP " ,
" t ime " : " d u r a t i o n i n u n i t s "

} ,
" s i g n a t u r e " : " s i g n e d d i g e s t " ,
" v e r i f i c a t i o n " : " t r a n s a c t i o n ID "

}

Listing 4. ORDER message

V. IMPLEMENTATION WITH IOTA AND OPENFLOW

For the implementation, we decided to write the controller-
side code for PayFlow using the POX framework (version
0.5.0) using OpenFlow 1.0. The documentation and source
code can be found at https://github.com/noxrepo/pox and
https://www.openvswitch.org/ respectively. The POX modules
used include the discovery and host tracker modules. We used
both of these modules for topology discovery. For interacting
with the IOTA tangle, we used the Pyota package (version
2.0.6), found at https://github.com/iotaledger/iota.lib.py

We are making our implementation of PayFlow using Open-
Flow and SDN available publicly as open source, online at
https://github.com/anrgusc/PayFlow. The controller-side code
for PayFlow is divided into three parts. First, the PriceDynami-
cRequestsController is the main class that gets instantiated
when the controller starts up. For every switch that connects
to the controller, this class instiantiates a separate switch
object (detailed next). In addition, it also handles events like
a service level being changed or a host tracker event. Next,
the PriceDynamicPaymentsSwitch has the logic to learn MAC
address to port mappings using a standard learning switch
logic. It also has the logic to send specific OpenFlow messages

such as enqueue, output and flood. For packets with no known
flow and no service level associated with it, they are sent
onto the interface on the default queue using the MAC-to-port
mappings. Lastly, QoSBroker is the class that handles client
request. A TCP server is started by the QoSBroker class and it
handles sending protocol messages. The basic functionality of
the QoSBroker includes sending the MENU when a HELLO
message is received and raising an event when a valid ORDER
message is received.

For switches we used OpenVSwitch version 2.9.0 with no
modification. Queues are created using the ovs-vsctl utility on
Linux. When the network starts, a static amount of queues
with different maximum bandwidths are created on each
interface. As per the OpenVSwitch standard, these queues
use Linux’s hierarchical token bucket queueing discipline (see
https://linux.die.net/man/8/tc-htb).

On the client side, we created a sequential Python program
that uses the same Pyota package for Tangle interaction. It
sends a HELLO message to the controller, displays the MENU
that is sent back and prompts the user for the order. The user
can then type in the order, including the two IP addresses
and the service level. After obtaining input from the user, the
program makes an API call using Pyota to send the transaction
and the records message to the Tangle. The records message
consists of the two IP addresses of the service, the service
level, the duration and the transaction ID of the payment.

VI. DEMONSTRATION USING MININET

To demonstrate PayFlow, we used the Mininet emulator
(version 2.2.2) on a Xiaomi Notebook Air with an Intel i5
processor. The test topology we used can be shown in Figure 3.
To test the system, we first instantiated the toplogy on Mininet
and started up the POX controller. Then, a queue setup script
is run in order to configure the queues using ovs-vsctl. By
default, the controller will route all packets through the default
queue on each interface. To visually demonstrate the QoS
changes, we used iperf (version 2.0.10). An iperf server is
started on hosts three and four on port 4000.

In the first experiment involving a single flow, shown in
figure 4, an iperf client is run from host h1, connecting to



Figure 3. Topology used for mininet evaluation of payflow

Figure 4. Demonstration of PayFlow with Single Flow

host h3. Measurements were taken every second for a minute.
The client program was run during the test, a little after 10
seconds into the test, requesting a level two service between
host h2 and host h3 for 15 seconds. As can be seen, during
this period of time, the flow receives a higher bandwidth of
about 150 Mbps and then reverts back to the default of 50
Mbps.

We also show an example involving two concurrent flows
in figure 5. Here, in addition to an iperf client from h1 to h3,
an iperf client is also started on h2, connecting to host h4. The
same iperf parameters were used. The client program was ran
once a little after 20s to request level two service between hosts
h1 and h3 for 30 seconds, and again at around 45 seconds,
to request level two service between hosts h2 and h4 for 15
seconds. Both flows are seen to receive the higher level of
bandwidth during their corresponding reservation period.

Here we have presented a couple of sample scenarios to
demonstrate the operation of PayFlow as a proof of concept.
We are currently undertaking more systematic evaluations of
its performance in terms of metrics such as latency, scalability
with respect to various system parameters.

VII. SUMMARY AND FUTURE WORK

We have presented PayFlow, a system to enable micro-
payments for flow bandwidth reservations in software de-

Figure 5. Demonstration of PayFlow with Two Flows

fined networks. PayFlow has been implemented using the
IOTA cryptocurrency and distributed ledger and OpenFlow
(specifically the POX controller framework in conjunction
with OpenVSwitch). We are making our implementation of
PayFlow available to the research community as an open
source system, online at https://github.com/anrgusc/PayFlow.

In the future we would like to conduct a more thorough eval-
uation of PayFlow, including on a real experimental testbed.
We would also like to work on the harder problem of multiple
domains interacting with each other on an economic basis
to allow flows to make payments for bandwidth reservations
when their routes span different SDN-controlled domains. We
believe that a decentralized architecture for such a system
could be designed using the present architecture of PayFlow
as a building block.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” White
Paper, 2008.

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[4] S. Popov, “The tangle,” URL https://iota. org/IOTA_Whitepaper. pdf,
2017.

[5] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture: an overview - rfc 1633,” IETF, Tech. Rep., 1994.

[6] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE Journal on selected areas in communi-
cations, vol. 14, no. 7, pp. 1228–1234, 1996.

[7] P. Ferguson and G. Huston, Quality of service: delivering QoS on the
Internet and in corporate networks. Wiley New York, 1998, vol. 1.

[8] N. Giroux and S. Ganti, Quality of Service in ATM networks: State-of-
the-art traffic management. Prentice-Hall, Inc., 1998.

[9] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[10] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[11] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Openqos:
An openflow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Asia-Pacific Signal
& Information processing association annual summit and conference
(APSIPA ASC), 2012.



[12] A. V. Akella and K. Xiong, “Quality of service (qos)-guaranteed network
resource allocation via software defined networking (sdn),” in IEEE
12th International Conference on Dependable, Autonomic and Secure
Computing (DASC), 2014, pp. 7–13.

[13] L. Buttyán and J.-P. Hubaux, “Enforcing service availability in mobile
ad-hoc wans,” in First Annual Workshop on Mobile and Ad Hoc
Networking and Computing (MobiHOC). IEEE, 2000, pp. 87–96.

[14] H. Liu and B. Krishnamachari, “A price-based reliable routing game in
wireless networks,” in Proceedings of ACM workshop on Game theory
for communications and networks, 2006.

[15] B. K. Rahul Radhakrishnan, “Streaming data payment protocol (sdpp)
for the internet of things,” Proceedings of BIoT: The 1 st International
Workshop on Blockchain for the Internet of Things, held in conjunction
with IEEE Blockchain,Halifax, Canada, 2018.


