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Abstract

Sensor network problems in three dimensions have not
been adequately addressed - there is a tendency to either ig-
nore the extension of algorithms from two dimensions (2D)
to three dimensions (3D) for simplicity or believe that it is
straightforward. We draw examples from well known prob-
lems in geometry and argue that this step needs special in-
vestigation - while some properties of networks in 2D di-
rectly generalize to 3D, many require additional computa-
tional complexity, and a few do not generalize at all. This
paper focuses on the problem of deployment and configura-
tion of sensor networks in 3D, draws attention to the funda-
mental difficulties involved, and presents a set of local geo-
metric rules that can be used to construct efficient network
topologies in 3D.

1. Introduction

A large number of sensor networks embedded in the
physical world will be three dimensional (3D). Take for
instance, networks deployed on multiple floors of a build-
ing, in a forest (on trees of different heights), or underwa-
ter. Current literature is heavily focussed on deployments in
two dimensions (2D) and there is a tendency to believe that
results will hold even in 3D. Consider the problem of de-
ploying and configuring a network. Given a set of nodes,
how should they be placed? How should their duty cy-
cles and transmission powers be adjusted to save power?
These questions are reasonably well understood in 2D. The
network can be deployed randomly with high density and
later pruned using sleep scheduling and/or power control
techniques [13, 11, 14, 17]. Alternatively, the node place-
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Figure 1. The curse of dimensionality: Delau-
nay triangulation of n points in 2D will have
at most O(n) triangles but in 3D it can have
as many as O(n2) tetrahedra.

ment can be controlled at deployment stage to construct ef-
ficient topologies [10, 12]. Extending these approaches to
3D raises many questions: Are random high density deploy-
ments practical for 3D scenarios? How does the compu-
tational complexity of various algorithms increase in 3D?
Which of the existing techniques is better suited in 3D?

Network configuration is governed by the sensing cover-
age and connectivity requirements of the application. Both
coverage and connectivity are functions of the relative posi-
tions of nodes and are inherently geometric in nature. There
are several problems in geometry that are easily solved in
2D but are very complex in 3D. Examples include the art-
gallery and sphere-packing problems that are closely tied
to sensing coverage optimization. The art-gallery problem
can be solved optimally in 2D but is NP-hard in 3D. In
fact, the main tool used for solving the 2D case, triangu-
lation, does not generalize to 3D (Fig. 1) - there exist poly-
hedra whose interior cannot be partitioned into tetrahedra
whose vertices are selected from the polyhedra vertices. The
sphere-packing problem i.e., finding the densest packing of
spheres in 3D, remained an open problem for nearly 400
years. Its 2D counterpart, that of finding the densest pack-
ing of circles is easily solved.

In the initial euphoria of the sensor networks vision,



of massively distributed and untethered nodes, the mythi-
cal beast of “uniform random deployment” was born and
quickly became a well accepted basis for design and evalu-
ation of many algorithms. Such a model is not representa-
tive of experimental testbeds currently being deployed or of
medium size deployments of the future. While this assump-
tion is debatable enough in 2D, it becomes even more so in
3D because the node density required to ensure connectiv-
ity seems to be prohibitively high in 3D (Fig. 2). Earlier de-
signs have to be critically re-examined in this light.

In this paper, we review a number of deployment and
configuration techniques in 2D to highlight the nature of the
difficulty involved in extending them to 3D. These insights
will be of value to stimulate research into new and appro-
priate techniques for 3D. As a first step in this direction, we
have explored local geometric conditions that can guaran-
tee global network properties in 3D. We present some ini-
tial results on these and conclude with a discussion on fu-
ture directions.

2. Related work

There is a rich body of literature on deployment and con-
figuration algorithms for networks in 2D. Most of them as-
sume a dense and well connected initial deployment and
prune the network using sleep-scheduling and/or power
control techniques. Here, network configuration is a de-
cision problem, of identifying links and/or nodes that are
redundant and deleting them. This can be considered a
‘top-down’ approach. In sleep scheduling techniques like
CCP [14] and OGDC [17], nodes that are redundant for
sensing coverage as well as connectivity are turned off.
The coverage-redundant nodes can be identified locally in
O(d2) time at each node in 2D andO(d3) time in 3D [7],
whered is the average node degree andn is the network
size. Power control techniques [13, 11] involve adjusting the
transmission power of nodes and thus varying the network
topology. They cannot affect the sensing coverage. Many
of the techniques use angular information coupled with a
disc model for communication to guarantee connected net-
works [15] or proximity graphs like RNG [3]. Extensions
to 3D have not been adequately addressed. In [1], an algo-
rithm has been presented to extend CBTC [15]. The compu-
tational complexity at each node isO(d3log(d)) as against
O(dlog(d)) in 2D, d being the average node degree. XTC
[16] does not use the disc assumption or angular informa-
tion; given an initially connected network in 3D, it can re-
tain connectivity.

In contrast to the ‘top-down’ approach used by the above
mentioned techniques, network topologies can also be con-
trolled in a ‘bottom-up’ fashion where nodes positions are
carefully chosen to ensure coverage and connectivity prop-
erties [10, 12].NETgraphs [12] are a single parameter fam-

ily of graphs that can achieve different coverage and con-
nectivity trade-offs based on the value of the sector angleθ.
Deployment algorithms for networks of mobile nodes have
been proposed. There are two popular approaches for max-
imizing sensing coverage - the potential field approach [6]
and the voronoi diagram approach [4]. These approaches
can be significantly more complex in 3D. For instance, com-
putation of 3D voronoi diagrams takesO(n2) time. More-
over these algorithms are only useful for underwater and
arial deployments where the motion of the mobile node is
truly 3D.

There have been a few recent efforts to understand 3D
sensor network problems like geographic routing [9] and lo-
calization [2].

3. Why 3D configuration is hard

In this section, we list some issues in extending existing
designs for deployment and configuration to 3D.

1. Uniform random deployment: Random deployment
with high density is a well accepted set-up for 2D de-
ployments. Forn nodes deployed randomly in a unit cube,
[0, 1]d, in d dimensions, the critical transmission radius for

connectivity isO(( log(n)
n )

1
d ) [5]. It appears that the criti-

cal constant will have a much higher value in 3D compared
to 2D (Fig. 2). Forn = 1000, the critical radius in 2D is
≈ 0.07 while in 3D it is ≈ 0.2, resulting in a critical av-
erage node degree of (π · 0.072 · 1000 ≈) 15 in 2D and
( 4π

3 · 0.23 · 1000 ≈) 34 in 3D. This implies that a uniform
random deployment in 3D that is almost surely connected
will have a highly dense topology.

If we assume each node in a uniform random deploy-
ment covers a sphere of radiusRs around it then the ratio
of area covered by the network isC = 1 − e−λVs whereλ
is the density of deployment andVs = 4

3πR3
s. For the do-

main to be covered with high probability, sayC ≥ 0.99 we
must haveλ ≥ 4.6

Vs
. The sensing region of a node will inter-

sect with the sensing regions of all nodes that are less than
2Rs away. The number of such nodes, on an average, will
beλ( 4

3π(2Rs)3) = λ(23Vs) ≥ 4.6·23 ≈ 37 in 3D. The cor-
responding number in 2D is≈ 18.

In several distributed algorithms the computation at each
node depends on the number of communicating neighbors
or the number of nodes with which its sensing range over-
laps. In 3D, both these numbers are twice the corresponding
numbers in 2D.

2. Angular information: Several network configuration
algorithms involve using angular information of neighbor-
ing nodes ([15, 3, 14, 17] are a few examples). A basic
primitive needed for this is an ordering of neighbors based
on their orientations. For example in several power con-
trol techniques [15, 3], each node increases its transmission
power till the angle between adjacent neighbors is less than



Figure 2. The number of neighbors needed
for connectivity in a random 3D graph is high
- around 30 for 1000 nodes with binary disc
communication model

a threshold. Each time a new neighbor is added the node can
insert it into a list of neighbors sorted according to their ori-
entations inO(log(d)) time steps whered is the average
node degree. This is a trivial operation in 2D. In 3D there is
no natural ordering of neighbors based on angles. We pro-
pose an efficient algorithm to obtain an ordering and check-
ing angular orientation of neighbors in Section 4.3. Its com-
putation complexity isO(dlog(d)).

3. Coverage criteria: To check if every point in a do-
main is covered byk nodes, it is sufficient to check if the
intersections of sensing regions are covered byk +1 nodes.
In 2D the intersections of sensing regions are points and the
checking step takesO(d2) time whered is the average num-
ber of neighboring sensing regions that a node’s sensing re-
gion will intersect. In 3D the intersections will be circles on
the surface of a sphere. To check for coverage this problem
can be reduced to a 2D problem on the surface of the sphere.
The time complexity will beO(d3) at each node. The num-
ber of intersectionsd might also be larger because a higher
density of initial deployment. If this step must be repeated
frequently for load balancing between the nodes the com-
putation can become a significant overhead.

4. Symmetric placements:Maximizing sensing cover-
age implies minimizing overlap between the sensing re-
gions of nodes. If we assume that the sensing regions
are spheres, then maximum coverage is achieved when
neighbors are located symmetrically on the communication
range. Local symmetric arrangement of neighbors around a
node is trivial in 2D and is possible for any number of neigh-
bors - givenk neighbors, they can be placed at2π

k from each
other. In 3D, such a placement is only possible for degrees
4, 6, 8, 12 and 20. This is because symmetric placement of
k neighbors corresponds to a regular polyhedra ofk ver-
tices and it is well known that there exist only five regular
convex polyhedra.

5. Structural restrictions: In many scenarios, the possi-
ble locations for nodes are restricted by the structure of the

environment. For example in a building, nodes may only be
deployed along the walls and not at arbitrary coordinates.
This restriction is more severe in 3D. There are applica-
tions like environmental monitoring (eg. in a desert) where
nodes can be deployed at any random location as long as
they are on the ground. But there will rarely be a scenario
where nodes can be deployed at any arbitrary height. Truly
random 3D deployments will probably only happen in un-
derwater or aerial settings. The algorithms designed must
take this restriction into account and whenever possible ex-
ploit the knowledge of the structure imposed on the network
topology.

From the above discussion, we learn that (i) random high
density deployments are not suitable for 3D, (ii) the feasi-
bility and complexity of techniques proposed for 2D must
to be carefully studied for 3D. We hope that these insights
will stimulate research to revisit and extend current 2D tech-
niques and also investigate novel 3D specific techniques.
The next section presents some early results from our ef-
forts in this direction.

4. Initial results using local geometry

Key to achieving efficient network configuration in a dis-
tributed manner are local geometric conditions that can in-
fluence global coverage and connectivity properties. Prox-
imity graphs (such as RNG, GG) and symmetric tiling struc-
tures are examples of topologies that have desirable global
properties and can be constructed using purely local rules.
We present these local rules and also an algorithm to in-
tegrate them with network configuration and deployment.
For the purpose of analysis we assume a binary disc com-
munication model and sensing model for the nodes. It must
be emphasized here that such analysis only provides broad
guidelines. Any algorithm design must account for irregu-
lar communication range, etc.

4.1. Proximity Graphs

Proximity graphs such as the Relative Neighborhood
Graph (RNG) , Gabriel Graph (GG) and Delaunay Graph
(DelG) are guaranteed to be connected and have other use-
ful properties [11]. They have been extensively used for
topology control, routing, etc.

We now present sufficient conditions for the communi-
cation graph to contain each of RNG, GG, and DelG. The
analysis is non-trivial because the edge-lengths in commu-
nication graphs are restricted by the communication range
of nodes, while in proximity graphs they depend only on
the relative positions of nodes and very long edges are pos-
sible.

Let V be the set of nodes in a wireless communication
network inR2. Let Rx

c be the communication radius ofx ∈



Figure 3. RNG cone angle condition

V . Foru, v ∈ V , let d(u, v) denote the Euclidean distance
from u to v. Given positiver ∈ R, let S(p, r) be the sphere
consisting of points whose distance from pointp is strictly
less thanr. Define the lune, denotedL(p, q), to be the in-
tersection of two spheres, both of radiusd(p, q), centered at
these points, that is,L(p, q) = S(p, d(p, q))∩S(q, d(p, q)).

Relative Neighborhood Graph (RNG(V)): The undi-
rected graph containing an edge(u, v) if there is no point
w ∈ V that is simultaneously closer to bothu andv. Equiv-
alently,(p, q) is an edge ifL(p, q) ∩ V = ∅.

E = {(u, v)|u, v ∈ V and∃ now ∈ V 3

d(u, w) < d(u, v) andd(v, w) < d(u, v)}

Theorem 1 If each nodeX ∈ V has at least one neigh-
bor in everyθ = π cone ofS(X, RX

c ), the communication
graph is a supergraph ofRNG(V ).
Proof: Consider any nodeX ∈ V . SupposeX has at least
one neighbor in everyπ cone ofS(X, RX

c ). It is sufficient
to show that for any nodeY outsideS(X, RX

c ), the edge
(X, Y ) /∈ RNG(V ). The luneL(X, Y ) will contain a cone
whose apex angleα is at least2π

3 and a corresponding solid
angle of at leastθ = 2π(1 − cos(α)) = π (Fig. 3). By
premise,∃ a nodeZ that lies inL(X, Y ).

This implies that the RNG does not have any edges in-
cident onX with length greater thanRX

c and therefore
RNG(V ) is contained in the communication graph.2

It can be shown thatπ is the largest angle that satisfies
the above property.

Theorem 2 If each nodeX ∈ V has at least one neighbor
in everyθ = 2π(1 − r

Rc
) cone ofS(X, RX

c ), the commu-
nication graph is a supergraph ofGG(V ) and DelG(V ).
Moreover,2π(1− r

Rc
) is the largest angle that satisfies this

property.
The proof is similar to that of RNG.

4.2. 3D tiling structures

Tiling structures, because of their symmetry, possess
many interesting properties: they are connected and sparse,
and the symmetric arrangement maximizes sensing cover-
age for a given node degree [8, 12]. A local unit arrange-
ment can be replicated globally to fill the space. Due to this

(a) 6 neighbors (b) 8 neighbors

Figure 4. Symmetric tiling structures

property, the local geometric rules to construct these topolo-
gies are trivial and the coordination required between nodes
is minimal. This coordination is more expensive in 3D com-
pared to 2D (section 3) and therefore tiling structures are
particularly desirable in 3D.

In 2D, there are three possible tiling structures for node
degrees 3(hexagonal), 4(square) and 6(triangle). In 3D,
tilings exist for 6 (cuboid with a neighbor on each of the
faces) (Fig. 4a) , 8(cuboid with neighbors on each vertex)
(Fig. 4b) and 12(cubic closed packing (CCP) and hexagonal
close packing (HCP)). CCP and HCP minimize the uncov-
ered volume for a given number of nodes. Tilings with lim-
ited symmetry are possible. These arise when the hexago-
nal and triangle tiling in 2D are replicated on parallel planes.
Each node will have 5 and 8 neighbors respectively.

4.3. Integrating geometric conditions with config-
uration

The local conditions described above can be integrated
with node placement to construct efficient topologies. A
key requirement is an algorithm to check for empty cones
larger than a given< θ. For instance, to check for forma-
tion of RNG, θ = π. As discussed in section 3, this step
is non-trivial in 3D because there exists no natural “order”
of neighbors. We propose the following algorithm for find-
ing the largest empty cone around a given node.

Algorithm: largestCone(G = (V,E),v ∈ V )
let S be the unit sphere centered atv

for eachu ∈ Neighbor(v), let−→vu be the
direction vector fromv to u

let cu be the intersection of−→vu with S
let DT be spherical delaunay triangulationcu∀u
find ai,j,k = area of circumcircle of triangle

(ui, uj , uk) ∈ DT
return max(ai,j,k)

The cone returned bylargestConeis empty because in a
spherical delaunay triangulation, the circumcircle of every
(spherical) triangle is empty. Suppose there exists an empty
cone (whose image on the unit sphere is the circlec) that is
larger than the one returned bylargestCone. Then the cen-



Figure 5. NET graph: each cone of angle θ
must have at least 1 neighbor.

ter of c lies in some trianglet of the delaunay triangulation.
The circumcircle oft will be larger thanc which is a contra-
diction. ThereforelargestConecorrectly returns the largest
empty cone. The computational complexity oflargestCone
isO(dlog(d)) whered is the number of neighbors of a node.
This algorithm can be used as a primitive for extending sev-
eral topology control algorithms that use directional infor-
mation.

By varying the value ofθ, a family of graphs can be
defined. We call theseNeighbor-Every-Theta(NET) [12]
graphs that have the property that each node has at least one
neighbor in everyθ angle cone of its communication range
(Fig. 5). We believe thatNETgraphs can provide a range of
coverage and connectivity tradeoffs for different values of
θ.

Controlled deployments are feasible when positions of
individual nodes can be altered - either by the nodes them-
selves or by an external agent. In such scenarios, the control
on position can be exploited to integrate the geometric con-
ditions described above and also account for structural re-
strictions imposed by the environment.

5. Conclusion

Deployment and configuration of sensor networks to en-
sure desired levels of connectivity and sensing coverage is
fundamentally more challenging in 3D as compared to 2D.
In this paper we highlight some of the challenges in design-
ing algorithms for 3D. We hope that these insights will fos-
ter interest in the research community to revisit and extend
existing 2D algorithms and develop new techniques for 3D.
We present initial results on local geometric conditions that
can be used for effective network configuration in 3D.
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