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This paper addresses the rate control and resource allocation problem for heterogeneous
wireless sensor networks, which consist of diverse node types or modalities such as sen-
sors and actuators, and different tasks or applications. The performance of these applica-
tions, either elastic traffic nature (e.g., typical data collection) or inelastic traffic nature
(e.g., real-time monitoring and controlling), is modeled as a utility function of the sensor
source rate. The traditional rate control approach, which requires the utility function to
be strictly concave, is no longer applicable because of the involvement of inelastic traffic.
Therefore, we develop a utility framework of rate control for heterogeneous wireless sen-
sor networks with single- and multiple-path routing, and propose utility fair rate control
algorithms, that are able to allocate the resources (wireless channel capacity and sensor
node energy) efficiently and guarantee the application performance in a utility propor-
tional or max–min fair manner. Furthermore, the optimization and convergence of the
algorithm is investigated rigorously as well.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid progress of Wireless Sensor Networks
(WSNs), the nature of the network is gradually evolving
from homogeneous toward heterogeneous [1,2]. A heteroge-
neous sensor network consists of various types of nodes
such as different sensors (e.g., visual, infra-red, acoustic
and camera) and actuators (e.g., robots and mobile enti-
ties), and coexists of both low-cost lightweight wireless
devices (which simply sense the environmental changes)
and energy-rich devices (which serve as in-network or
multimedia processors). Compared with a homogeneous
network, it may contain many different applications asso-
ciated with particular sensors and integrate all the physical
information available to provide rich and versatile services.
For instance, heterogeneous sensor network opens up new
. All rights reserved.
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opportunities in healthcare systems. There is a ‘‘smart
home’’ for the disabled and the elderly, with temperature,
humidity, pressure sensors and camera deployed. It allows
care-providers to monitor patients remotely, react timely
and offer a better service. In this case, the applications of
heterogeneous sensor networks include not only reactive
monitoring operations but also proactive controlling
actions.

From the data transport perspective, the objective of
heterogeneous sensor networks is no longer to solely max-
imize the sum of data information collected by each sen-
sor.1 Instead, it is expected to cater for a variety of
application performance metrics related to different sensors
or sensor modalities. Rate control (also known as flow con-
trol) is an important technique of performance assurance
in communication networks. The primary objective of rate
control is, by regulating the flows, to prevent network
1 Hereafter we generally use sensor to refer to all types of sensors
including actuators, but differentiate the traffic types by their applications.
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2 In the remainder of this paper we will use the terms route and path
interchangeably.
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congestion with respect to the network capacity. Particularly
in wireless sensor networks, there have been numerous pro-
posals (CODA [3], IFRC [4], WRCP [5], RCRT [6]) purely for
congestion control. Inspired by the seminal work of Kelly
et al. [7], in the past decade, rate control is further adopted
to achieve the global network optimality by modeling appli-
cation performance as a generic utility function over the
available bandwidth [8]. Following this model, utility-based
rate control has been extensively studied in typical wired
networks [9,10], cellular wireless networks [11,12] and ad
hoc networks [13,14]. The approach is essentially the same
to formulate rate control as an optimization problem and
then maximize total utilities under the network bandwidth
constraint. Even though this strategy, well known as optimal
flow control (OFC), has made a great success in dealing with
both congestion control and performance optimization (par-
ticularly in proportional fairness), it also possesses serious
limitations as outlined in our paper [15,16].

� At current stage, the OFC approach is only suitable for
elastic traffic, where each application attains a strictly
increasing and concave utility function to ensure the
feasible optimal solution and convergence of utility
maximization process. It cannot deal with congestion
control and resource allocation for communication net-
works like sensor networks where inelastic traffic is
commonly engaged.
� In the utility maximization approach, if each user

selects different utility function based on its real perfor-
mance requirement, the OFC approach usually leads to
a totally unfair resource allocation for practical use, in
particular, an application with a lower demand is con-
versely allocated with a higher bandwidth.

In this paper, we characterize application performance
as a utility function and develop a utility framework of rate
control specifically for heterogeneous wireless sensor net-
works. In order to discriminate different applications
regarding different traffic types, hereafter, we relax the
utility function conditions, which only require the utility
function to be strictly increasing with the data rate, but
not necessarily strictly concave. This relaxation has a sig-
nificant effect on inelastic traffic that is widely existing in
sensor networks. Meanwhile, we notice that some models
of sensor network simply assume a fixed source rate for
sensor node which might not be optimal from a rate con-
trol perspective or even not feasible for a given set of re-
source constraints. Therefore, we study a self-regulating
wireless sensor network in which each node is free to
adapt its source rate. Then, we design distributed rate con-
trol algorithms that allocate source rate among sensor
nodes so that the performances of all kinds of sensor nodes
are guaranteed. Specifically, we show that the source rate
is allocated properly within the sensor networks and that
the utility achieved by each node, even not belonging to
the same type, is in a proportional or max–min fair
manner.

The proposed algorithms target at sensor networks,
both with a unique route from each source to a sink
and more generally with potentially multiple routes
between each sensor node and a sink. The difference is
not uncommon in practice due to the availability of a net-
work layer routing protocol [17] that determines unique
routes from sources and destinations. Thus, the inclusion
of multiple-path scenario is highly desirable from an
analytical as well as a practical perspective.

Moreover, unlike traditional wired and wireless net-
works, sensor networks intrinsically possess some unique
characteristics. Energy is a major concern in wireless sen-
sor networks, since the majority of sensor nodes usually
have power limited and unreplaceable batteries. We pur-
posely build a power dissipation model and deliberate
the energy constraint to make our proposed algorithms en-
ergy-aware. It is aimed to guarantee the operational life-
time of sensor networks, which we believe is vitally
important.

The rest of the paper is organized as follows: In Section
2, we describe the system models concerning channel
capacity constraint and energy constraint. Section 3 dis-
cusses the utility framework of rate control for heteroge-
neous wireless sensor networks. Following that, a utility
fair rate control algorithm is designed and developed for
single-path network in Section 4 and for multiple-path
network in Section 5. Finally, we present the simulation re-
sults to evaluate the performances of the proposed algo-
rithms in Section 6 and make conclusions in Section 7.

Notations: Throughout the paper, we use bold lower-
case letters x; y; . . . to denote vectors and bold upper-case
letters X;Y; . . . to denote matrices. The notations RD;RD

þ de-
note the D-dimensional real and non-negative Euclidean
spaces, respectively. Generally, we use the calligraphic font
Z to refer to a set, and the cardinality (i.e., the number of
elements) of a finite set Z is denoted by jZj.
2. System characterization and modeling

Consider a wireless sensor network that consists of a set
S ¼ f1;2; . . . ; Sg of sensor nodes and a single destination
node indexed by 0 as sink. In total, there are K ¼ Sþ 1
nodes. Each sensor node s is the source that senses and
delivers data information to the sink, possibly over multi-
ple hops. It attains a non-negative utility UsðxsÞ for a source
rate xs 2 ½ms;Ms� where ms and Ms are the minimum and
maximum source rate requirements of node s respectively.
The utility function UsðxsÞ : Rþ # R is assumed to be con-
tinuous, strictly increasing and bounded (not necessarily
concave), which indicates the performance of node s. With-
out loss of generality, it can be assumed that UsðxsÞ ¼ 0
when xs < ms and UsðxsÞ ¼ UsðMsÞ when xs > Ms. For mat-
ters of scalability, it can be further assumed that
0 6 UsðxsÞ 6 1 and UsðMsÞ ¼ 1.

To take account of the network with possible multiple
path routing, we assume each sensor node s has ns avail-
able routes or paths2 from the source to the destination.
The total number of paths is N ¼ n1 þ n2 þ � � � þ nS.

Denote the K � 1 vector rs;i the set of nodes traversed by
the path i 2 f1;2; . . . ;nsg originated from node s 2 S. Let ys;i

be the path rate of sensor node s on path rs;i, and
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Fig. 1. Receiver capacity model: (a) Broadcast domain and (b) interfer-
ence representation.
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y ¼ ½y1;1; . . . ; y1;n1
; y2;1; . . . ; y2;n2

; . . . ; yS;1; . . . ; yS;nS
�T 2 RN

þ

be the vector of path rates. Define a matrix A 2 f0;1gS�N

such that Asi ¼ 1 if and only if the path i is originated from
source s, then x ¼ Ay, where

x ¼ ½x1; x2; . . . ; xS�T 2 RS
þ

is the vector of source rates.

2.1. Receiver capacity model and channel capacity constraint

The fundamental difference between designing rate
control algorithms for wired and wireless networks is the
channel capacity. For wired networks, the notion of capac-
ity is a constant associated with an existing link between
any two nodes. For wireless networks, instead of constant,
the achievable capacity is largely affected by the interfer-
ing links in its vicinity. It therefore requires us to redefine
the notion of capacity.

In a wireless network, point-to-point link is replaced by
the broadcast domain of each receiver due to its broadcast-
ing nature. It includes all the transmitters within its inter-
ference range, which cause interference with each other
(Fig. 1a). We thus define the wireless channel capacity in
terms of the broadcast domain as the maximum sum rate
achievable by flows existing in that broadcast domain
and refer to it as Receiver Capacity [18,19]. Theoretically,
the latest result [19] shows that as long as the receiver
capacity is set to 1/3 of the interference free link rate, all
rate vectors satisfying the channel capacity constraint by
receiver capacity model can be feasibly scheduled. In prac-
tice, since most sensor networks use a randomized CSMA
MAC as the de facto data link layer, we may simply approx-
imate the capacity of the receiver to the saturation
throughput of CSMA MAC. The Receiver Capacity Model
is validated through experiments with real wireless de-
vices in [18], and further leads to a practical rate control
protocol WRCP in [5].

We further explain the concept of receiver capacity by
an illustrative example. Fig. 1b models the interference
relationship of Fig. 1a, where the solid line indicates a
parent–child relationship in the tree and the dashed line
represents an interference link. ys is the path rate generated
at node s being transmitted (in this example, we assume
single path routing, so the second subscript of path rate is
dropped for simplicity). Rate denoted on the interference
link quantifies the amount of interference caused to the af-
fected neighboring node when it is transmitting to its
parent. For instance, when node 1 sends its data to node 0
at a certain rate, node 1 not only consumes the correspond-
ing amount of capacity at node 0, but also at node 2; the
rate on interference link 1! 2 is the same as that on link
1! 0.

Based on this model, we may specify the constraint of
the rates at node 1 as follows:

ytot
1 þ ytot

2 þ y3 þ y4 6 C1 ð1Þ

where C1 is the receiver capacity of node 1. ytot
1 and ytot

2 are
the output rates at nodes 1 and 2, respectively, and are
given by:
ytot
1 ¼ y1 þ y3 þ y4

ytot
2 ¼ y2

Substitute them into Eq. (1), the term y3 and y4 are ob-
served to appear twice. One accounts for the consumption
of bandwidth during reception at node 1, and the other is
as part of the term ytot

1 to account for the forwarding of
the flows originating at nodes 3 and 4. Essentially, it is be-
cause the radio transmission is assumed to be half-duplex.
For the rest of the nodes, similar constraints can be listed
out.

Given the Receiver Capacity Model, we now present the
channel capacity constraint generally. Let N k denote the
set of all neighbors of node k (including node k itself and
all nodes within its interference range); T k be the set of
paths traversing node k; and Ck be the receiver capacity.
The channel capacity constraint at node k is then given
as follows:X
s2N k ;i2T k

ys;i 6 Ck ð2Þ

Furthermore, define a matrix N 2 f0;1gK�K
;Nij ¼ 1 if and

only if node j interferes with node i; and a matrix
T 2 f0;1gK�N

; Tij ¼ 1 if and only if path j traverses node i.
The channel capacity constraint (2) can then be compactly
represented as

NTy 6 c ð3Þ

where c 2 RK
þ is the vector of node receiver capacities.

2.2. Power dissipation model and energy constraint

In the context of sensor networks, nodes are also placed
under energy constraint apart from the channel capacity
constraint. Typical node operations, such as sensing, trans-
mitting, receiving and relaying data, all consume energy. In
this subsection, we introduce the power dissipation model
and impose the corresponding energy constraint.

Let es; et and er be the energy consumption per bit in-
curred in data sensing, transmitting and receiving, respec-
tively. Particularly, et includes the radiated energy per bit
to ensure reliable communication. In addition, even with
low-power listening (lpl) operation [20], there will be
energy spent in at least the reception of headers of packets
sent by neighboring nodes, even packets that are not to be
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forwarded by a given node. Thus, we charge an extra
energy term, say eh ¼ q � er , where 0 6 q < 1 is the ratio
of header to total packet size, to all nodes that are within
one-hop of the path. In this setting, receivers can sleep
all the time but check the header periodically to see if there
is some signal on the air for them. If so, they wake up to
receive, and otherwise go back to sleep if the packet is
not intended.

Define a matrix E 2 RS�N
þ according to3

Eij ¼

esþet if node i is the starting node of path j

etþer if node i is an intermediate node of path j

eh if node i is within one-hop but not belonging to path j

0 otherwise

8>>><
>>>:

ð4Þ

and let Es be the sth row of the matrix E. Note that the en-
ergy consumption of computation is neglected as it is
much smaller. For a given network flow y, the total energy
consumption Ps of node s is Ps ¼ Esy.

Next, let Bs denote a limited amount of initial battery
(energy) available at node s; s 2 S. We define the network
lifetime T as the time until the first node in the network
runs out of energy as in [21]. By denoting Ts the lifetime
of node s, the network lifetime is T ¼mins2STs.

Let Td be the designed network operational lifetime, and
also consider the energy consumption of idle listening and
sleeping in the lpl mode [20], then

Bs ¼ Pmax
s Td þ sPidleTd þ ð1� sÞPsleepTd: ð5Þ

The maximum energy consumption per unit time, or
equivalently the maximum power consumption Pmax

s ,
allowed at node s for data transportation is hence equal to

Pmax
s ¼ Bs

Td
� sPidle � ð1� sÞPsleep; ð6Þ

where s; Pidle and Psleep are the duty cycle, power consumed
by idle listening and sleeping averaged in a duty cycle,
respectively.

To ensure the required network lifetime Td, the power
consumption of each node s should not be more than the
maximum allowed power consumption. It leads to the
energy constraint for all nodes
3 The sink is assumed to have sufficient energy supply. Thus, energy
constraints are normally considered for S sensor nodes.
Ey 6 p ð7Þ

where p 2 RS
þ is the vector of maximum node power

consumptions.
In order to formulate the rate control problem for heter-

ogeneous sensor networks, we first define the notion of
feasible (or attainable) path rate allocation.

Definition 1. A source rate is divided into the path rates.
Thus, a particular path rate allocation y ¼ ½y1;1; . . . ; y1;n1

;

y2;1; . . . ; y2;n2
; . . . ; yS;1; . . . ; yS;nS

�T 2 RN
þ is feasible or attainable

if and only if the source rate xs ¼
Pns

i¼1ys;i for each sensor
node s (that is the sum of its available path rates) is within
the range ½ms;Ms�, and in the sensor network no channel
capacity is saturated and no node is energy depleted, i.e.:

ms 6 xs 6 Ms; s 2 S
NTy 6 c
Ey 6 p

In heterogeneous sensor networks with possible multi-
path routing, the major task of rate control is to guide the
data flows to a feasible path rate allocation, in such a way
that each type of sensor application is treated in a fair
manner and guaranteed high performance. When re-
sources (channel capacity and node energy) are abundant,
there is no difficulty in satisfying every application utility.
If resources are not sufficient (or even worse are scarce),
then there arises a problem of how to allocate the existing
resources fairly among competing sensor nodes that have
different utility behaviors.
3. Utility framework of rate control

For sensor networks, usually, people concern about sen-
sor source rates and/or data throughput at the sink. How-
ever, since heterogeneous sensor networks are composed
of different sensor types, there may exist diverse tasks or
applications that exhibit different utility behaviors. A more
important factor is data-related application performance,
which is measured by its utility function. Regardless of
the types of sensors, we assume that utility is a function
of sensor source rate.

Similar to the paper [8], we observe two types of typical
utility functions in heterogeneous sensor networks. The
most common application is data collection from informa-
tion fields. Taking the ‘‘smart home’’ mentioned in the
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introduction as an example, the room temperature is peri-
odically measured by temperature sensors and sent back to
the control center, so that data can be logged and analyzed.
This class of applications has an elastic traffic flow, and the
utility function can be described as a (strictly) concave
increasing function as shown in Fig. 2a. Utility (perfor-
mance) increases with source rate, but marginal improve-
ment is decreasing.

Another class is inelastic traffic, such as real-time track-
ing by cameras and real-time controlling by actuators in
the ‘‘smart home’’, which generally has an intrinsic band-
width requirement. Different from the elastic traffic flow,
it makes sense only when the source rate exceeds a thresh-
old. A reasonable utility description of this class is close to
a single step function as shown in Fig. 2b (solid line), which
is convex but not concave at low source rates. Some hard
real-time applications even require an exact step utility
function as in Fig. 2b (dashed line).

It is clear that elastic traffic and inelastic traffic have
significantly different utility functions. In heterogeneous
sensor networks, different applications with different traf-
fic types provide different valuable information with re-
spect to the environment. Therefore, the rate control
algorithm should have the ability to allocate sensor source
rates properly in the sense of providing a good perfor-
mance balance for different applications.

When considering performances of different applica-
tions, it may be undesirable to allocate source rates simply
according to conventional criteria such as max–min fair-
ness [22] and proportional fairness [7]. Hence, we develop
a utility framework of rate control, which allocates source
rates of various applications in terms of their utility
requirements. This has inspired a new concept of utility
max–min fairness [23,24].

Definition 2. A source rate allocation x� ¼ ½x�1; x�2; . . . ; x�S�
T

is utility max–min fair, if it is feasible and for each sensor
node s, the utility Usðx�s Þ cannot be increased while still
maintaining feasibility, without decreasing the utility
Us0 ðx�s0 Þ for some sensor node s0 with a lower utility
Us0 ðx�s0 Þ 6 Usðx�s Þ. Max–min fair allocation is recovered with

UsðxsÞ ¼ xs; s ¼ 1; . . . ; S:

Another newly proposed criterion for utility-based fair-
ness is utility proportional fairness [15].
Definition 3. A source rate allocation x� ¼ ½x�1; x�2; . . . ; x�S�
T

is utility proportionally fair, if it is feasible and for any
other feasible allocation x,X
s2S

xs � x�s
Usðx�s Þ

6 0: ð8Þ

The traditional proportional fairness is recovered if
UsðxsÞ ¼ xs. The difference between utility proportional
fairness and utility max–min fairness is analogous to the
difference between (bandwidth) proportional fairness
and (bandwidth) max–min fairness. In the following sec-
tion, we will propose utility fair rate control algorithms
to achieve utility-based fairness within heterogeneous sen-
sor networks and study the properties in detail.
4. Utility fair rate control for single-path network

We first consider the rate control problem for the case
in which each source has a unique path to the sink possibly
going through multiple hops. It assumes there exists an
underlying routing protocol, which is responsible for
choosing a path between a source and the sink based on
a particular routing policy. The unique path assumption
implies the matrix A defined in Section 2 is an identity
matrix and x ¼ Ay) x ¼ y, i.e., the source rate allocation
and the path rate allocation is simply the same. Next,
we present a distributed algorithm to yield a utility fair
resource allocation.

4.1. Distributed utility fair rate control algorithm

The utility fair rate control algorithm uses a similar con-
trol structure of optimal flow control approach [9], with
the help of pricing mechanism. There are two resource
price vectors a 2 RK

þ; b 2 RS
þ associated with the channel

capacity constraint and the node energy constraint, respec-
tively. Each node runs a capacity algorithm and an energy
algorithm to update the specific resource price. Concretely,
the capacity price depends on the saturation of channel
bandwidth usage and the energy price depends on the
depletion of node power level. Meanwhile, each end-sen-
sor node runs a source algorithm to adapt the source rate
based on these two prices.

Both the capacity algorithm and energy algorithm are
iterative. At time t þ 1, the capacity price ak is updated
according to:

akðt þ 1Þ ¼ ½akðtÞ þ cðxkðtÞ � CkÞ�þ ð9Þ

where c > 0 is a small step size, and xkðtÞ ¼
P

i2N k

P
s2T i

xs is
the aggregate source rate at receiver node k. Eq. (9) implies
that if the aggregate source rate at node k exceeds the re-
ceiver capacity Ck, the capacity price will increase; other-
wise it will decrease. The projection ½z�þ ¼maxf0; zg
ensures that the capacity price is always non-negative.

Similarly, the energy price bk is updated at time t þ 1
according to:

bkðt þ 1Þ ¼ ½bkðtÞ þ cðEkxðtÞ � Pmax
k Þ�þ ð10Þ

where c > 0 is the same step size as Eq. (9), and EkxðtÞ is
energy consumption at node k. Eq. (10) also implies that
if energy consumption at node k exceeds the maximum
power allowed, the energy price will increase; otherwise
it will decrease.

Given these two resource prices, each sensor node
adopts the following source algorithm to update the source
rate:

xsðt þ 1Þ ¼ U�1
s

1
hsðtÞ

� �UsðMsÞ

UsðmsÞ

 !
ð11Þ

where

hsðtÞ ¼< aT Tþ bT E>s ð12Þ

is the sth element ofaT Tþ bT E, namely, the aggregate hybrid
price of sensor node s; ½z�ba ¼maxfa;minfb; zgg, and U�1

s is
the inverse of Us over the range ½UsðmsÞ;UsðMsÞ�. According
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to the definition of utility function, it is clear that xsðhsÞgiven
by Eq. (11) is decreasing over the hybrid price hs. When
hs P 1=UsðmsÞ, sensor node s is required to transmit at a
minimum rate ms. When hs

6 1=UsðMsÞ, sensor node s trans-
mits at a maximum rate Ms. In between, source s attains a
utility factor of 1=hs. Combining (9)–(12), the utility fair rate
control algorithm is summarized as follows:
Algorithm 1. At time t ¼ 1;2; . . .,

1. Update source rate: Each sensor node s calculates the
source rate based on the aggregate price of capacity
and energy along its path to the sink
xsðt þ 1Þ ¼ U�1
s

1
hsðtÞ

� �UsðMsÞ

UsðmsÞ

 !

where
hsðtÞ ¼< aT Tþ bT E>s:

2. Update resource prices: Using the aggregate data flow
passing through it, each node updates the capacity price
ak and energy price bk
akðt þ 1Þ ¼ ½akðtÞ þ cðxkðtÞ � CkÞ�þ

bkðt þ 1Þ ¼ ½bkðtÞ þ cðEkxðtÞ � Pmax
k Þ�þ:
3. Deliver message towards the sink: Sensor node adapts
the updated source rate (xsðt þ 1Þ), adds together the
capacity price (akðt þ 1Þ) and energy price (bkðt þ 1Þ)
along the path, and propagates towards the sink.

4. Feedback message from the sink: The sink feedbacks
the aggregated capacity and energy price to the source
via the reverse path individually.
Remark 1. The algorithm that runs on every node in the
network requires message exchange in order to form a
close-loop control and ensure the optimality of the overall
system performance. Instead of communicating individual
variables of the algorithm, only the aggregated resource
price along each path need to be passed. To achieve low
communication overhead, the information could be sent
via piggybacking. First, each node collects the local rate
information to update both capacity and energy price; then
the updated ones are added together with that from the
upstream node, and piggybacked onto the data packets of
the flows passing by to notify the downstream node along
the path. Second, upon the reception, the sink will feed-
back one aggregated resource price per path to the source
by piggybacking onto the acknowledgment packets.

Remark 2. As we know, in the wireless environment, the
end-to-end acknowledgment is not always reliable. To fur-
ther assist information exchange of price-based algorithm,
in practice, we may also adopt additional methods such as
making use of special control packets [5] or FEEDBACK
packets of underlying AODV routing protocol [14].

4.2. Optimization and convergence

The utility fair rate control algorithm (9)–(11) can be
viewed as a distributed dual algorithm that solves the
following optimization problem:
max
ms6xs6Ms

UðxÞ ¼
XS

s¼1

UsðxsÞ ð13Þ

s:t: NTx 6 c ð14Þ
Ex 6 p ð15Þ

where

UsðxsÞ ¼
Z xs

ms

1
UsðyÞ

dy; ms 6 xs 6 Ms ð16Þ

is a ‘‘pseudo utility’’ function for sensor node s.
The original utility function UsðxsÞ is non-negative, con-

tinuous and strictly increasing over the range xs 2 ½ms;Ms�.
Therefore, UsðxsÞmust be increasing and strictly concave. If
the step size c in Eq. (9) and (10) is selected to be suffi-
ciently small, the sequence ðx; a; bÞ generated by the dual
algorithm (9)–(11) will solve the maximization problem
(13)–(15). Furthermore, if we define

H ¼
NT
E

� �
¼

N 0
0 I

� �
T
E

� �
¼ �N �H

and

w ¼
c
p

� �
;

constraints (14) and (15) can be combined as

Hx 6 w ð17Þ

where H 2 RH�S
þ and H ¼ K þ S.

Let

W ¼max
s

X
h

�Hh;s ð18Þ

V ¼max
h

X
s

�Hh;s ð19Þ

/1 ¼max
s2S

max
ms6xs6Ms

UsðxsÞ ¼max
s2S

UsðMsÞ ð20Þ

/2 ¼min
s2S

min
ms6xs6Ms

U0sðxsÞ > 0 ð21Þ

We now state the main result regarding the conver-
gence of the algorithm.

Theorem 1. Suppose the step size c is selected to be

0 < c <
2/2

/2
1

ffiffiffiffi
H
p

KWV
;

then the sequence ðxðtÞ; aðtÞ; bðtÞÞ generated by the utility fair
rate control algorithm (9)–(11) will converge to a limit point
ðx�;a�; b�Þ, where x� is the unique optimal solution for the
maximization problem (13)–(15).
Proof. The proof is given in the appendix. h
4.3. Utility proportional fairness

When the utility fair rate control algorithm (9)–(11)
converges to the equilibrium ðx�;a�; b�Þ, the objective func-
tion (13) is maximized within the feasible solution. For all
feasible allocation x – x�, the optimality condition is
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X
s2S

@Usðx�s Þ
@xs

ðxs � x�s Þ ¼
X
s2S

xs � x�s
Usðx�s Þ

< 0 ð22Þ

where the strict inequality follows from the strict concavity of
UsðxsÞ. According to Definition 3, it is clear that, at optimality,
the source rate allocation x� is utility proportionally fair.

4.4. Utility max–min fairness

The utility max–min fair flow control algorithm initially
proposed in [23] is not distributive and each link must be
aware of the utility functions from all other sources that
traverse such a link. Here we give a new distributive
algorithm to achieve the same objective.

For each sensor node s, if the aggregate price is rede-
fined as

hsðtÞ ¼maxfmax
k2rs

akðtÞ;max
k2rs

bkðtÞg ð23Þ

which takes the maximum of the capacity prices and
energy prices along the path, the rate control algorithm
(9)–(11) will yield a utility max–min fair allocation within
the network.

5. Utility fair rate control for multiple-path network

In this section, we further consider the rate control
problem for the network with multipath routing (A – I)
and present a distributed algorithm to achieve utility
max–min fairness specifically.

5.1. Distributed utility max–min fair rate control algorithm

Since there are possibly multiple paths between each
sensor node and the sink for the multipath routing net-
work, in this case, the source rate is made up of several
available path rates. For the path rate, instead of using
the dual algorithm as (11), we will adopt to use the follow-
ing first-order Lagrangian algorithm:

ys;iðt þ 1Þ ¼ ys;iðtÞ þ c
1

UsðxsðtÞÞ
� hr

s;iðtÞ
� �� �þ

: ð24Þ

This gentle and smooth adaptation gives better perfor-
mance when the information fed back is imperfect [15].

Now, based on Algorithm 1, the utility max–min fair rate
control algorithm for multiple paths is given as follows:

Algorithm 2. At time t ¼ 1;2; . . .,
1. Update source rate: Each sensor node s calculates the

path rates based on the hybrid path price hr
s;iðtÞ and

then updates the source rate accordingly
ys;iðt þ 1Þ ¼ ys;iðtÞ þ c
1

UsðxsðtÞÞ
� hr

s;iðtÞ
� �� �þ

xsðt þ 1Þ ¼
Xns

i¼1

ys;iðt þ 1Þ

where

hr
s;iðtÞ ¼maxfmax

k2rs;i

akðtÞ;max
k2rs;i

bkðtÞg: ð25Þ
2. Update resource prices: Using the aggregate data flow
passing through it, each sensor node updates the capac-
ity price ak and energy price bk as Algorithm 1.

3. Deliver message towards the sink: Sensor node adapts
the updated path rate ys;iðt þ 1Þ that the node can send,
compares and stores the larger capacity price akðt þ 1Þ
or energy price bkðt þ 1Þ along the path, and propagates
towards the sink.

4. Feedback message from the sink: The sink feedbacks
the updated largest resource price to the source via
the reverse path individually.

Commonly for multipath networks, the set of feasible
path rates ys;i may not be unique, so that the first-order
Lagrangian algorithm usually oscillates. This is one of the
typical difficulties when dealing with multipath networks.
In order to eliminate the undesirable effect and further im-
prove the convergence speed, we introduce another aug-
mented variable ys;i, called the optimal estimation of path
rate ys;i. In this way, Eq. (24) is slightly modified through
applying the concept of low-pass filtering as

ys;iðtþ1Þ¼ ð1�cÞys;iðtÞþcys;iðtÞþc
1

UsðxsðtÞÞ
�hr

s;iðtÞ
� �� �þ

ys;iðtþ1Þ¼ ð1�cÞys;iðtÞþcys;iðtÞ: ð26Þ

From the theory of filtering, at optimality, ys;i ¼ ys;iðt þ 1Þ,
and notice that the augmented variable is assisted purely
to remove the oscillation without changing the optimal
solution of ys;i.

5.2. Utility max–min fairness

By revisiting Eq. (24), it is observed that either
1

UsðxsðtÞÞ ¼ hr
s;iðtÞ or ys;iðtÞ ¼ 0 at convergence. If we define

hr�

s ¼ 1
UsðxsðtÞÞ for every source node s, the latter case can be

interpreted in another way, that is, when the path price

hr
s;iðtÞ is greater than hr�

s , this particular path is too
‘‘expensive’’ to carry any flow (ys;iðtÞ ¼ 0). The above fact
establishes Theorem 2.

Theorem 2. For heterogeneous sensor networks with multi-
path routing, in steady state, the prices on paths rs;i that carry
positive flows ys;i > 0 must be minimum, and hence equal,
among all available paths rs of sensor node s. Moreover, the
optimal source rate is given by

x�s ¼
X

r�
s;i
2r�s

y�s;i ¼ U�1
s

1
hr�

s

" #UsðMsÞ

UsðmsÞ

0
@

1
Aand ys;i ¼ 0 if hr

s;i > hr�

s

where ½z�ba ¼maxða;minðb; zÞÞ, path r�s;i has the minimum
path price hr�

s;i ¼ hr�

s , and r�s defines the set of all minimum
price paths r�s;i of sensor node s.

It is evident that in steady state, the associated utility Us

of node s is equal to 1
hr�

s
when hr�

s 2 ½ 1
UsðMsÞ ;

1
UsðmsÞ]. Otherwise,

it attains a utility UsðmsÞ of the minimum rate requirement
whose value is greater than 1

hr�
s

(it cannot be any smaller
due to the performance requirement), or a utility UsðMsÞ
of the maximum rate requirement whose value is less than
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1
hr�

s
(it needs not to be increased any further). For this rea-

son, we only need to consider the resource allocation of
sensor nodes which attain a normal utility U�s ¼ 1

hr�
s

.

Regarding the expression of hybrid path price (Eq. (25)),
there is no mathematical distinction between capacity
prices and energy prices. In general, they are referred to
as resource prices. Let Sh be the set of sensor nodes which
have at least one path rate determined by the resource
price h. We first pick out the highest resource price h1 in
the sensor network, then all the sensor nodes s 2 Sh1 attain
the same utility Us ¼ 1=h1, which are the smallest allocated
utility compared with other nodes. If a node s 2 Sh1 was to
increase its utility Us by increasing the source rate xs, there
must be another node s0 2 Sh1 that would decrease its rate
xs0 and utility Us0 which is previously equal to Us. In other
words, no node can increase its utility without decreasing
another one’s within Sh1 , i.e., utility max–min fairness is
achieved within Sh1 .

Next, we pick the second highest resource price h2. Then
all the nodes s 2 Sh2 have the same utility Us ¼ 1=h2. If
there is a node s 2 Sh2 that increases its rate and utility,
then there must be another node s0 2 Sh2 [ Sh1 that would
decrease its rate which already has a lower utility
Us0 6 Us. Thus the utility max–min fairness holds for all
nodes within Sh2 [ Sh1 .

If we keep ordering and picking all effective resource
prices in the above manner, it is concluded by induction
that the source rate allocation of sensor nodes is utility
max–min fair and that the global fairness is achieved.
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6. Simulation results

In this section, we evaluate through simulations the
performances of our proposed rate control algorithms.
Fig. 3 depicts the topology of wireless sensor network. It
contains seven sensor nodes (S1–S7) and a sink (S0). Each
sensor node is able to generate and deliver the data to
the sink along a certain path possibly over multiple nodes,
i.e., r1 ¼ fS1; S0g; r2 ¼ fS2; S0g; r3 ¼ fS3; S1; S0g; r4 ¼ fS4;

S1; S0g; r5 ¼ fS5; S2; S0g; r6 ¼ fS6; S4; S1; S0g; r7 ¼ fS7; S4;

S1; S0g (the second subscript of path is dropped for simplic-
ity due to single-path scenario). Note that we first consider
the single-path network, where the unique path is deter-
mined by the underlying routing protocol. In addition, S2

is interfered with S4, and S6 is interfered with S7, which
are represented by the dashed lines in Fig. 3.

For heterogeneous sensor networks, sensor nodes may
embed different sensor types and run different tasks or
applications. It results in different associated utility func-
tions. The utility function of each sensor node is given as:
U1ðx1Þ¼logðx1þ1Þ=log11;U2ðx2Þ¼logðx2þ1Þ=log11;U3ðx3Þ¼
1=ð1þe�2ðx3�6ÞÞ;U4ðx4Þ¼1=ð1þe�2ðx4�4ÞÞ;U5ðx5Þ¼1= ð1þe�2ðx5�6ÞÞ;
U6ðx6Þ¼0:1x6, and U7ðx7Þ¼0:1x7. The maximum source rates
are set at 10 Kb/s. Fig. 4 illustrates these utility functions. In
particular, the logarithmic utility function represents an elastic
data flow application whereas the sigmoidal function approx-
imates an inelastic real-time application. The linear utility
function corresponds to the application whose satisfaction in-
creases linearly.
We assume a receiver capacity of 80 Kbps, such that it is
less than 1/3 of a maximum free link rate of 250 Kbps as in
the IEEE 802.15.4 Standard [25] to ensure the feasibility of
scheduling. The maximum node power consumption is set
to be 9 mW. The parameters es; et and er of the Power Dis-
sipation Model (4) are set to be 100 nJ/bit, 150 nJ/bit, and
158 nJ/bit, respectively, based on the IEEE 802.15.4-com-
pliant CC2420 [26] RF transceiver power dissipation mea-
surements. q is set to be 0.2.

In the case of single-path network simulation, the step
size c ¼ 0:002 is chosen for the algorithm (9)–(11) to sat-
isfy Theorem 1 and ensure fast convergence. The simula-
tion consists of two stages:

� Stage C1.1: iteration 0! 3000, utility proportional fair-
ness is targeted and the aggregate hybrid price (12) is
defined as the sum of the involved resource prices.
� Stage C1.2: iteration 3000! 6000, utility max–min

fairness is deployed and the aggregate hybrid price
(23) is defined as the maximum of the involved
resource prices.
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The simulation results are given in Fig. 5a–d. Fig. 5a
verifies that the rate control algorithm is efficiently
convergent and able to provide either utility proportional
or utility max–min fairness in resource allocation among
all sensor nodes. Observe from Fig. 5c–d, in equilibrium,
except capacity price a4 and energy price b1, the remaining
resource prices are all equal to zero. By the pricing policy, it
can be interpreted that the receiver capacity of S4 is fully
utilized or saturated, and node S1 is limited by the maxi-
mum power consumption constraint. From this perspec-
tive, our algorithm successfully takes into account both
channel capacity constraint and energy constraint. Espe-
cially, for nodes S4; S6 and S7, their utility allocations are
the same under Stages C1.1 and C1.2. It is because the
sensor source rates are restricted by the receiver capacity
constraint of node S4 all the time.

Next, we carry out the simulation for the case of multi-
ple-path network. Consider the network topology of Fig. 3,
node S4 is also able to communicate directly with node S2

without the specific routing protocol. Accordingly, S4; S6

and S7 now have two paths each to the sink, i.e.,
r4;1¼fS4;S1;S0g;r4;2¼fS4;S2;S0g;r6;1¼fS6;S4;S1;S0g;r6;2¼
fS6;S4;S2;S0g;r7;1 ¼fS7;S4;S1;S0g;r7;2¼fS7;S4;S2;S0g.

In this case, we set the step size c ¼ 0:08 for
Algorithm 2. The simulation also consists of two stages:

� Stage C2.1: iteration 0! 3000, utility max–min fairness
is deployed similarly to the Stage C1.2.
� Stage C2.2: iteration 3000! 6000, the maximum node
power is halved intentionally to prolong the network
lifetime as energy is being consumed.

Fig. 6a–d shows the simulation results. They confirm
that the proposed rate control algorithm converges rapidly
without oscillation in the multipath scenario and properly
allocates the source rates to achieve utility max–min fair-
ness in both stages. In Stage C2.1, the nodes S4; S6 and S7

are constrained by the receiver capacity of node S4 with
U4 ¼ U6 ¼ U7 ¼ 1=a4 ¼ 0:5312. In Stage C2.2, since the al-
lowed power consumption is mandatorily reduced to
50%, the sensors in consequence are constrained by the
energy (node S1 and S2) with U ¼ 1=b1 ¼ 1=b2 ¼ 0:4512.
It re-enforces the effectiveness of channel capacity con-
straint and energy constraint. In addition, by comparing
the results of Stage C1.2 and Stage C2.1, it is clear that
multipath network helps balance the energy better over
the whole network.
7. Conclusions

In this paper, we have developed a utility framework of
rate control for heterogeneous wireless sensor networks
with single- and multiple-path routing. The proposed algo-
rithms are capable of allocating resource for sensor networks,
which may contain various sensor types and execute various
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and selected path rates, (c) capacity prices, and (d) energy prices.

3792 J. Jin et al. / Computer Networks 56 (2012) 3783–3794
tasks. Besides channel capacity constraint, the sensor node
energy constraint is also enforced to ensure the designed
operational lifetime of sensor networks. We have shown that
at convergence, the sensor source rate is properly allocated,
and the utility achieved by each node turns into either pro-
portional fairness or max–min fairness. As highlighted, the
algorithms presented only require that the sensor node
utility function be positive, strictly increasing and bounded
over the source rate. It does not require the strict concavity
condition on the utility function that is strongly desired by
the traditional rate control approach. Therefore, our algo-
rithms are well suited for heterogeneous sensor networks,
which commonly carry on inelastic traffic, to provide
efficient rate control and fair resource allocation. Moreover,
even though the development of this research is in the sensor
network setting, the framework generally is extensible to any
energy-constrained wireless ad hoc network.
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Appendix A. Proof of Theorem 1

In this appendix, we will consistently use vector nota-
tions. For a vector z ¼ ðz1; z2; . . . ; znÞT; jjzjj2 denotes the
Euclidean norm, jjzjj1 ¼
P

ijzij; jjzjj1 ¼maxijzij, and jjzjj
without a subscript denotes any norm. For a matrix
Z; jjZjj denotes the correspondingly induced norm.

According to the Lagrangian formulation, the dual func-
tion of the optimization problem (13) and (17) is defined as
follows:

DðhÞ ¼ max
ms6xs6Ms

XS

s¼1

½UsðxsÞ � xsh
s� þ

XH

h¼1

hhwh

 !

¼
XS

s¼1

½UsðxsðhsÞÞ � xsh
s� þ

XH

h¼1

hhwh ð27Þ

where the hybrid price vector h ¼ ½a; b�T;Hs denotes the
nonzero components of sth row of matrix H

hs ¼
X
h2Hs

hh ð28Þ

and

xsðhÞ ¼ xsðhsÞ ¼ U�1
s

1
hs

� �UsðMsÞ

UsðmsÞ

 !
ð29Þ

is given by the source algorithm (11) that solves the max-
imization problem in (27).

The price algorithms (9), (10) can be further viewed as a
gradient projection algorithm that solves a dual problem

D : min
hP0

DðhÞ ð30Þ

The following proof is closely related to the proof of
Theorem 1 in reference paper [9].
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For the property of the dual function DðhÞ, we have the
following lemma directly from the definition of UsðxsÞ.

Lemma 1. The dual function DðhÞ is convex, lower bounded
and continuously differentiable.

For any given price vector h P 0, we define vsðhÞ by

vsðhÞ ¼
U2

s ðxsðhÞÞ
U0sðxsðhÞÞ if 1

UsðMsÞ 6 hs
6

1
UsðmsÞ

0 otherwise

(

where xðhÞ is given in (29). We will use xsð�Þ both as a func-
tion of the (scalar) hybrid price hs and of the vector price h.

Let XðhÞ be the S� S diagonal matrix defined by

XðhÞ ¼ DiagðvsðhÞ; s 2 SÞ ð31Þ

2
Lemma 2. The Hessian of D is given by r DðhÞ ¼
�N�HXðhÞ�HT, where it exists.
Proof. Let @x
@h ðhÞ denote the S� H Jacobian matrix whose

ðs;hÞ element is @xs
@hh
ðhÞ. According to (29),

@xs

@hh
ðhÞ ¼ � U2

s ðxsðhÞÞ
U0sðxsðhÞÞ

�Hh;s if 1
UsðMsÞ 6 hs

6
1

UsðmsÞ

0 otherwise

(

Using (31) we have

@x
@h
ðhÞ ¼ �XðhÞ�HT ð32Þ

Thus from (27) we have rDðhÞ ¼ w�HxðhÞ and hence

r2DðhÞ ¼ �H
@x
@h
ðhÞ

� �
¼ HXðhÞ�HT

¼ �N �HXðhÞ�HT: � ð33Þ

Recall W;V ;/1 and /2 defined in (18)–(21), and we have
Lemma 3. rDðhÞ is Lipschitz with

jjrDðgÞ � rDðhÞjj2 6
/2

1

ffiffiffiffi
H
p

KWV
/2

jjg� hjj2 ð34Þ

for any vector h;g P 0.
Proof. Using Lemma 2, we will show that jjr2DðhÞjj2 ¼
jj�N�HXðhÞ�HTjj 6 /2

1

ffiffiffi
H
p

KWV
/2

. The Lemma then follows from

[Theorem 9.19] [27].
With the definition XðhÞ in (31),

jjr2DðhÞjj2 ¼ jj�N �HXðhÞ�HTjj2 ð35Þ

6
/2

1

/2
jj�N �H�HTjj2 ð36Þ

Since (see, [pp. 635] [28])

jj�H�HTjj22 6 jj�H�HTjj1jj�H�HTjj1
and �H �HT is symmetric, jj�H�HTjj1 ¼ jj�H �HTjj1, hence
jj�H�HTjj2 6 jj�H�HTjj1
¼max

h

X
h0
½�H�HT�hh0

¼max
h

X
h0

X
s

�Hh;s
�Hh0 ;s

6Wmax
h

X
s

�Hh;s

6WV
jj�Njj2 6
ffiffiffiffi
H
p
jj�Njj1 6

ffiffiffiffi
H
p

K

Together with (36), we have (34) which is desirable. h

Since xðhÞ in (29) is continuous, the dual function DðhÞ
is lower bounded from Lemma 1 and rDðhÞ is /2

1

ffiffiffi
H
p

KWV
/2

Lipschitz from Lemma 3. Let 0 < c < 2/2
/2

1

ffiffiffi
H
p

KWV
, any sequence

hðtÞ generated by the gradient projection algorithm (9) and
(10) converges to a limit point h�, which is the optimal
solution for the dual problem D. Meanwhile, x� ¼ xðh�Þ is
the unique solution for the primal problem (13), (17) (see
[28, p. 214]). Thus proof of Theorem 1 is complete.
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