
RiverSwarm: Topology-Aware Distributed Planning

for Obstacle Encirclement in Connected Robotic

Swarms

Pradipta Ghosh1, Jie Gao2, Andrea Gasparri3, and Bhaskar Krishnamachari1

1Ming Hsieh Department of Electrical Engineering, University of Southern California, {pradiptg, bkrishna}@usc.edu
2Computer Science, Stony Brook University, jgao@cs.stonybrook.edu

3Dipartimento di Ingegneria Università degli studi “Roma Tre”, gasparri@dia.uniroma3.it

Abstract—Distributed motion control of robotic swarms has
been receiving increased attention due to their potential for
application in many domains including emergency response and
remote sensing and exploration. A challenging aspect of motion
control for swarms is enabling them to move past large obstacles
without losing global connectivity. In this paper we present a novel
motion primitive for swarms of robots which allows them to flow
past large obstacles while remaining connected. This technique
relies on a key result from differential geometry, the Gauss-
Bonnet theorem, which allows tracking and counting the number
of holes in a given triangulated graph in a distributed manner.

I. INTRODUCTION

Swarm robotics can be defined as the study of how a group
of relatively simple, low-cost robots can be constructed to
collectively accomplish tasks that are beyond the capabilities of
a single one while providing a higher robustness and flexibility.
The idea is that the collective behavior should emerge from the
local interaction between neighboring robots. This is inspired
by the typical social behavior among insects like ants, termites,
wasps, bees, birds etc. Briefly speaking, the main aspect of
a robotic swarm are: (1) Robustness that help the system to
continue functioning properly even some of its element have
failed, (2) Flexibility to assign many different tasks from a
broad range, and (3) Scalability to incorporate any number of
elements. Robotic swarms can be used for several applications
ranging from remote exploration, agricultural foraging, to
search and rescue operations. The reader is referred to [1], [2]
for a complete overview on swarm robotics.

In this work, we are interested in studying the collective
behavior of a robotic swarm moving in a cluttered envi-
ronment. In particular, we focus on the problem of moving
past large obstacles without losing the global connectivity
of the network topology. Indeed, the capability to preserve
the network connectivity over time is a crucial point in the
context of robotic swarms for which the capability to exchange
information is vital to perform almost any collaborative task.

*This work has been partially supported by the Italian grant FIRB “Futuro
in Ricerca”, project NECTAR, code RBFR08QWUV, funded by the Italian
Ministry of Research and Education (MIUR).

*This work has been partially supported by the US National Science
Foundation via awards CNS-1217260, CNS-1017881.

*Jie Gao would like to acknowledge the support of NSF through grants
DMS-1221339, CNS-1217823 and CNS-1116881.

The proposed motion primitive, which we denote as River-
Swarm, relies on prior work for distributed motion using poten-
tials [3] and flexible connectivity maintenance using algebraic
connectivity control [4]. The core novel idea in RiverSwarm
is to leverage a fundamental theorem of differential geometry,
the Gauss-Bonnet theorem [5], to detect when the swarm has
surrounded an obstacle and initiate a cut at the rear which
allows the swarm to continue moving. We show that this
approach allows connected swarms to flow past large obstacles
under many conditions where state of the art approaches may
suffer from many difficulties like disconnection, getting stuck
at the obstacle etc. In Section III, we have presented a detailed
discussion of such problems with state of art techniques.

II. RELATED WORK

A large number of swarm aggregation algorithms can be
found in the literature [6], [7]. Among the others, the usage of
potential fields represents a very common design technique for
coordinating the motion of robotic swarms [8], [9]. The core
idea is to control the local interaction between neighboring
robots through the design of proper attractive and repulsive
artificial potential fields. The resultant force determines the
direction and speed of travel for each single unit of the swarm,
ultimately yielding to a collective behavior. Connectivity main-
tenance algorithms in the literature can be classified into local
or global techniques. Local techniques aim at preserving the
original set of links defining the network topology over time.
An example of a decentralized algorithm for local connectivity
maintenance can be found in [10], and references therein.
Notably, the fact of preserving each link of the initial network
topology significantly reduces the capability of the robotic
swarm. Global techniques attempt to overcome this limitation
by allowing initial (redundant) links to be removed under the
assumption the overall network topology remains connected.
In this regards, the estimation and control of the algebraic
connectivity originally introduced in [11] represents a very
effective approach. Extensions to this framework range from
the integration of additional (bounded) control terms [4] to the
saturation of the connectivity control term itself [12].

On the other hand, maintaining a triangulation of nodes
under motion is a common task for mobile networks and robot
swarms. Delaunay triangulation, for its many nice properties
e.g Convex hull, Empty circle property, Minimum Spanning



0 10 20 30 40 50 60
0

10

20

30

40

50

60

Obstacle

Obstacle Encirclement in Process

Iter: 455

(a)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Obstacle

Obstacle Encirclement in Process

Iter: 1000

(b)

Fig. 1: Typical behavior of swarm aggregation algorithms a)
without connectivity maintenance b) with connectivity main-
tenance

Tree [13], Minimal roughness property[14] etc., has been
the one mostly used. In a network of robots using wireless
communication, edges longer than the communication range
of the robots are unavailable. Thus a restricted version of the
Delaunay triangulation, using only the edges shorter than 1,
was introduced in [15]. It was also shown in the same paper
that the restricted Delaunay graph can be locally computed –
each node computes the local Delaunay graph on its immediate
neighbors, by sharing this local Delaunay graph with only one
hop neighbors and removing the edges that are inconsistent,
the result is a globally consistent planar graph including all the
short Delaunay edges. It turns out that the restricted Delauany
graph can be computed and maintained on mobile nodes
without location information making it easier to implement
in practice. It is shown in [16] that one can locally decide all
the edges of a restricted Delaunay triangulation if each node
knows the angles of its edges. This can be relaxed even further.
If each node knows only the angular ordering of its edges, we
can decide and maintain a valid (albeit non-Delaunay) trian-
gulation. For our application this will suffice. Triangulations
of a wireless mobile network and its curvature have been used
in previous work to generate virtual coordinates for greedy
routing [5]. We note that the use of the Gauss-Bonnet Theorem

for tracking network topology in robot swarms is new.

III. CHALLENGES FOR STATE OF THE ART

The state of art techniques in the field of Swarm robotics
for moving around obstacles suffer from two major limitations:

1) Disconnection: In face of an obstacle most of the
existing methods that do not include connectivity con-
trol fail to allow the robots to move while maintaining
connectivity. Moving around an obstacle could cause
disruption in global connectivity even though every
robot might have local connectivity to some other
robots, causing partitioning of the network. Figure 4a
illustrates the problem where it can be seen that
some robots got stuck on the obstacle wall while
the rest of them moved away, resulting in network
disconnection.

2) Inefficiency in movement: A common limitation of
existing approaches able to preserve connectivity is
that the overall motion capability of the swarm is
drastically reduced if any of the robots get stuck due
to an obstacle. They might be stuck forever or they
will try to move through one side of the obstacle even
though there may be two ways around it when the
obstacle is moderately large with respect to the size
of swarm. From figure 4b it is clear that the entire
swarm is stuck due to connectivity constraints. The
only option for this case is to try and force the entire
swarm through one side of the obstacle, which can
be a slow process.

Note that it may be possible to solve this in part by moving
the swarm collectively in a different / random direction tem-
porarily then reverting back to the original control. However
this approach is undesirable as it offers no guarantees and can
be potentially very slow in some cases.

In this paper we propose a solution for a scenario where
the swarm as a whole is sufficiently large to “flow” around the
obstacle.

IV. RIVERSWARM

The proposed mechanism has three key components: 1)
Initiating encirclement of the obstacle , 2) Determining that
the obstacle has been encircled, i.e. that there is a hole
in the connected network and 3) Disconnecting from the
rear (boundary of the obstacle that blocks movement) of the
obstacle to allow the swarm to proceed further.

A. Initiating Encirclement

Whenever a swarm of robots encounters an obstacle in its
path, at-least one of the robots’ movement gets restricted. In
our proposed method, instead of just restricting the motion,
we make the robot completely stationary at this point. Then
the connectivity control, attraction/ repulsion between each
element comes into play. Under influences of all these forces,
some robots move towards obstacle and also get stuck near
the obstacle boundary.This way we will be able to identify
the boundary of the obstacle that blocks movement. The
agents moving parallel to the obstacle will also get stuck
due to the connectivity constraint. The connectivity control is



0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Obstacle

(a) Hole Encirclement

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(b) Triangulation & Hole Detection

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Obstacle

Rear Cut

(c) Initiate Detachment

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Obstacle

(d) Detachment Complete

Fig. 2: Steps of our Riverswarm Algorithm

based on Algebraic Connectivity which is the second smallest
eigenvalue of the Graph Laplacian [4]. But to force the swarm
to encircle the obstacle we need to add another potential
function. For solely that purpose, for a 2D environment we
have identified two fronts of the swarm in the two mutually
perpendicular directions which are at π

4
w.r.t to the destination

direction, say (x1, y1) and (x2, y2) , and added a potential
towards the co-ordinate ((x1+x2)/2, (y1+y2)/2) proportional
to the distance between the robot and calculated point. We
assume that all the robots share a common reference frame.
This potential will add a attraction force towards encircling
the obstacle. We assume that the localization of each robot
is perfect. So at each moment the exact locations of each
robots in the swarm are known. Also, by using connectivity
controller in our method we ensure that there are no loss of
communications between the robots.

In summary, there are four major potential fields that
contribute to the movements of the robots: a fixed veloc-
ity/potential towards goal, attraction-repulsion potential be-
tween neighboring robots[4] , connectivity controlling poten-
tial [4] and the novel encirclement potential discussed earlier.
Figure 2a presents a simulated instance of the encirclement of
the obstacle.

B. Detecting Encirclement

The Gauss–Bonnet theorem[5] is an elegant way to connect
geometry, specifically, curvature, to its Euler characteristics.
According to the theorem, given H = (# of handles)
and Z = (# of holes), the total curvature of a surface
M is a topological invariant:

∑
viǫV

Ki = 2πχ(M) where
χ = 2 − 2 ∗ H − Z . On the other hand, the Delaunay
triangulation is a method for triangulating the area covered by
a set of points. The most important property is the “empty-
circle” property that means that there should be no other
points inside a Delaunay triangle except the vertices. We are
interested in the restricted version of Delaunay triangulation
with two restriction. Firstly, the length of the edges should be
less than some threshold (Communication range of the robots)
and secondly, there should not be any edge that intersects the
obstacle region. In [16], Bruck, Gao and Jiang presented the
method for the Delaunay triangulation in a practical network
containing multiple nodes.

Remark that the Gauss-Bonnet Theorem [5] applies for
any triangulation. With ease of implementation in mind, the

triangulation we compute is only a “topological” triangulation,
i.e., with no knowledge of the edge length. We artificially give
each edge weight of 1, i.e, all triangles are equilateral. That
means all the angles of the triangles are π/3. We call an edge
a boundary edge if it is not in two triangles. We call a vertex
to be an interior vertex if all its adjacent edges are interior.
Otherwise, we call it a boundary vertex.

For each interior vertex u, define its Gaussian curvature as
2π−

∑
i
θi, where θi is corner angle of the triangle adjacent to

u. For each boundary vertex u, define its Gaussian curvature as
π−

∑
i
θi, where θi is the corner angle of the triangle adjacent

to u.

Take the sum of all curvatures for all vertexes. The sum
is 2π(2− h), where h is the number of holes. When there is
exactly one hole, this becomes 2π. One important point to note
is that this formation will treat the outside surrounding of the
network also as a large hole. Figure 2b shows the triangulation
for detecting the hole.

The Gauss-Bonnet theorem requires the triangulation to
be a manifold. Thus one vertex can only stay on one hole
boundary. There might be situations where one vertex may be
in more than one hole boundary. To fix this, we create a dummy
vertex for each extra hole −− make the pinch node/vertex a
duplicate copy and connect an edge between the two.In the
calculation of the curvature, we are adding an extra −2π/3 at
vertex v, an extra −π/3 at vertex x and vertex y each, an extra
π − 2π/3 at vertex v’. This gives a total of extra −π for the
curvature. Figure 3 displays the concept.

(a) (b)

Fig. 3: Solving the ‘pinch node’ problem



0 5 10 15 20 25 30
0

5

10

15

20

25

30

Obstacle

Obstacle Encirclement in Process

Iter: 400

(a)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Obstacle

Moving past the obstacle

Iter: 3000

(b)

Fig. 4: Riverswarm Algorithm in case of large obstacles

C. Continuing the flow

After the encirclement of a obstacle and hole detection is
complete, the robot that first encountered the obstacle initiates
a cut and force all its neighbors to move. Also we place
some dummy robots in the places of the robots that are stuck
and apply a potential in the stopped robots that pushes them
away from the respective dummy robots. The direction of the
movements are taken towards either left or right to the direction
of the repulsive force from the dummies. So now, all the robots
that were stopped due to obstacles gets some velocity to move.
We let the rest of the robots of the swarm move freely with the
connectivity restriction. The robots in front of the obstacle will
pull the robots behind the obstacle and continue movement of
the swarm towards original goal. Figure 2c displays the starting
of the detachment and figure 2d presents a situation after the
detachment is complete and the swarm has moved past the
obstacle.

Since practical world obstacle sizes are not constrained by
the size of the swarm, there will be cases where the obstacle
size is really large compared to the swarm. In those cases
encirclement is impossible. In such situations, our algorithm
tries to move past it by pulling all the robots through one side
of the obstacle. In our algorithm, we don’t need to switch to
any other policy for this to work. It has been automatically

taken care of by the acting potentials. Figure 4 clearly shows
that even in case of large obstacle, our algorithm is able to
make the swarm move past it.

V. CONCLUSION AND FUTURE WORK

We have presented a novel idea that enables a swarm of
robots to encircle an obstacle and then move past it. There
is still much left to do with our proposed method, including
fleshing out the full details of a distributed control law with
provable theoretical guarantees, and detailed evaluation via
simulations and real testbed deployment. We are also working
on dealing with simultaneous detection of multiple obstacles
to enable the swarm to move rapidly through all possible paths
in between them using the same topology-based approach
proposed here.

REFERENCES

[1] Erol Aahin and Alan Winfield. Special issue on swarm robotics. Swarm

Intelligence, 2(2-4):69–72, 2008.

[2] V. Gazi and K.M. Passino. Swarm Stability and Optimization. Springer,
2011.

[3] Veysel Gazi. Swarm aggregations using artificial potentials and sliding-
mode control. Robotics, IEEE Transactions on, 21(6):1208–1214, 2005.

[4] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri. Distributed control
of multirobot systems with global connectivity maintenance. Robotics,

IEEE Transactions on, 29(5):1326–1332, Oct 2013.

[5] Rik Sarkar, Xiaotian Yin, Jie Gao, Feng Luo, and Xianfeng David Gu.
Greedy routing with guaranteed delivery using ricci flows. In Proc. of

the 8th International Symposium on Information Processing in Sensor

Networks (IPSN’09), pages 97–108, April 2009.

[6] Veysel Gazi and Kevin M Passino. A class of attractions/repulsion
functions for stable swarm aggregations. International Journal of

Control, 77(18):1567–1579, 2004.

[7] A. Leccese, A. Gasparri, A. Priolo, G. Oriolo, and G. Ulivi. A
swarm aggregation algorithm based on local interaction with actuator
saturations and integrated obstacle avoidance. In IEEE International

Conference on Robotics and Automation (ICRA), May 2013.

[8] Naomi Ehrich Leonard and Edward Fiorelli. Virtual leaders, artificial
potentials and coordinated control of groups. In IEEE Conference on

Decision and Control, pages 2968–2973 vol.3, 2001.

[9] Ryan K Williams and Gaurav S Sukhatme. Constrained Interaction
and Coordination in Proximity-Limited Multiagent Systems. IEEE

Transactions on Robotics, 29(4):930–944.

[10] D.V. Dimarogonas and K.J. Kyriakopoulos. Connectedness Preserving
Distributed Swarm Aggregation for Multiple Kinematic Robots. IEEE

Transactions on Robotics, 24(5):1213–1223, 2008.

[11] Peng Yang, Randy A Freeman, Geoffrey J Gordon, Kevin M Lynch,
Siddhartha S Srinivasa, and Rahul Sukthankar. Decentralized estimation
and control of graph connectivity for mobile sensor networks. Auto-

matica, 46(2):390–396, 2010.

[12] A. Gasparri, A. Leccese, L. Sabattini, and G. Ulivi. Collective control
objective and connectivity preservation for multi-robot systems with
bounded input. In IEEE American Control Conference (ACC), 2014,
June 2014. To appear.

[13] Jörg Liebeherr and Michael Nahas. Application-layer multicast with
delaunay triangulations. In Global Telecommunications Conference,

2001. GLOBECOM’01. IEEE, volume 3, pages 1651–1655. IEEE, 2001.

[14] Samuel Rippa. Minimal roughness property of the delaunay triangula-
tion. Computer Aided Geometric Design, 7(6):489–497, 1990.

[15] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu.
Geometric spanners for routing in mobile networks. IEEE Journal on

Selected Areas in Communications Special issue on Wireless Ad Hoc

Networks, 23(1):174–185, 2005.

[16] Jehoshua Bruck, Jie Gao, and Anxiao Andrew Jiang. Localization
and routing in sensor networks by local angle information. ACM

Transactions on Sensor Networks (TOSN), 5(1):7, 2009.


