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Abstract—Making Unmanned Aerial Vehicles (UAV) fully au-
tonomous faces many challenges, some of which are connected
to the inherent limitations of their on-board resources, such
as energy supply, sensing capabilities, wireless characteristics,
and computational power. The sensing, communication, and
computation Internet of Things (IoT) infrastructure surrounding
the UAVs can mitigate such limitations. However, external traffic
dynamics, signal propagation, and other poignant characteristics
of the IoT infrastructure make it an extremely dynamic and
incoherent environment, especially in urban scenarios, thus
challenging the use of IoT resources for mission-critical UAV
applications. Herein, the concept of information autonomy is
introduced to extend autonomy to encompass how information-
related tasks are handled in this challenging scenario. In this
paper, we motivate the need for “Information Autonomy” based
on our observations from real-world experiments and present
a self-adaptive framework for edge-assisted UAV applications.
Through our preliminary evaluation, we show that our “Informa-
tion Autonomy” framework is capable of handling uncertainties
autonomously during run-time.

I. INTRODUCTION

On-board resources available to commercial Unmanned
Aerial Vehicles (UAV) are inherently limited by the airborne
nature of these devices. Such constraints affect key sub-
systems, such as sensors and computing platforms, which
are instrumental for prolonged and autonomous operations.
A relevant trend in mobile devices, whose application has
been recently extended to include UAVs, is to use resources
from the Internet of Things (IoT) and edge infrastructure
surrounding the UAVs to enhance their performance [1], [2]. In
particular: a) wireless cellular networks can be used to extend
the communication range of the UAVs and connect them to
other edge devices or the internet core [3]; b) data streams
from ground sensors or devices can supplement those from
on-board sensors to extend the information available to the
UAVs [4]; and c¢) signal processing tasks can be offloaded to
compute-capable devices residing at the network edge, that is,
edge servers [5].

Although most of the discussion provided in this paper
applies to all the three cases listed above, herein we focus
on edge offloading — case ¢, often referred to as edge
computing [4] — due to its potential to enable a high degree
of operational autonomy to those highly constrained devices.
The advantages of edge computing applied to UAV systems
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Fig. 1: The scenario considered in this paper: an autonomous
UAV leverages the surrounding IoT infrastructure to improve
mission performance. Specifically, we focus on offloading
computing tasks to edge servers through wireless links.

are rather intuitive: a powerful machine with an unlimited
energy supply connected to a UAV through a one hop wireless
link can effectively execute complex algorithms beyond the
reach of on-board UAV computing platforms and deliver the
outcome to the UAYV, thus enabling advanced — autonomous
— learning, control and planning. The edge server can run
simpler algorithms in a shorter time, thus improving the reaction
time of the UAV to external stimuli. Finally, we remark that
continuous computation requires a substantial amount of energy,
a precious resource that should be parsimoniously used to
avoid degradation of mission lifetime. By taking over compute-
intense processes, the edge server can significantly reduce
energy consumption of the UAV.

Based on the above discussion, edge computing, and in
general infrastructure assistance to UAV systems, appears to
be an extremely promising component of future UAV systems
(see Fig. 1). However, there are several technical challenges
to overcome to fruitfully and reliably apply this paradigm
to a mission-critical system such as autonomous UAVs. A
crucial aspect of the infrastructure assisting the UAVs is that
it is shared by a multitude of devices and services. This,
together with the characteristics of signal propagation, creates
an extremely dynamic environment, where the time needed to
transfer data to the edge server, or the time to complete the
processing task are highly variable, and governed by extremely
complex temporal and spatial random processes [6]. As a result,
blindly trusting infrastructure assistance may lead to severe



performance degradation.

We contend that to fully harness the benefits of infrastructure
assistance while preserving reliable flight and mission control,
the notion of “autonomy” needs to be extended from pure
mission control to include an advanced layer of intelligence
making decisions on how information is handled within the
complex UAV-infrastructure system. We refer to this layer
as “information autonomy”. We remark that information
autonomy could boost the performance of many distributed, and
constrained, mission-critical systems. We make our discussion
specific to UAVs due to their extreme characteristics in terms
of limitations, mobility and complexity of operations.

Herein, we provide a first description of an architecture
realizing information autonomy, and a detailed discussion
on the many challenges present in the definition of key
modules such as state acquisition/tracking, prediction and
decision making. The discussion is supported by illustrative
results from detailed simulation and real-world experiences
and implementations.

The rest of the paper is organized as follows. Section II
describes the operational scenario and discusses the lessons
learned from real-world experiments. In Section III, we
present the motivation and need for information autonomy
in the context of UAV systems. Section IV presents the
fundamental structure of information autonomy and emphasizes
the key challenges in its realization. Section V presents the
proposed “Information Autonomy” architecture. We present
the preliminary results in Section VI. Finally, Section VII
concludes the paper.

II. LESSONS LEARNED FROM REAL-WORLD EXPERIMENTS
ON UAV SYSTEMS

Figure 1 illustrates the infrastructure-assisted autonomous
UAV system at the center of this paper. In the edge computing
scenario, the UAV is connected to one or more edge servers,
compute-capable devices positioned at the network edge to
complete computing tasks, through 1-hop wireless links(e.g.,
Long-Term Evolution (LTE) or Wi-Fi links). Edge computing
is expected to reduce latency compared to cloud computing.

In the considered scenario, the edge servers could take
over the analysis, and possibly the control, functions of the
sensing-analysis-control pipelines typically used to support the
operations of autonomous UAVs. In such edge-based pipeline,
the input generated by the on-board sensors and the output
from the modules at the edge server, need to be wirelessly
transferred. Importantly, as compute-intense tasks often require
a large amount of energy, offloading can possibly reduce energy
consumption at the UAV, even when considering the additional
energy needed to transmit the data to the edge server.

For a successful completion of a mission, all the hardware
components of UAV have to continuously generate new data
to inform the control algorithms in a dependable and energy-
efficient manner. Unfortunately, it is difficult to estimate the
resources needed for sensing, actuation, communication, and
control before the mission (run-time) since the stability of
the UAV is impacted by various environmental, system, and
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Fig. 2: Experimental setup for UAVs with on-board computing
and communication equipements.

network components. In the rest of this section, we report the
lessons learned from real-world experimentation.

A. Run-time Uncertainties in Edge-assisted UAV Applications

We conducted a series of experiments involving UAVs and
edge servers using the setup shown in Figure 2. Our goal
is to assess the performance and the resource constraints of
edge-assisted UAV systems. In these experiments, the UAV
is equipped with small on-board computer connected witha
WiFi dongle and a USRP B200mini to emulate an LTE
interface. The edge server is established using a Laptop with
high computational capacity equipped with the same network
interfaces. We tested a UAV mission of target tracking based
on image classification.

Results indicate the following challenges:

« 1. Environmental Uncertainty - Weather conditions
such as wind speed, temperature, and humidity influence
control. Harsh conditions may require a significant amount
of energy even just to maintain the UAV stable. Due to
the unpredictable nature of the weather, it is difficult to
predict or allocate in advance a resource budget for flight
and motion.

o 2. System Uncertainty - In surveillance or other edge-
assisted UAV applications, the performance depends on
the computation capacity, as well as the available energy
budget for computation, communication, and sensing. All
these quantities are variable that depend on internal and
external factors.

o 3. Network Uncertainty - Wireless links are susceptible
to capacity variations due to interference, and channel
propagation. Thus, UAV systems relying on edge servers
have to carefully manage and select channel and network
resources.

The above challenges highlight the need to introduce
“Information Autonomy” to react and adapt to the system,
network, and environmental uncertainties. Application goals
have to be updated dynamically during the mission to maximize
the mission duration. In the next section, we formulate the
problem goals with respect to the application scenario.
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Fig. 3: Profiling-Analysis-Control Pipeline for Mission Auton-
omy.

III. PROBLEM FORMULATION AND MOTIVATION

We consider an UAV autonomously operating to accomplish
a mission. Here, we do not specifically define the mission,
but, instead, assume that autonomous operations necessitates
sensor input to be transformed into short- and/or long-term
decisions. For instance, video input from on-board cameras
can be processed to determine navigation, or to plan the
mission. We further assume that our objective is to assure
the mission completion, therefore maximizing mission time,
while maintaining a high degree of quality of operations, as
discussed below.

Figure 3 depicts a basic diagram of the modules involved in
the transformation from input vector u, to the output vector
Yi+A given a context or state ¢, where ¢ is the time at which
the sensor input is acquired. The input is first processed in
the analysis module to extract relevant features. For instance,
in a video-based navigation application, the input is a video
frame, and the output of the analysis module, generated by an
object detection algorithm, is a set of labeled bounding boxes.
The features produced by the analysis module are sent to the
control module, which generates the final output y;4 . In this
particular example, the output are motion and navigational
commands.

Formally, we denote the transformation as:

Yi+a :f(ut»¢t)' (D

Note that the output is generated at time t+A, where A is
a random variable corresponding to the time needed for the
transformation. We refer to A as the capture-to-output delay.

If the function f is complex, the delay A might be large, thus
increasing the reaction time of the UAV to input stimuli and
possibly degrading mission performance. Moreover, compute
intense transformations may require a, possibly large, amount
of energy E to be completed. Our objective, thus, is to to
use infrastructure-assistance to reduce /A as much as possible,
while also minimizing energy consumption.

In the edge-based pipeline, the capture-to-output time A is
a function of many variables describing the environment. Let’s
decompose the delay of the edge-based pipeline A€ as follows:

e __ e e e
A= data + Acomputing + A0utput7 (2)
e e e
where A§,i.. Abomputing: and Agyepy are the delay to

transport the data to the edge server, the processing time at

the edge server and the time to transport the output back to
the UAV, respectively.

Intuitively, the components associated with the wireless trans-
fer of data, i.e., AG,, and A . are a function of the used
technology (e.g., LTE or Wi-Fi), channel characteristics (UAV-
base station distance, fading and shadowing), and network load.
The processing component of the delay, that is, Ag,, o ings
is highly dependent on the server load. Importantly, channel
gain, and network and server load are highly variable, and have
complex spatio-temporal distributions that play an important
role in the determination of effective data management and

analysis strategies.

A. Need for Information Autonomy

To study the dynamics of edge-assisted UAV applications,
we used an integrated UAV-network simulator — FlyNetsim [7]
which allows the application developers to experiment with sim-
ulated UAVs, wireless network(s), and edge servers. The UAVs
receive control messages over the widely used MAVLink [8]
protocol and exchange telemetry information for specific
computation tasks and closed-loop controls. Different from
other integrated UAV-network simulators, FlyNetSim is capable
of supporting a wide range of application scenarios, centralized
or decentralized control approaches, and can simulate the
transport of data streams and telemetry-based controls. Addi-
tionally, FlyNetSim can emulate a range of network conditions,
including multiple heterogeneous networks, device-to-device
ad-hoc communications, different types of mobility models and
also multipath and multi-hop communications. The simulator
makes an efficient use of resources, and, thus, provides excellent
scalability and can support complex scenarios. Using this tool,
we simulate network conditions with varying load and mobility
to evaluate the variations in the time A triggered by these
parameters.

In Figure 4, we show temporal traces of Ag,i, from the
object detection scenario, in which the UAV transfers a picture
to the edge server using Wi-Fi. The total time is a function of
the number of competing wireless nodes and their transmission
rates. It can be observed that as the traffic generated by each
node increases (see Figure 3a), not only the average delay
increases, but the temporal variations across subsequent frames
become more apparent. This is due to the complex interactions
between the streams induced by the transmission and transport
layer protocols, which manifest especially as the sum traffic
approaches the maximum link capacity. Similarly, if we increase
the number of competing nodes (see Figure 3b), packet failures
or timeouts will eventually induce large variations. The bottom
plot (Figure 3c) in the picture shows the abrupt variations in
the delay Agata induced by random motion of the UAV when
adaptive rate is used. Importantly, the underlying conditions,
channel gain, number of nodes, task load, vary over time and
space, presenting different trends in different contexts.

From these examples, it is clear that offloading may not
be consistently beneficial, at least from the point of view of
capture-to-output delay. Moreover, the dynamics of capture-
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Fig. 4: Frame delay as a function of network load & mobility.

to-output delay highly depend on the characteristics of the
surrounding environment.

Related Work: the Information Autonomy problem in-
troduced in this paper is a form of Multi-Criteria Decision
Making (MCDM) problem [9]. The configuration space for
the Information Autonomy consists of multiple parameters that
control the wireless communication layer, processor efficiency,
energy consumption, and response time of the application with
the goal of maximizing mission lifetime and goals. Existing
self-adaptation approaches such as Model At Run-time [10],
[11] and control theory methods [12] can be applied to solve
this class of problems. However, those approaches would need
careful formulation and tuning to match the needs of the
considered system. A simple optimization framework to control
offloading against variations in network rate and server load
can be found in [13].

IV. INFORMATION AUTONOMY

The simulation results in Section III-A show that a predefined
offloading strategy would fail to harness the performance
boost granted by infrastructure-assistance, or would possibly
even degrade mission performance. We contend that due to
the complexity of the involved dynamics, UAVs will need
to implement a form of autonomy addressing this relevant
aspect of the system. We refer to this layer of autonomy as
information autonomy. Recall that the goal of information
autonomy is to minimize the capture-to-output time A, by
determining how and where information is propagated and
transformed within the system. In one of it simplest realizations,

Information Autonomy may just select the best, local or
distributed, pipelines to transform sensor feeds into control. As
illustrated in Fig. 1, the UAV may have multiple options in
terms of network and edge server. We refer to this case in the
description that follows.

Structurally, the pipeline to realize information autonomy is
analogous to that shown in Fig. 3. However, the modules need
to be specialized to the rather difficult problem of managing
information in the composite UAV-infrastructure system.

A. Profiling

In most autonomous systems, this part of the pipeline
is composed of sensors directly collecting signals from the
environment. In the context of information autonomy, the
Profiling module is assigned the difficult task of extracting
information, a signal, from the UAV-infrastructure system to
enable the estimation and/or prediction of the state of entire
communication-processing sections of the infrastructure. We
identify two main strategies, which we refer to as inquiry and
probing.

Inquiry: The sensing module sends direct inquiries to the
infrastructure. For instance, the module can obtain from the
network the expected transmission rate, and the number of
current tasks — being executed or queued — from the edge
server. This method presents two main disadvantages. First,
the infrastructure would need to implement protocols to accept
requests and compose replies. Additionally, in many network
technologies the use of a channel would induce complex
interactions with other active data streams, altering the available
bandwidth.

Probing: A simpler and possibly effective option is to introduce
forms of probing, where the profiling module would “test”
available pipelines by issuing tasks over the resource. Probing
does not require any modification to the infrastructure, but
incurs a drawback: the probe will use network and server
resources, and for this reason the characteristics of the probes,
such as packet number, timing and size, have to be finely
tuned.!

An interesting tradeoff may exists between the burden
imposed to the system and the amount of information extracted
by the probes on the state of the system. For instance, a reduced
size or frequency of the probes may reduce the amount of
information gathered on the state of the pipeline, as a small
probe may “traverse” the system unaltered, whereas a sequence
of full size tasks may produce informative outcomes while also
imposing a large burden to the used channel and server.

B. Analysis

The Analysis module transforms the output of the Profiling
module — for instance a vector of delays obtained using probes
— into features of the sensed pipeline state. Intuitively, as the
objective of information autonomy is to select the best pipeline,

! Note that if the full task is sent over multiple — independent — pipelines,
the UAV can use the output generated in the smallest time, thus reducing the
impact of unexpected variations through diversity.



the features should allow prediction of the future performance
of available pipelines. Taking as example the traces shown in
Section III-A, the Analysis module could attempt to predict
future delays or extract properties of their distribution to inform
pipeline selection.

A major design aspect in this part of the information
autonomy layer is the temporal scale of analysis and prediction.
The module could extract a long-term state of the pipeline,
corresponding for instance to the number of active nodes
and their traffic in our illustrative example. Tracking such
state would roughly correspond to mapping samples to a
long-term distribution of end-to-end delays, and characterizing
their components to plan the appropriate action. Alternatively,
the module could maintain a running predictor, continuously
predicting future delays from a set of samples. This latter
approach allows faster reaction to the variations that exist within
the logical states, thus possibly achieving better performance
compared to the former approach.

C. Control

The Control module transforms the features produced by
the Analysis module into decisions. In this context, decisions
control the activation/deactivation of pipelines, as well as
probing strategies. For instance, if a perceived degradation
in the performance of the currently used pipeline, the Control
module could activate probing over available pipelines. Mini-
mizing A, the capture-to-control delay requires continuous
tuning of system parameters, such as sampling frequency,
offloading strategy and analysis functions. Note that multiple
pipelines could be kept active during transitions to avoid
mission interruptions.

V. ARCHITECTURE

In developing a solution for Information Autonomy for UAV
systems, we use the well-known Monitoring-Analysis-Plan-
Execution-Knowledge (MAPE-K) [14] architecture, and tailor
our framework (see Figure 5) to circumvent, at least in part,
the run-time uncertainties as described in the previous sections.

Consider an autonomous system with sensors s; producing
the data point (¢;, y;(t;)), where y;(¢;) corresponds to the value
read at time ?;. We introduce the notion of Virtual Sensors
(VS), where the n — th VS is represented by a sequence
VSfL = {ry,...,7} of one or more readings from sensors
{si}i=1,... m- Every sequence is the concatenation of several
sub-sequences corresponding to data from the same sensor. The
parameter J is the time interval between consecutive sequences.
An important challenge is to use algorithms that can combine
multi-modal data, combining data produced at different time.
Note that from this mapping we compute the minimum update
frequency of sensors {s;}i—1,... m to optimize resource usage.

When a new sequence is produced by VSfl, it is encapsulated
in a Data Block (DB) that includes some metadata, e.g., type,
before it is submitted to the central Buffer (B), implemented as
a priority queue, with priority function P. The highest priority
information in the buffer is then redirected to the next stage
using policy JF, that consists of a map associating every DB of
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Fig. 5: Graphical representation of the proposed framework
and its control flow

type 7 to the function f,(-). Then, a state update X (¢) — X (¢')
is triggered and b) enriches the DB with a selection of state
variables (') C X (¢') as it appears at time t'.

We model the data analysis operations as a concatenation of
functions f,o fs...of,(-), after each of which a DB is submitted
to the buffer B and the priority of such pipeline is re-evaluated.
By design (decoupling of input and state) each function isolated
and stateless, can be easily offloaded to other devices. These
functions are part of the Modules, that include even other
pre-control functionalities, such as outgoing communications.

A control mechanism follows the data analysis and allows
us to plan (as in MAPE) an action to modify the current state
towards the desired one. This can, for instance, consist in
selecting a pipeline, activating multiple of them, steering the
UAV in a direction or change one of the control parameters,
such as the frame rate. The execution module follows, which
implements the decision by interacting with drivers of physical
or logical components.

Let’s now illustrate the behavior of the listed components in a
simple scenario involving one UAV and an edge server running
the same software architecture. Consider a V'S¢ | = [ro, 71, 72],
producing a new sample every 0.1s, containing three readings,
where rg is a frame and r1, ry are the most recent data points
available from accelerometer and gyroscope. First a Data Block
is produced by the virtual sensor and enqueued into the buffer
B. When it is served, function f, is applied, producing a new
DB containing the same frame rotated to straighten the horizon.
The produced DB is again enqueued in B and ready to be
redirected to a pedestrian detection function. Suppose the link
with the edge is fairly strong, and therefore the mapping rule F
calls an offloading function, that sends the DB to a connected
edge server. Now the DB is received at the ES, where the
same architecture is running. A virtual sensor is listening for
incoming DBs, and when receives the data, it enqueues the
DB in the local buffer. Thereafter the DB is redirected using
the map Fg, that is computed taking into account the edge
server characteristics and state. The result is then forwarded to
the communication module again, now sending to the UAV the
resulting DB containing the estimated position of the object
to track. The DB is now concatenated with some mission
parameters, before being forwarded to the control module. In
this case, we use the attached state information to decide if
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the detected object must be tracked or avoided. Finally, the
Execute module converts the control DB into an actionable
packet that is sent to the motor’s driver changing the rotors’
speed and performing the required maneuvers.

VI. PRELIMINARY RESULTS

We experimented with an application scenario where a
UAV captures video for object detection based on which it
performs control action to follow a target object. The object
detection is performed using a Haar-cascade classifier which is
executed either by the on-board computer or by the edge server
depending on the resource availability. Using a preliminary
version of the system described in Section V, and data collected
during field experiments, we observe how the system adapts to

the environment, and especially to changes in th network load.

We use the FlyNetSim simulator to simulate a network with
five nodes: a UAV and an edge Server, and other three nodes
competing for the same WiFi channel. Fig. 6 shows the effect
of the interfering traffic on the capture-to-control delay, the
time interval between when the frame is produced at the virtual

sensor, and the beginning of the execution of the maneuver.

In this case our goal is to improve control performance
by minimizing the end-to-end delay A. We accomplish this
through a simple policy that uses the same object detection
algorithm both at the UAV and the ES, selecting for each
frame the first control result that reached the executor. It can
be observed that in this case, given the deterministic nature
of local processing, the resulting maximum delay is always
around 0.6s, bounding the worst case to this maximum limit.

We can observe important variations and complex behaviors
of the resulting capture-to-control delay. For example, notice
the effect of congestion on the capture-to-control delay at
t = 200s, even though the competing nodes are using a
small amount of communication resources in the [200, 250]s
span. These preliminary results justify how in highly dynamic
environments an autonomous system must implement some
form of information autonomy to handle information-related
tasks.

In our ongoing work, we are developing object detection and
RF localization applications using the “Information Autonomy”
architecture presented in this paper to further validate the
effectiveness of the proposed concept and architecture.

VII. CONCLUSIONS

In this paper, we presented and discussed the challenges
of providing infrastructure-assistance to autonomous systems,
and introduced to notion of information autonomy: a layer of
autonomy whose objective is to control how information is
propagated through the system. The preliminary version of the
framework is demonstrated focusing on an object detection
application. Results demonstrate the importance of autonomous
decision making in this relevant plane of the system.
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