
Online Learning for Combinatorial Network

Optimization with Restless Markovian Rewards

Yi Gai§, Bhaskar Krishnamachari§ and Mingyan Liu‡

§Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

Email: {ygai,bkrishna}@usc.edu; mingyan@eecs.umich.edu

Abstract—Combinatorial network optimization algorithms
that compute optimal structures taking into account edge weights
form the foundation for many network protocols. Examples in-
clude shortest path routing, minimal spanning tree computation,
maximum weighted matching on bipartite graphs, etc. We present
CLRMR, the first online learning algorithm that efficiently solves
the stochastic version of these problems where the underlying
edge weights vary as independent Markov chains with unknown
dynamics.

The performance of an online learning algorithm is charac-
terized in terms of regret, defined as the cumulative difference
in rewards between a suitably-defined genie, and that obtained
by the given algorithm. We prove that, compared to a genie that
knows the Markov transition matrices and uses the single-best
structure at all times, CLRMR yields regret that is polynomial
in the number of edges and nearly-logarithmic in time.

I. INTRODUCTION

The following abstract description of combinatorial network

optimization covers many graph theoretic algorithms that form

the basis of network protocol design in wired and wireless

networks. Given a graph G = (V, E), where each edge e ∈ E
is associated with a weight we, find a structure consisting of

a collection of edges satisfying some given property (e.g.,

a path, a tree, a matching, or an independent set), that

maximizes or minimizes the sum of the weights on the selected

edges. This kind of linear network combinatorial optimization

covers, for instance, shortest path and minimum spanning tree

computation used in routing protocols, and maximum-weight

matching used for channel scheduling and switching.

In practice, the edge weights may correspond to some

link quality metric of interest such as packet reception ratio,

delay, or throughput. In such a case, the edge weights are

often stochastically varying with time. Moreover, the dynamics

may not be known a priori. The solution approach to this

problem that we advocate here is to combine the estimation

and optimization phases jointly via an efficient online learning

algorithm.

We present in this paper an online learning algorithm

that is designed for the setting where the edge weights are

modeled by finite-state Markov chains, with unknown tran-

sition matrices. We show that this problem can be modeled

This research was sponsored in part by the U.S. Army Research Laboratory
under the Network Science Collaborative Technology Alliance, Agreement
Number W911NF-09-2-0053, and by the U.S. National Science Foundation
under award number CNS-1049541.

as a combinatorial multi-armed bandit problem with restless

Markovian rewards.

To characterize the performance of this algorithm, following

the convention in the multi-armed bandit literature, we define

a notion of regret, defined as the difference in reward between

a suitably defined model-aware genie and that accumulated

by the given algorithm over time. Specifically, in this work,

we consider a single-action regret formulation, whereby the

genie is assumed to know the transition matrices for all edges,

but is constrained to stick with one action (corresponding to

a particular network structure) at all times1. We prove that

our algorithm, which we refer to as CLRMR (Combinatorial

Learning with Restless Markov Rewards) achieves a regret

that is polynomial in the number of Markov chains (i.e.,

number of edges), and logarithmic with time. This implies

that our learning algorithm, which does not know the transition

matrices, asymptotically achieves the maximum time averaged

reward possible with any single-action policy, even if that

policy is given advanced knowledge of the transition matrices.

By contrast, the conventional approach of estimating the mean

of each edge weight and then finding the desired network

structure via deterministic optimization would incur greater

overhead and provide only linearly increasing regret over time,

which is not asympotically optimal.

While recent work has shown how to address multi-armed

bandits with restless Markovian rewards in the classic non-

combinatorial setting [1], and combinatorial multi-armed ban-

dits in the simpler settings of i.i.d. rewards [2] or rested

Markovian rewards [3], this paper is the first to show how to

efficiently implement online learning for stochastic combinato-

rial network optimization when edge weights are dynamically

evolving as restless Markovian processes. We perform simu-

lations to evaluate our new algorithm over two combinatorial

network optimization problems: stochastic shortest path rout-

ing and bipartite matching for channel allocation, and show

that its regret performance is substantially better than that

of the algorithm presented in [1], which can handle restless

Markovian rewards but does not exploit the dependence be-

tween the arms, resulting in a regret that grows exponentially

1Although a stronger notion of regret can be defined, allowing the genie
to vary the action at each time, the problem of minimizing such a stronger
regret is much harder and remains open even for simpler settings than the one
we consider here.

in the number of unknown variables.

The rest of the paper is organized as follows. We first

provide a survey of prior work in section II. We then present a

formal model of the combinatorial restless multi-armed bandit

problems in section III. In section IV, we present our CLRMR

policy, and show that it requires only polynomial storage. We

present our novel analysis of the regret of CLRMR policy

in section V. In section VI, we discuss examples and show

the numerical simulation results, to show that our proposed

policy is widely useful for various interesting combinatorial

network optimization problems. We finally conclude our paper

in section VII.

II. RELATED WORK

We summarize below the related work, which has treated

a) temporally i.i.d. rewards, b) rested Markovian rewards, and

c) restless Markovian rewards.

A. Temporally i.i.d. rewards

Lai and Robbins [4] wrote one of the earliest papers on

the classic non-Bayesian infinite horizon multi-armed bandit

problem. They assume K independent arms, each generating

rewards that are i.i.d. over time obtained from a distribution

that can be characterized by a single-parameter. For this

problem, they present a policy that provides an expected

regret that is O(K log n), i.e. linear in the number of arms

and asymptotically logarithmic in n. Anantharam et al. ex-

tend this work to the case when M simultaneous plays are

allowed [5]. The work by Agrawal [6] presents easier to

compute policies based on the sample mean that also has

asymptotically logarithmic regret. The paper by Auer et al. [7]

that considers arms with nonnegative rewards that are i.i.d.

over time with an arbitrary non-parameterized distribution that

has the only restriction that it have a finite support. Further,

they provide a simple policy (referred to as UCB1), which

achieves logarithmic regret uniformly over time, rather than

only asymptotically. Our work utilizes a general Chernoff-

Hoeffding-bound-based approach to regret analysis pioneered

by Auer et al..

Some recent work has shown the design of distributed

multiuser policies for independent arms. Motivated by the

problem of opportunistic access in cognitive radio networks,

Liu and Zhao [8], Anandkumar et al. [9], [10], and Gai and

Krishnamachari [11], have developed policies for the problem

of M distributed players operating N independent arms.

Our work in this paper is closest to and builds on the recent

work by Gai et al. which introduced combinatorial multi-

armed bandits [2]. The formulation in [2] has the restriction

that the reward process must be i.i.d. over time. A polynomial

storage learning algorithm is presented in [2] that yields

regret that is polynomial in users and resources and uniformly

logarithmic in time for the case of i.i.d. rewards.

B. Rested Markovian rewards

There has been relatively less work on multi-armed bandits

with Markovian rewards. Anantharam et al. [12] wrote one

of the earliest papers with such a setting. They proposed a

policy to pick m out of the N arms each time slot and prove

the lower bound and the upper bound on regret. However, the

rewards in their work are assumed to be generated by rested

(i.e. rewards that only evolve when the arms are selected)

Markov chains with transition probability matrices defined by

a single parameter θ with identical state spaces. Also, for the

upper bound the result is achieved only asymptotically.

For the case of single users and independent arms, a recent

work by Tekin and Liu [13] has extended the results in [12]

relaxing the requirement of a single parameter and identical

state spaces across arms. They propose to use UCB1 from

[7] for the multi-armed bandit problem with rested Markovian

rewards and prove a logarithmic upper bound on the regret

under some conditions on the Markov chain.

In a recent work by Gai et al. [3], learning policies for com-

binatorial multi-armed bandits with rested Markovian rewards

have been studied. Unlike [3], we adopt a model with restless

Markovian rewards, which has much broader applications in

many network optimization problems.

C. Restless Markovian rewards

Restless arm bandits are so named because the arms evolve

at each time, changing state even when they are not selected.

Work on restless Markovian rewards with single users and

independent arms can be found in [1], [14]–[16]. In these

papers there is no consideration of possible dependencies

among arms, as in our work here.

Tekin and Liu [1] have proposed a RCA policy that achieves

logarithmic single-action regret when certain knowledge about

the system is known. We use elements of the policy and

proof from [1] in this work, which is however quite different

in its combinatorial matching formulation (which allows for

dependent arms). Liu et al. [14], [15] adopted the same

problem formulation as in [1], and proposed a policy named

RUCB, achieving a logarithmic single-action regret over time

when certain system knowledge is known. They also extend

the RUCB policy to achieve a near-logarithmic regret asymp-

totically when no knowledge about the system is available.

Dai et al. in [16] adopt a stronger definition of regret:

the difference in expected reward compared to a model-

aware genie. They develop a policy that yields regret of order

arbitrarily close to logarithmic for certain classes of restless

bandits with a finite-option structure, such as restless MAB

with two states and identical probability transition matrices.

III. PROBLEM FORMULATION

We consider a system with N edges predefined by some

application, where time is slotted and indexed by n. For each

edge i (1 ≤ i ≤ N), there is an associated state that evolves

as a discrete-time, finite-state, aperiodic, irreducible Markov

chain2 {X i(n), n ≥ 0} with unknown parameters3. We denote

the state space for the i-th Markov chain by Si. We assume

these N Markov chains are mutually independent. The reward

obtained from state x (x ∈ Si) of Markov chain i is denoted as

ri
x. Denote by πi

x the steady state distribution for state x. The

mean reward obtained on Markov chain i is denoted by µi.

Then we have µi =
∑

z∈Si,j

ri
xπi

x. The set of all mean rewards

is denoted by µ = {µi}.

At each decision period n (also referred to interchange-

ably as time slot), an N -dimensional action vector a(n),
representing an arm, is selected under a policy φ(n) from

a finite set F . We assume ai(n) ≥ 0 for all 1 ≤ i ≤ N .

When a particular a(n) is selected, the value of ri
xi(n) is

observed, only for those i with ai(n) 6= 0. We denote by

A
a(n) = {i : ai(n) 6= 0, 1 ≤ i ≤ N} the index set of all

ai(n) 6= 0 for an arm a. We treat each a(n) ∈ F as an arm.

The reward is defined as:

Ra(n)(n) =
∑

i∈A
a(n)

ai(n)ri
xi(n) (1)

where xi(n) denotes the state of a Markov chain i at time n.

When a particular arm a(n) is selected, the rewards corre-

sponding to non-zero components of a(n) are revealed, i.e.,

the value of ri
xi(n) is observed for all i such that ai(n) 6= 0.

The state of the Markov chain evolves restlessly, i.e., the

state will continue to evolve independently of the actions. We

denote by P i = (pi
x,y)x,y∈Si the transition probability matrix

for the Markov chain i. We denote by (P i)′ = {(pi)′x,y}x,y∈Si

the adjoint of P i on l2(π), so (pi)′x,y = pi
y,xπi

y/πi
x. Denote

P̂ i = (P i)′P as the multiplicative symmetrization of P i. For

aperiodic irreducible Markov chains, P̂ is are irreducible [17].

A key metric of interest in evaluating a given policy φ
for this problem is regret, which is defined as the difference

between the expected reward that could be obtained by the

best-possible static action, and that obtained by the given

policy. It can be expressed as:

R
φ(n) = nγ∗ − E

φ[

n∑

t=1

Rφ(t)(t)]

= nγ∗ − E
φ[

n∑

t=1

∑

i∈A
a(t)

ai(t)r
i
xi(t)

]

(2)

where γ∗ = max
a∈F

∑
i∈A

a(n)

aiµ
i is the expected reward of the

optimal arm. For the rest of the paper, we use ∗ as the index

indicating that a parameter is for an optimal arm. If there

is more than one optimal arm, ∗ refers to any one of them.

We denote by γa the expected reward of arm a, so γa =
|Aa|∑
j=1

apj
µpj .

2We also refer Markov chain {Xi(n), n ≥ 0} and Markov chain i

interchangeably.
3Alternatively, for Markov chain {Xi(n), n ≥ 0}, it suffices to assume

that the multiplicative symmetrization of the transition probability matrix is
irreducible.

For this combinatorial multi-armed bandit problem with

restless Markovian rewards, our goal is to design policies that

perform well with respect to regret. Intuitively, we would like

the regret R
φ(n) to be as small as possible. If it is sublinear

with respect to time n, the time-averaged regret will tend to

zero.

IV. POLICY DESIGN

For the above combinatorial MAB problem with restless

rewards, we have two challenges here for the policy design:

(1) A straightforward idea is to apply RCA in [1], or RUCB

in [14] directly and naively, and ignore the dependencies

across the different arms. However, we note that RCA and

RUCB both require the storage and computation time that

are linear in the number of arms. Since there could be

exponentially many arms in this formulation, it is highly

unsatisfactory.

(2) Unlike our prior work on combinatorial MAB with

rested rewards, for which the transitions only occur each time

the Markov chains are observed, the policy design for the

restless case is much more difficult, since the current state

while starting to play a Markov chain depends not only on

the transition probabilities, but also on the policy.

To deal with the first challenge, we want to design a policy

which more efficiently stores observations from the correlated

arms, and exploits the correlations to make better decisions.

Instead of storing the information for each arm, our idea is

to use two 1 by N vectors to store the information for each

Markov chain. Then an index for each each arm is calculated,

based on the information stored for underlying components.

This index is used for choosing the arm to be played each time

when a decion needs to be made.

To deal with the second challenge, for each arm a we

note that the multidimensional Markov chain {Xa(n), n ≥ 0}
defined by underlying components as Xa(n) = (X i(n))i∈Aa

is aperiodic and irreducible. Instead of utilizing the actual

sample path of all observations, we only take the observations

from a regenerative cycle for Markov chains and discard the

rest in its estimation of the index.

Our proposed policy, which we refer to as Combinatorial

Learning with Restless Markov Reward (CLRMR), is shown

in Algorithm 1. Table I summerizes the notation we use for

CLRMR algorithm. For Algorithm 1, (xi)i∈Aa
= (ζi)i∈Aa

means xi = ζi, ∀i.
CLRMR operates in blocks. Figure 1 illustrates one possible

realization of this Algorithm 1. At the beginning of each block,

an arm a is picked and within one block, this algorithm always

play the same arm. For each Markov chain {X i(n)}, we

specifiy a state ζi at the beginning of the algorithm as a state

to mark the regenerative cycle. Then, for the multidimentional

Markov chain {Xa(n)} associated with this arm, the state

(ζi)i∈Aa
is used to define a regenerative cycle for {Xa(n)}.

Each block is broken into three sub-blocks denoted by SB1,

SB2 and SB3. In SB1, the selected arm a is played until the

state (ζi)i∈Aa
is observed. Upon this observation we enter a

Algorithm 1 Combinatorial Learning with Restless Markov

Reward (CLRMR)

1: // INITIALIZATION

2: t = 1, t2 = 1;

3: ∀i = 1, · · · , N , mi
2 = 0, z̄i

2 = 0;

4: for b = 1 to N do

5: t := t + 1, t2 := t2 + 1;

6: Play any arm a such that b ∈ Aa; denote (xi)i∈Aa
as

the observed state vector for arm a;

7: ∀i ∈ A
a(n), let ζi be the first state observed for

Markov chain i if ζi has never been set; z̄i
2 :=

z̄i
2mi

2+ri
xi

mi
2+1

,

mi
2 := mi

2 + 1;

8: while (xi)i∈Aa
6= (ζi)i∈Aa

do

9: t := t + 1, t2 := t2 + 1;

10: Play arm a; denote (xi)i∈Aa
as the observed state

vector;

11: ∀i ∈ A
a(n), z̄i

2 :=
z̄i
2mi

2+ri
xi

mi
2+1

, mi
2 := mi

2 + 1;

12: end while

13: end for

14: // MAIN LOOP

15: while 1 do

16: // SB1 STARTS

17: t := t + 1;

18: Play an arm a which maximizes

max
a∈F

∑

i∈Aa

ai

(
z̄i
2 +

√
L ln t2
mi

2

)
; (3)

where L is a constant.

19: Denote (xi)i∈Aa
as the observed state vector;

20: while (xi)i∈Aa
6= (ζi)i∈Aa

do

21: t := t + 1;

22: Play an arm a and denote (xi)i∈Aa
as the observed

state vector;

23: end while

24: // SB2 STARTS

25: t2 := t2 + 1;

26: ∀i ∈ A
a(n), z̄i

2 :=
z̄i
2mi

2+ri
xi

mi
2+1

, mi
2 := mi

2 + 1;

27: while (xi)i∈Aa
6= (ζi)i∈Aa

do

28: t := t + 1, t2 := t2 + 1;

29: Play an arm a and denote (xi)i∈Aa
as the observed

state vector;

30: ∀i ∈ A
a(n), z̄i

2 :=
z̄i
2mi

2+ri
xi

mi
2+1

, mi
2 := mi

2 + 1;

31: end while

32: // SB3 IS THE LAST PLAY IN THE WHILE LOOP.

THEN A BLOCK COMPLETES.

33: b := b + 1, t := t + 1;

34: end while

regenerative cycle, and continue playing the same arm untill

(ζi)i∈Aa
is observed again. SB2 includes all time slots from

the first visit of (ζi)i∈Aa
up to but excluding the second

visit to (ζi)i∈Aa
. SB3 consists a single time slot with the

N : number of resources

a: vectors of coefficients, defined on set F ;

we map each a as an arm

Aa: {i : ai 6= 0, 1 ≤ i ≤ N}
t: current time slot

t2: number of time slots in SB2 up to the current

time slot

b: number of blocks up to the current time slot

mi
2: number of times that Markov chain i has been

observed during SB2 up to the current time slot

z̄i
2: average (sample mean) of all the observed

values of Markov chain i during SB2 up to

the current time slot

ζi: state that determine the regenerative cycles for

Markov chain i
xi: the observed state when Markov Chain i is

played; (xi)i∈Aa
is the observed state vector

if arm a is played

TABLE I
NOTATION FOR ALGORITHM 1

SB1 SB2 SB3 SB1 SB1SB2 SB2SB3 SB3

play arm play arm play arm

compute index compute index compute index compute index

Fig. 1. An illustration of CLRMR

second visit to (ζi)i∈Aa
. SB1 is empty if the first observed

state is (ζi)i∈Aa
. So SB2 includes the observed rewards for

a regenerative cycle of the multidimentional Markov chain

{Xa(n)} associated with arm a, which implies that SB2 also

includes the observed rewards for one or more regenerative

cycles for each underlying Markov chain {X i(n)}, i ∈ Aa.

The key to the algorithm 1 is to store the observations for

each Markov chain instead of the whole arm, and utilize the

observations only in SB2 for them, and virtually assemble

them (highlighted with thick lines in Figure 1). Due to

the regenerative nature of the Markov chain, by putting the

observations in SB2, the sample path has exactly the same

statics as given by the transition probability matrix. So the

problem is tractable.

LLR policy requires storage linear in N . We use two 1
by N vectors to store the information for each Markov chain

after we play the selected arm at each time slot in SB2. One is

(z̄i
2)1×N in which z̄i

2 is the average (sample mean) of observed

values in SB2 up to the current time slot (obtained through

potentially different sets of arms over time). The other one is

(mi
2)1×N in which mi

2 is the number of times that {X i(n)}
has been observed in SB2 up to the current time slot.

Line 1 to line 13 are the initialization, for which each

Markov chain is observed at least once, and ζi is specified

as the first state observed for {X i(n)}.

After the initialization, at the beginning of each block,

CLRMR selects the arm which solves the maximization prob-

lem as in (3). It is a deterministic linear optimal problem with

a feasible set F and the computation time for an arbitrary F
may not be polynomial in N . But, as we show in Section VI,

there exist many practically useful examples with polynomial

computation time.

V. ANALYSIS OF REGRET

We summarize some notation we use in the description and

analysis of our CLRMR policy in Table II.

We first show in Theorem 1 an upper bound on the total

expected number of plays of suboptimal arms.

Theorem 1: When using any constant L ≥ 56(H +
1)S2

maxr
2
maxπ̂

2
max/ǫmin, we have

∑

a:γa<γ∗

(γ∗ − γa)E[T a(n)] ≤ Z1 lnn + Z2

where

Z1 = ∆max

(
1

Πmin
+ Mmax + 1

)
4NLH2a2

max

∆2
min

Z2 = ∆max

(
1

Πmin
+ Mmax + 1

)(
N +

πNHSmax

3πmin

)

Proof: Below is a sketch of the proof. A detailed proof

can be found in [18].

We introduce B̃i(b) as a counter for the regret analysis

to deal with the combinatorial arms. After the initialization

period, B̃i(b) is updated in the following way: at the beginning

of any block when a nonoptimal arm is chosen to be played,

find i such that i = arg min
j∈Aa(b)

mj
2. If there is only one

such arm, B̃i(b) is increased by 1. If there are multiple such

arms, we arbitrarily pick one, say i′, and increment B̃i′ by

1. Based on the above definition of B̃i(b), each time a non-

optimal arm is chosen to be played at the beginning of a block,

exactly one element in (B̃i(b))1×N is incremented by 1. So

the summation of all counters in (B̃i(b))1×N equals the total

number of blocks in which we have played non-optimal arms,

∑

a:γa<γ∗

E[Ba(b)] =

N∑

i=1

E[B̃i(b)] (4)

We also have the following inequality for B̃i(b):
B̃i(b) ≤ mi

2(t(b − 1)), ∀1 ≤ i ≤ N, ∀b. Denote by ct,s√
L ln t

s
. Denote by Ĩi(b) the indicator function which is

equal to 1 if B̃i(b) is added by one at block b. Let l be

an arbitrary positive integer. Then we can get the upper

bound of E[B̃i(b)] as: E[B̃i(b)] =
b∑

β=N+1

P{Ĩi(β) =

1} ≤ l +
b∑

β=N+1

P{
∑

k∈A
a
∗

a∗
kgk

t2(β−1),mk
2(t(β−1))

≤

∑
j∈A

a(h)

aj(b)g
j

t2(β−1),mj
2(t(β−1))

, B̃i(β − 1) ≥ l}, where

gi
t,s = z̄i

2(s) + ct,s and a(β) is defined as a non-optimal

arm picked at block β when Ĩi(β) = 1. Note that

H : max
a

|Aa|. Note that H ≤ N

a(τ) : the arm played in time τ
b(n): number of completed blocks up to time n
t(b): time at the end of block b
t2(b): total number of time slots spent in SB2

up to block b
Ba(b): total number of blocks within the first b

blocks in which arm a is played

mi
2(t2(b)): total number of time slots Markov chain i

is observed during SB2 up to block b
z̄i
2(s): the mean reward from Markov chain i

when it is observed for the s-th time of

only those times played during SB2

T (n): time at the end of the last completed block

T a(n): total number of time slots arm a is palyed

up to time T (n)
mi

x(s): number of times that state x occured when

Markov chain i has been observed s times

Y i
1 (j): vector of observed states from SB1 of the

j-th block for playing Markov chain i
Y i

2 (j): vector of observed states from SB2 of the

j-th block for playing Markov chain i
Y i(j): vector of observed states from the j-th

block for playing Markov chain i
π̂i

x: max{πi
x, 1 − πi

x}
π̂max: max

i,x∈Si
π̂i

x

πmin: min
i,x∈Si

πi
x

πmax: max
i,x∈Si

πi
x

ǫi: eigenvalue gap, defined as 1 − λ2, where

λ2 is the second largest eigenvalue of the

multiplicative symmetrization of P i

ǫmin: min
i

ǫi

Smax: max
i

|Si|

rmax: max
i,x∈Si

ri
x

amax: max
i∈Aa,a∈F

ai

∆a: γ∗ − γa

∆min: min
γa≤γ∗

∆a

∆max: max
γa≤γ∗

∆a

{Xa(n)}: multidimentional Markov chain defined

by Xa(n) = (X i(n))i∈Aa

ζa: (ζi)i∈Aa
, state vector that determines

the regenerative cycles for {Xa(n)}
Πa

z : steady state distribution for state z of {Xa(n)}
Πa

min: min
z∈Sa

Πa

z

Πmin: min
a,z∈Sa

Πa

z

Ma

z1,z2
: mean hitting time of state z2 starting

from an initial state z1 for {Xa(n)}
Ma

max: max
z1,z2∈Sa

Ma

z1,z2

γ′
max: max

γa≤γ∗
γa

TABLE II
NOTATION FOR REGRET ANALYSIS

mi
2 = min

j
{mj

2 : ∀j ∈ A
a(β)}. We denote this arm by a(β)

since at each block that Ĩi(β) = 1, we could get different

arms.

Note that l ≤ B̃i(β−1) implies, l ≤ B̃i(β−1) ≤ mi
2(t(β−

1)), ∀j ∈ A
a(β). So we can further derive the upper bound of

E[B̃i(b)] shown in (5), where hj (1 ≤ j ≤ |Aa∗|) represents

the j-th element in Aa∗; pj (1 ≤ j ≤ |A
a(β)|) represents

the j-th element in A
a(β) or A

a(t). Aa(τ) represents the arm

played in the τ -th time slots counting only in SB2. Note that

P{

|Aa∗|∑

j=1

a∗
hj

ghj
τ,shj

≤

|A
a(τ)|∑

j=1

apj
(t)gpj

τ,spj
}

= P{

|Aa∗|∑

j=1

a∗
hj

(z̄
hj

2 (shj
) + cτ,shj

)

≤

|A
a(τ)|∑

j=1

apj
(τ)(z̄

pj

2 (spj
) + cτ,spj

)}

= P{At least one of the following must hold:

|Aa∗|∑

j=1

a∗
hj

z̄
hj

2 (shj
) ≤ γ∗ −

|Aa∗|∑

j=1

a∗
hj

cτ,shj
, (6)

|A
a(τ)|∑

j=1

apj
(τ)z̄

pj

2 (spj
) ≥ γa(τ) +

|A
a(τ)|∑

j=1

apj
(τ)cτ,spj

, (7)

γ∗ < γa(τ) + 2

|A
a(τ)|∑

j=1

apj
(τ)cτ,spj

} (8)

Now we show the upper bound on the probabilities of inequal-

ities (6), (7) and (8) separately. We first find an upper bound

on the probability of (6). We note that P{
|Aa∗|∑
j=1

a∗
hj

z̄
hj

2 (shj
) ≤

γ∗ −
|Aa∗|∑
j=1

a∗
hj

cτ,shj
} =

|Aa∗|∑
j=1

P{z̄
hj

2 (shj
) ≤ µhj − cτ,shj

}.

∀1 ≤ j ≤ |Aa∗|, the following expressions can be derived,

P{z̄
hj

2 (shj
) ≤ µhj − cτ,shj

} ≤
|Shj |

πmin
τ
−

Lǫmin
28S2

maxr2
maxπ̂2

max (9)

Note that all the quantities in computing the indices and

the probabilities above come from SB2. Connecting these SB2

intervals together we form a continuous sample path which can

be viewed as a sample path generated by a multidimensional

Markov chain with transition matrix identical to the original

arm. This is the reason why we can have (9) for this Markov

chain.

Therefore, P{
|Aa∗|∑
j=1

a∗
hj

z̄
hj

2 (shj
) ≤ γ∗ −

|Aa∗|∑
j=1

a∗
hj

cτ,shj
}

≤ HSmax

πmin
τ
−

Lǫmin
28S2

maxr2
maxπ̂2

max . With a similar derivation, we have

P{
|A

a(τ)|∑
j=1

apj
(τ)z̄

pj

2 (spj
) ≥ γa(τ) +

|A
a(τ)|∑

j=1

apj
(τ)cτ,spj

} ≤

HSmax

πmin
τ
−

Lǫmin
28S2

maxr2
maxπ̂2

max .

Note that when l ≥




4L ln t2(b)(
∆

a(τ)
Hamax

)2




, (8) is false for τ , which

gives, γ∗−γa(τ)−2
|A

a(τ)|∑
j=1

apj
(τ)cτ,spj

≥ γ∗−γa(τ)−∆
a(τ) =

0. Hence, when we let l ≥
⌈

4LH2a2
max ln t2(b)

∆2
min

⌉
, (8) is false for

all a(τ). Therefore, we have (10). So

E[B̃i(b)] ≤
4LH2a2

max lnn

∆2
min

+ 1

+
HSmax

πmin

∞∑

τ=1

2τ
−

Lǫmin−56HS2
maxr2

maxπ̂2
max

28S2
maxr2

maxπ̂2
max (11)

=
4LH2a2

max lnn

∆2
min

+ 1 +
HSmax

πmin

∞∑

τ=1

2τ−2 (12)

=
4LH2a2

max lnn

∆2
min

+ 1 +
πHSmax

3πmin

(12) follows since L ≥ 56(H + 1)S2
maxr

2
maxπ̂

2
max/ǫmin.

According to (4),
∑

a:γa<γ∗

E[Ba(b)] =
N∑

i=1

E[B̃i(b)] ≤

4NLH2a2
max ln n

∆2
min

+ N + πNHSmax

3πmin
.

Note that the total number of plays of arm a at the end

of block b(n) is equal to the total number of plays of arm

a during SB2s (the regenerative cycles of visiting state ζa)

plus the total number of plays before entering the regenerative

cycles plus one more play resulting from the last play of the

block which is state ζa. So we have

E[T a(n)] ≤

(
1

Πa

min

+ Ma

max + 1

)
E[Ba(b(n))]

Therefore
∑

a:γa<γ∗

(γ∗ − γa)E[T a(n)]

≤ ∆max

∑

a:γa<γ∗

(
1

Πa

min

+ Ma

max + 1

)
E[Ba(b(n))]

≤ ∆max

(
1

Πmin
+ Mmax + 1

) ∑

a:γa<γ∗

E[Ba(b(n))]

≤ Z1 lnn + Z2

where

Z1 = ∆max

(
1

Πmin
+ Mmax + 1

)
4NLH2a2

max

∆2
min

Z2 = ∆max

(
1

Πmin
+ Mmax + 1

)(
N +

πNHSmax

3πmin

)

Now we show our main results on the regret of CLRMR

policy as in Theorem 2.

Theorem 2: When using any constant L ≥ 56(H +
1)S2

maxr
2
maxπ̂

2
max/ǫmin, the regret of CLRMR can be upper

bounded uniformly over time by the following,

R
CLRMR(n) ≤ Z3 lnn + Z4 (13)

E[B̃i(b)] ≤ l +

t2(b)∑

τ=1

τ−1∑

sh1
=1

· · ·

τ−1∑

sh|A∗|
=1

τ−1∑

sp1=l

· · ·

τ−1∑

sp|A
a(β)|

=l

P{

|Aa∗|∑

j=1

a∗
hj

ghj
τ,shj

≤

|A
a(τ)|∑

j=1

apj
(τ)gpj

τ,spj
} (5)

E[B̃i(b)] ≤

⌈
4LH2a2

max ln t2(b)

∆2
min

⌉
+

t2(b)∑

τ=1

τ−1∑

sh1
=1

· · ·
τ−1∑

sh|A∗|
=1

τ−1∑

sp1=l

· · ·
τ−1∑

sp|A
a(β)|

=l

2HSmax

πmin
τ
−

Lǫmin
28S2

maxr2
maxπ̂2

max (10)

where

Z3 = Z1 + Z5
4NLH2a2

max

∆2
min

Z4 = Z2 + γ∗(
1

πmin
+ Mmax + 1) + Z5(N +

πNHSmax

3πmin
)

and

Z5 = γ′
max(

1

Πmin
+ Mmax + 1 −

1

πmax
) + γ∗M∗

max

Proof: We show below a sketch of the proof. A detailed

proof can be found in [18].

Denote the expectations with respect to policy CLRMR

given ζ by Eζ . Then following from Theorem 1 and Eζ [n −
T (n)] ≤ 1

Πmin
+ Mmax + 1, the regret can be bounded as

R
CLRMR
ζ (n) = γ∗

Eζ [T (n)] − Eζ [

T (n)∑

t=1

∑

i∈A
a(t)

ai(t)r
i
xi(t)

]

+ γ∗
Eζ [n − T (n)] − Eζ [

n∑

t=T (n)+1

∑

i∈A
a(t)

ai(t)r
i
xi(t)

]

≤ Z1 lnn + Z2 + γ∗(
1

Πmin
+ Mmax + 1)

+



∑

a

γa

Eζ [T
a(n)] − Eζ [

T (n)∑

t=1

∑

i∈A
a(t)

ai(t)r
i
xi(t)

]




Note that the following expressions can be derived,

∑

a

γa

Eζ [T
a(n)] − Eζ [

T (n)∑

t=1

∑

i∈A
a(t)

ai(t)r
i
xi(t)

]

≤ Q∗(n)

+
∑

a:γa<γ∗

γa(
1

Πa

min

+ Ma

max + 1 −
1

πmax
)Eζ [B

a(b(n))]

where

Q∗(n) = γ∗
Eζ [T

∗(n)]

−
∑

i∈A
a
∗

∑

y∈Si

a∗
i r

i
yEζ [

B∗(b(n))∑

j

∑

Y i
t ∈Y i(j)

1(Y i
t = y)] (14)

We now consider the upper bound for Q∗(n). We note that

the total number of time slots for playing all suboptimal arms

is at most logarithmic, so the number of time slots in which

the optimal arm is not played is at most logarithmic. We could

then combine the successive blocks in which the best arm is

played, and denote by Ȳ ∗(j) the j-th combined block. Denote

b̄∗ as the total number of combined blocks up to block b. Each

combined block Ȳ ∗ starts after discontinuity in playing the

optimal arm, so b̄∗(n) is less than or equal to total number of

completed blocks in which the best arm is not played up to

time n. Thus, Eζ [b̄
∗(n)] ≤

∑
a:γa<γ∗ Eζ [B

a(b(n))].

Each combined block Ȳ ∗ consists of two sub-blocks: Ȳ ∗
1

which contains the state vectors for the optimal arm visited

from beginning of Ȳ ∗ (empty if the first state is ζ∗) to the state

right before hitting ζ∗ and sub-block Ȳ ∗
2 which contains the

rest of Ȳ ∗ (a random number of regenerative cycles). Denote

the length of Ȳ ∗
1 by |Ȳ ∗

1 | and the length of Ȳ ∗
2 by |Ȳ ∗

2 |. We

denote by Ȳ i
2 (j) the states for Markov chain i for all i ∈ Aa

∗

in Ȳ ∗
2 .

Therefore we get the upper bound for Q∗(n) as

Q∗(n) ≤
∑

i∈A
a
∗

∑

y∈Si

a∗
i r

i
yπi

yEζ [

b̄∗(n)∑

j=1

|Ȳ ∗
2 |] (15)

−
∑

i∈A
a
∗

∑

y∈Si

a∗
i r

i
yEζ [

b̄∗(n)∑

j=1

∑

Y i
t ∈Ȳ i

2 (j)

1(Y i
t = y)]

+
∑

i∈A
a
∗

∑

y∈Si

γ∗
Eζ [

b̄∗(n)∑

j=1

|Ȳ ∗
1 |]

≤ γ∗M∗
max

∑

a:γa<γ∗

Eζ [B
a(b(n))]

where the inequality in (15) comes from counting only the

rewards obtained in sub-block Ȳ i
2 in (14). Hence ∀ζ,

R
CLRMR
ζ (n) ≤ Z1 lnn + Z2 + γ∗(

1

πmin
+ Mmax + 1)+

(γ′
max(

1

Πmin
+ Mmax + 1 −

1

πmax
) + γ∗M∗

max)Eζ [B
a(b(n))]

≤ Z3 lnn + Z4 (16)

where (16) follows from Theorem 1, and Z3 = Z1 +

Z5
4NLH2a2

max

∆2
min

, Z4 = Z2 + γ∗(1
Πmin

+ Mmax + 1) + Z5(N +
πNHSmax

3πmin
). Z5 is defined as Z5 = γ′

max(
1

Πmin
+ Mmax + 1 −

1
πmax

) + γ∗M∗
max.

Theorem 2 shows when we use a constant L ≥ 56(H +
1)S2

maxr
2
maxπ̂

2
max/ǫmin, the regret of Algorithm 1 is upper-

bounded uniformly over time n by a function that grows as

O(N3 lnn). However, when Smax, rmax, π̂max or ǫmin (or the

bound of them) are unknown, the upper bound of regret can

not be guaranteed to grow logarithmically in n.

When no knowledge about the system is available, we ex-

tend the CLRMR policy to achieve a regret bounded uniformly

over time n by a function that grows as O(N3L(n) lnn),
using any arbitrarily slowly diverging non-decreasing sequence

L(n) in Algorithm 1. Since L(n) could grow arbitrarily slowly,

this modified version of CLRMR, named CLRMR-LN, could

achieve a regret arbitrarily close to the logarithmic order. We

present our analysis in Theorem 3.

Theorem 3: When using any arbitrarily slowly diverging

non-decreasing sequence L(n) (i.e., L(n) → ∞ as n → ∞),

and replacing (3) in Algorithm 1 accordingly with

max
a∈F

ai

(
z̄i
2 +

√
L(n(t2)) ln t2

mi
2

)
(17)

where n(t2) is the time when total number of time slots spent

in SB2 is t2, the expected regret under this modified version

of CLRMR, named CLRMR-LN policy, is at most

R
CLRMR−LN(n) ≤ Z6L(n) lnn + Z7 (18)

where Z6 and Z7 are constants.

Proof: Replacing ct,s with

√
L(n(t)) ln t

s
, and replacing

L with L(n(t2(b))) or L(n(τ)) accordingly in the proof of

Theorem 1, (4) to (11) still stand.

L(n(τ)) is a diverging non-decreasing sequence, so

there exists a constant τ ′ such that for all τ ≥ τ ′,

L(n(τ)) ≥ 56(H + 1)S2
maxr

2
maxπ̂

2
max/ǫmin, which implies

τ
−

L(n(τ))ǫmin−56HS2
maxr2

maxπ̂2
max

28S2
maxr2

maxπ̂2
max ≤ τ−2.

Thus, we have E[B̃i(b)] ≤
4L(n)H2a2

max ln n

∆2
min

+1+ πHSmax

3πmin
+

Z8, where Z8 = HSmax

πmin

τ ′−1∑
τ=1

2τ
−

Lǫmin−56HS2
maxr2

maxπ̂2
max

28S2
maxr2

maxπ̂2
max .

Then we can according have
∑

a:γa<γ∗

(γ∗ − γa)E[T a(n)] ≤

Z9L(n) lnn + Z2 + ∆max

(
1

Πmin
+ Mmax + 1

)
NZ8, where

Z9 = ∆max

(
1

Πmin
+ Mmax + 1

)
4NH2a2

max

∆2
min

.

So R
CLRMR−LN(n) ≤ Z6L(n) lnn + Z7, where Z6 =

Z9 + Z5
4NH2a2

max

∆2
min

, Z7 = Z2 + γ∗(1
Πmin

+ Mmax + 1) +

∆max

(
1

Πmin
+ Mmax + 1

)
NZ7+Z5(N + πNHSmax

3πmin
+NZ7).

VI. APPLICATIONS AND SIMULATION RESULTS

We now present an evaluation of our policy over stochastic

versions of two combinatorial network optimization problems

of practical interest: stochastic shortest path (for routing), and

stochastic bipartite matching (for channel allocation).

A. Stochastic Shortest Path

In the stochastic shortest path problem, given a graph G =
(V, E), with edge weights (Dij) stochastically varying with

time as restless Markov chains with unknown dynamics, we

seek to find a path between a given source s and destination

t with minimum expected delay. We can apply the CLRMR

policy to this problem, with some very minor modifications

to the policy and the corresponding regret definition to be

applicable to a minimization problem instead of maximization.

For the stochastic shortest path problems, each path between

s and t is mapped to an arm. Although the number of paths

could grow exponentially with the number of Markov chains,

|E|. CLRMR efficiently solves this problem with polynomial

storage |E| and regret scaling as O(|E|3 log n).s t1 2 3456 e . 1e . 2 e . 3e . 4e . 5 e . 6e . 7e . 8e . 9 e . 1 0e . 1 1e . 1 2 e . 1 3e . 1 4e . 1 5e . 1 6e . 1 7 e . 1 9e . 1 8
Fig. 2. A graph with 19 links and 260 acyclic paths between s and t for
stochastic shortest path routing.

We show the numerical simulation results for the graph in

Figure 2. We assume each link has two states with the delay

0.1 on good links, and 1 on bad links. Table III summarizes

the transition probabilities on each link.

Link p01, p10 Link p01, p10 Link p01, p10

e.1 0.2, 0.8 e.8 0.3, 0.8 e.15 0.1, 0.8

e.2 0.3, 0.9 e.9 0.1, 0.9 e.16 0.8, 0.1

e.3 0.2, 0.7 e.10 0.9, 0.1 e.17 0.2, 0.7

e.4 0.7, 0.1 e.11 0.3, 0.8 e.18 0.9, 0.1

e.5 0.3, 0.9 e.12 0.2, 0.7 e.19 0.3, 0.8

e.6 0.2, 0.7 e.13 0.8, 0.1

e.7 0.2, 0.8 e.14 0.4, 0.8

TABLE III
TRANSITION PROBABILITIES

Figure 3 shows the simulation results. We see that our

proposed CLRMR performs better than RCA, the algorithm

presented in [1] for all L values considered. If we let

L = 1512 in this problem, we have that L ≥ 56(H +
1)S2

maxr
2
maxπ̂

2
max/ǫmin. For lower values of L it is not

guaranteed by the analysis that the algorithms should yield

logarithmic regret. However, numerically, we find that both

policies seem to achieve logarithmic regret, and yield much

better regret performance, even for much smaller L values. It

is unclear whether this can be proved rigorously or whether it

is due low probability events not captured in the simulations.

B. Stochastic Bipartite Matching for Channel Allocation

As a second application, we consider an application in a

cognitive radio networks where M secondary users interfering

with each other need to be allocated to Q non-conflicting

orthogonal channels. We assume that, due to geographic

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
2

10
3

10
4

10
5

10
6

Time

R
e

g
re

t/
L

o
g

(t
)

RCA Policy, L = 1512

CLRMR Policy, L = 1512

RCA Policy, L = 50

CLRMR Policy, L = 50

RCA Policy, L = 2

CLRMR Policy, L = 2

Fig. 3. Comparison of normalized regret
R(n)
ln n

vs. n time slots for the
stochastic shortest path problem.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

10
2

10
3

10
4

10
5

10
6

Time

R
e

g
re

t/
L

o
g

(t
)

RCA Policy, L = 1135

CLRMR Policy, L = 1135

RCA Policy, L = 50

CLRMR Policy, L = 50

RCA Policy, L = 2

CLRMR Policy, L = 2

Fig. 4. Comparison of normalized regret
R(n)
ln n

vs. n time slots for Stochastic
Bipartite Matching / Channel Allocation Problem.

dispersion, each user may see different primary user occu-

pancy behavior in each channel. The availability of spectrum

opportunities on each user-channel combination (i,j) over a

decision period is modeled as a restless two-state Markov

chain. It is easy to show that applying CLRMR to this problem

yields storage linear in MQ, and a regret bound that scales as

O(min{M, Q}2MQ logn), following Theorem 2.

We show simulation results comparing CLRMR again with

RCA for a system consisting of 9 orthogonal channels, and

5 secondary users. The transition probability matrix used for

these scenarios is presented in table IV.

ch.1 ch.2 ch.3 ch.4 ch.5 ch.6 ch.7 ch.8 ch.9

u.1 0.5,0.6 0.2,0.7 0.2,0.9 0.8,0.1 0.2,0.7 0.3,0.7 0.2,0.9 0.2,0.7 0.1,0.9

u.2 0.3,0.8 0.1,0.9 0.2,0.8 0.3,0.7 0.3,0.6 0.2,0.8 0.4,0.7 0.2,0.8 0.9,0.2

u.3 0.8,0.1 0.2,0.7 0.3,0.7 0.2,0.8 0.5,0.6 0.2,0.7 0.2,0.7 0.2,0.8 0.1,0.9

u.4 0.3,0.9 0.2,0.8 0.2,0.9 0.4,0.6 0.9,0.2 0.2,0.9 0.2,0.9 0.2,0.9 0.2,0.9

u.5 0.5,0.6 0.2,0.7 0.3,0.9 0.2,0.7 0.5,0.5 0.2,0.7 0.8,0.1 0.3,0.9 0.3,0.9

TABLE IV
TRANSITION PROBABILITIES p01 , p10 FOR EACH USER-CHANNEL PAIR

The simulation results are shown in Figure 4. As in

the stochastic shortest path problem, we find that CLRMR

consistently outperforms RCA, for all values of L. Here

L = 1135 corresponds to ensuring that L ≥ 56(H +
1)S2

maxr
2
maxπ̂

2
max/ǫmin, which is when the logarithmic regret

is guaranteed in theory. However, again, we see that the

performance seems to improve in practice with smaller L
values, even if it is not be theoretically guaranteed.

VII. CONCLUSION

We have presented CLRMR, a provably efficient online

learning policy for stochastic combinatorial network optimiza-

tion with restless Markovian rewards. This algorithm is widely

applicable to many networking problems of interest, as illus-

trated by our simulation based evaluation of the policy over

two different problems: stochastic shortest path and stochastic

maximum weight bipartite matching.

One shortcoming of this work is that our focus has been on

designing and evaluating the policy with respect to the best

single-action policy. However, in general, with restless Marko-

vian rewards, it is possible to further improve performance by

developing an algorithm that dynamically switches between

different actions over time as the underlying Markov chains

evolve. Although this problem is much harder and remains

unsolved except in a special case [16], we hope to investigate

it further in our future work.

REFERENCES

[1] C. Tekin and M. Liu, “Online learning in opportunistic spectrum access:
a restless bandit approach,” IEEE INFOCOM, Shanghai, April, 2011.

[2] Y. Gai, B. Krishnamachari and R. Jain, “Combinatorial Network Op-
timization with Unknown Variables: Multi-Armed Bandits with Linear
Rewards and Individual Observations,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 5, 2012.

[3] Y. Gai, B. Krishnamachari and M. Liu, “On the combinatorial multi-
armed bandit problem with markovian rewards,” IEEE GLOBECOM,
Houston, December, 2011.

[4] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4-22, 1985.

[5] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays-
part I: IID rewards,” IEEE Transactions on Automatic Control, vol. 32,
no. 11, pp. 968-976, 1987.

[6] R. Agrawal, “Sample mean based index policies with O(log n) regret for
the multi-armed bandit problem,” Advances in Applied Probability, vol.
27, no. 4, pp. 1054-1078, 1995.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2, pp. 235-
256, 2002.

[8] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players,” IEEE Transactions on Signal Processing, vol. 58, no.11,
pp. 5667-5681, 2010.

[9] A. Anandkumar, N. Michael, and A.K. Tang, “Opportunistic spectrum ac-
cess with multiple users: learning under competition,” IEEE INFOCOM,
San Diego, March, 2010.

[10] A. Anandkumar, N. Michael, A. Tang, and A. Swami, “Distributed
learning and allocation of cognitive users with logarithmic regret,” IEEE

JSAC on Advances in Cognitive Radio Networking and Communications,
vol. 29, no. 4, pp. 781-745, 2011.

[11] Y. Gai and B. Krishnamachari, “Decentralized online learning algorithms
for opportunistic spectrum access,” IEEE GLOBECOM, Houston, Decem-
ber, 2011.

[12] V. Anantharam, P. Varaiya, and J . Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays-
part II: markovian rewards,” IEEE Transactions on Automatic Control,
vol. 32, no. 11, pp. 977-982, 1987.

[13] C. Tekin and M. Liu, “Online algorithms for the multi-armed bandit
problem with markovian rewards,” Allerton, Monticello, September, 2010.

[14] H. Liu, K. Liu and Q. Zhao, “Logrithmic weak regret of non-bayesian
restless multi-armed bandit,”IEEE ICASSP, Prague, May, 2011.

[15] H. Liu, K. Liu, and Q. Zhao,“Learning and sharing in a changing world:
non-bayesian restless bandit with multiple players,” ITA, San Diego,
January, 2011.

[16] W. Dai, Y. Gai, B. Krishnamachari and Q. Zhao, “The Non-Bayesian
Restless Multi-Armed Bandit: a Case of Near-Logarithmic Regret,” IEEE

ICASSP, Prague, May, 2011.
[17] P. Diaconis and L. Saloff-Coste, “Nash inequalities for finite markov

chains,” Journal of Theoretical Probability, vol. 9, no. 2, pp. 459-510,
1996.

[18] Y. Gai, B. Krishnamachari and M. Liu, “Online learning for com-
binatorial network optimization with restless markovian rewards,”
arXiv:1109.1606.

