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ABSTRACT

This work presents a class of unidirectional lifting-basealvelet
transforms for an arbitrary communication graph in a wseleen-
sor network. These transforms are unidirectional in thesesehat
they are computed as data is forwarded towards the sink amtiago
tree. We derive a set of conditions under which a lifting $farm

is unidirectional, then find the full set of those transformdsnong

this set, we construct a unidirectional transform thatvedlmodes to
transform their own data using data forwarded to them frazir the-

scendants in the tree and data broadcasted to them frorm#igir-

bors not in the tree. This provides a higher quality dataesgmta-
tion than existing methods for a fixed communication cost.

In this work we focus on distributed signal transforms, vihic

can be efficient tools for in-network compression. Our warkased

on two observations. First, performance of these transfatepends

on how well they exploit local correlation, i.e., for maxihepa-

tial de-correlation data sampled in a node should be tramsfd
along with data from all, or most, of its neighboring nodesowH
ever, performing a transform incurs communications castesdata
needs to be exchanged across nodes. For example, the 2Detvavel
in [2] de-correlates data using a lifting transform [5] cvosted on a
graph such as the one we consider here. Nodes are parti(ispia

into even and odd sets by choosing odd nodes that give maximal
de-correlation. Then data is filtered across these setsermmst of
de-correlation, this transform is efficient since each @) node

Index Terms— Data Compression, Wavelet Transforms, Wire- transforms its own data using data from all of its even (oddyim-
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1. INTRODUCTION

bors. However, this transform is inefficient in terms of themll
number of communications since even nodes must first tramami
data to odd neighbors, then wait for odd neighbors to transaris-
form coefficients back to them and then compute their ownstran

Wireless sensor networks (WSN) have garnered much attentiodform coefficients and forward them to the sink. This produsigs

given the low-cost of sensor devices (nodes) and their piatdor
distributed and autonomous operation. One of the main ahgdis
WSN face is that sensor devices are often battery-poweretisa
are severely energy-constrained. In order to achieve preffigient
data gathering in WSNs it is important to study how to effesdti
exploit spatial data correlation to lower total power cangtion.
We consider scenarios where a set of samples is capturechbgrse
in the network. Then, sensors cooperate to transmit thisfsgm-
ples to a single sink node. The goal is to minimize the totatgro
consumption in the network needed to achieve a given quaity
the reconstruction of this set of samples achievable atittke s

nificant communication overhead since many nodes are tittivggn
data twice (and possibly data is transmitted “away” fromsim).
Then, our second observation is that it is best to desigrstran
forms with low communications cost, by requiring nodes ans-
mit data just onckand to do so in the direction of the sink. Trans-
forms have been proposed that only require a node to tramktzit
once. This is achieved by computing the transform as dataris f
warded to the sink along a given routing tree. We say that such
transforms havenidirectional operation The wavelet transform
proposed in [1] has unidirectional operation since eachermy
transforms its own data using data from neighbors along aolib r

In-network compression (e.g., [1, 2, 3, 4]) can lead to dvera ing path to the sink. The tree-based 2D wavelet transformqed
lower communication costs and power consumption: senstesio in [3, 4] is constructed on an arbitrary routing tree, reagltn a

compress data they receive from other nodes as they relaythet
sink. This raises the question of how best to organize ddtegag
through the network. If there was no in-network compressind

critically sampled transform (one coefficient per node} theploits
correlation across routing paths and also has unidireaitiopera-
tion. These transforms are more efficient than that of [2] nmgdes

an equal number of bits were used for each sample, then itdvoulonly exploit correlation using data from their neighborghie rout-

be best to simply gather data through a shortest path rotréegn
order to minimize total power consumption. However whemgsi
in-network compression it will be necessary to search ferhbst
combination of routing and compression [1, 4]. Radio povesr |
els for each sensor determine which pairs of sensors areéotdi
communication with each other. We will define an undirectexpp
where each edge represents one of these communicationalimks
we will focus on designing strategies for data transfer (lata is
routed in the graph) and data processing (how sensors cesgute
data) that can optimize overall power consumption.

This work was supported in part by NASA under grant AIST-@BD.

ing tree, whereas in [2] correlation is exploited using dadan all
neighbors. In this paper, we develop transform designsethable
more correlation to be exploited across more neighborsn(§2]),
while preserving unidirectional operation as in [3, 4].

Note that both communication cost and the transform itself d
pend on how data is routed to the sink. Thus we assume thatwee ha
a routing tree describing how data from each node flows toitte s
Moreover, since each node transmits its sensed data just the
time at which transmission occurs determines how this sarmgah

IMore precisely, each node communicates once for each datplesit
captures, but also relays data from other nodes



be used by other nodes for compression. Thus if a n@bhedules
to communicate its sample after a neighbdras already transmit-
ted its own, then nodg may not be able to use information fraim
for coding. Therefore, in addition to the routing tree, wédirte a
transmission schedule that determines the time at which eade
is supposed to transmit a sample.

Assuming a fixed communication graph, routing tree, andstran
mission schedule, thaain goalof this work is to find (i) all feasible
transforms with unidirectional operation, and (ii) waysstdect the
best transform. To do so, in Section 2 we first establish ¢mmdi
under which a lifting transform has unidirectional opewati We
also find sub-graphs on which these transforms exist. In@&est
we construct a unidirectional lifting transform on thesbé-gmaphs
and provide a unidirectional computation algorithm. Thigvides
a unidirectional transform on a graph that is more genegai that
proposed in [1, 3, 4] and also exploits more of the existingeda-
tion using data received over links not used for routingnd&]i. The
performance improvements that this transform providesianson-
strated in Section 4. These transforms also have more dertra
vance since they can be applied to any type of data on any graph

2. UNIDIRECTIONAL TRANSFORMS ON GRAPHS

Let G = (V, E) be an undirected communication graph of a WSN

with N nodes indexed by, € 7 = {1,2,..., N}, with the sink
node having indexV + 1 and where each edge:, n) € E denotes
a communication link from node: to noden. LetT = (V, Er) be
arouting tree irGG along which data, denoted byn), flows towards
the sink . Let deptfr) be the number of hops fromto the sink oril”
and letp,, denote the parent of, C,, the set of children of. andD,,
the descendants afin T'. Also let.A,, denote the set of nodes that
n routes data through to the sink excluding the sink, i.e.estmrs
of n. We define d@ransformas a set of linear operations on data
specified by the computationgn) = afx(n)+ > | afta(n;) for
each node: with some setV,, = {n1, na,...,na}. Inaddition, let
yp(n) = ag:c(n)+szl a;’, z(ni; ) denote the “partial” coefficient
of n for someNy = {ni;, nig, - -+, iy, } C Nane

Our goal is to find transforms that have unidirectional opera

To do so, the data a node can use in the transform depends on the

order in which nodes transmit data. This is illustrated ig. Bi. For
example, node 2 can us€6), z(7) andz(12) to computey(2),

e.g.,N. = {6,7,12}, since 6, 7 and 12 transmit before 2. Data

z(n) can also be processed at any nedec A,, i.e.,n’s parent
or grandparent, using(m).
N5 = {1,11} soitcan generatg,(5) = af+a5=(11) and forward

yp(5) andz(11) to node 1. Once node 1 receivgs5) it completes

the computation ag(5) = y,(5) + ajz(1). Note that not all data
can be used, i.e;;(5) cannot be used to procesél0) since node 5
transmits after node 10. To make these ideas more preciseowe
define a transmission schedule and unidirectional operatio

Definition 1 (Transmission Schedule)A transmission schedule is
afunctiont : T — {1,2,..., Mg}, such that i)t(n) = j when
noden transmits in thej-th time slof and ii) » transmits data before
nodem whenevet(n) < t(m).

2Note that these time slots are not necessarily of equaltietiggy simply
allow us to describe the order in which communications pedde the net-
work; before timet(n), noden is listening to other nodes, and at tirtig:)
noden starts transmitting its own data, along with data from itsag@dants
in the routing tree.

For instance, node 5 has neighbors

&

After removing
forbidden links

—
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Fig. 1. Toy example to illustrate the theory. Solid arrows indictte-
warding” links over which data is routed to the sink, dashedves indicate
“broadcast” links and nodes transmit in the order of the titoé specified.

Definition 2 (Unidirectional Operation) Let B, = {k : t(k) <
t(n), (k,n) € E} be the set of one-hop neighborsrothat transmit
beforen does. We say a transform has unidirectional operation on a
routing treeT” under transmission schedulef, for each noden, (i)
data is only forwarded alond@" according to the schedule specified
by ¢, i.e., fromn to p, in slot¢(n), and (i) n only transmits the
coefficients of its descendants and eithén) or y,(n) or y(n).

This definition allows each nodeto use data from any: € B,
to transform its own data(n). Noden can also use data from some
nodem € A, since eithetz(n) or y,(n) will be available ain. We
simply delay that processing af(n), a principle we call “delayed
processing”. In particular, one of three things happensmwhéor-
wardsz(n) or yp(n) to pn: pr either i) completes the computation
of y(n) or ii) generates or updates,(n) or iii) does nothing. Ifn
forwardsy(n), p» also does nothing. This leads to Proposition 1
which provides conditions for unidirectional operation.

Proposition 1. LetT" be a routing tree in a graplG with trans-
mission schedulée. Then a transform has unidirectional operation
whenever(n) = aoz(n) + Vol aiz(ns) for Ny, € Ba U A,
chosen so that need not forward data from any. € B,, — D,,.

For a lifting transform, at each level of decomposition, ead
are first partitioned into even and odd sefsand O respectively,
with £ N O = (. Each odd node generates detail coefficied{n)
using data from its even neighbors. Then, each even nodener-
ates smooth coefficiest{n) using coefficients of its odd neighbors.
The conditions for a unidirectional lifting transform anepented in
Proposition 2. This follows from Definition 2 and Propositib.

Proposition 2. Let T be a routing tree in a graptG with trans-
mission schedulé. Let£ and O denote the even and odd sets of a
lifting transform on nodes off. This lifting transform is unidirec-
tional onT using schedule if, for all nodesn, (i) n only forwards
coefficients from itself and its descendants, (ixiE O, d(n) =

z(n) + S Vel pa(i) for Ny, = (B UCy U {pn}) N €, and (i if

ne &, s(n) =z(n)+ SNl wd(i) for Ny = (Co U {pn}) N O.

A unidirectional multi-level lifting transform is also gtenteed
if we apply some split method at each leyeb- 1 to get even and
odd sets£; and Oj, then re-apply Proposition 2 to the sétsand
O; on only the smooth coefficients 6f_1.

If we examine the allowable edges for eaghi.e., E, =
{(m,n) : m € Bn U{pn}}, we see that the sub-graghi’ =
(V,UnezEy) can be used to define every lifting transform that
satisfies Proposition 2. This is formalized in Proposition 3



Proposition 3. Let T be a routing tree in a graplG with trans-
mission schedule. For eachn € Z, let E,, = {(m,n) : m €

B U{pn}}. LetE" = UnezE,. Then a unidirectional lifting
transform satisfies Proposition 2 only if it is defined on thie-graph
G’ = (V, E’). We say thaG’ contains all such lifting transforms.

Proof. Suppose a lifting transform, with even and odd setdO
respectively, satisfies Proposition 2. DefiNg as in Proposition 2
using€ andO. Each odd node will only use data froml € 5,, U
Cn U {pn} and clearly(l,n) € E’ for eachl. Each even node:
only uses data fromt € C,, U {pm} and(k,m) € E' for eachk.
Therefore, this transform can be constructed®n= (V, E'). O

3. LIFTING TRANSFORM CONSTRUCTION

We achieved our first goal in Section 2. We now study our other

goal by proposing a new unidirectional lifting transforno define a
lifting transform we must decide on a splitting rule and fildesign
strategy. Proposition 3 specifies the set of possible wedtional
lifting transforms. Note tha&’ contains the lifting transform pro-
posed in [3] since it is constructed exactly Brbut it does not nec-
essarily contain the lifting transform in [2] since it is m&cessarily
unidirectional. However, it will contain unidirectionalansforms
close to that in [2]. Thus, constructing a transform@hwill com-
bine the benefits of these transforms and eliminate theicidefiies.

3.1. Split Design

We split nodes on the sub-grajglf using a slight modification of
the strategy in [2]. In this construction, all nodes areiafliy unas-
signed. In a lifting transform, data at odd nodes is predictging
data from even neighbors and residual prediction errorsised to
represent their data. Thus, odd nodes are chosen first basbe o

number of neighbors of each node since using more data tends

produce better predictions (and smaller errors). Thus, g ds-

filters of [3] use simple averaging and smoothing filters dralfil-
ters in [2] use prediction filters that can perfectly de-etate piece-
wise planar data and update filters that keep the average otthe
transform coefficients the same at every level of decomiposiiVe
adopt the latter design since it produces better predigtion

Let V.1 = N, be the constrained set of neighbors defined in
Section 3.1 and define neighboy§, ; forallnandj = 1,2,..., L.
Then for eachn € O; we compute detail coefficient;(m) as:

dj(m) = sj—1(m)+ Y Pm.(k)sj—1(k)
kENm ;

)

and given everyl;(m), for eachn € &;, we get smooth coefficient
s;(n) computed as follows (note thag(n) = z(n)):

si(n) =s;1(n)+ > un;()d;(0).

lE/\/’n)j

)

3.3. Unidirectional Computation Algorithm

For simplicity of presentation, l&d = O1, £ = &1, An = {pn},

n = Pn,1 for eachn € O andu,, = umn, for eachm € £.
Also letd(n) = di(n) forn € O ands(m) = s1(m) form € £.
Let this define a lifting transform satisfying Proposition\®e now
describe how to compute the transform as data is routed davthe
sink. When an odd (even) node receives all data from evergs)od
in previous time slots, it filters its own data with that daieycesses
the coefficients of its descendants when necessary, thearfds its
coefficients and those of its descendants to the sink. Nateat
odd noden may receive data from some ¢ D,, via broadcast. By
Proposition 2, it can use that data to filter its own but it nust
forward it to the sink. This is detailed in Algorithm 1.

@Igorithm 1 Unidirectional Computation Algorithm

1: for m = 1to Mg, do
Im={ne€Z:t(n)=m}

sign the node irG” with the most neighbors as odd, then assign its 2:
neighbors as evens. Then among the remaining unassignes nod 3:
we assign the node i@’ with the most neighbors as odd, assign its 4:

for all n € Z,,, N € (evens in then-th time slot)do
foralll e C, N Odo

neighbors as evens, then repeat until all nodes are assigrtad S d(l) = di + pi(n)z(n)
method produces a very uneven split since there are alwayer fe 6 Forallk € C;N¢E, s(k) = s(k) + ux(l)d(l)
odds than evens. To enforce a more flexible assignment dfypari 7 end for
we do this until all nodes are assigned, then run this praeegigain 8 (Si(fn) =2(n) + X e, no Wn(1)d(l)
9: end for

using only the evens until a certain number of odds is reacbedr
L levels of decomposition 06", this produces disjoint sets of odd 10
and even node); and¢;, respectively, foj = 1,2,..., L. 11

We then apply Proposition 2 to achieve unidirectional opera 12:

for all n € Z,,, N O (odds in them-th time slot)do

d(n) = z(n) + 322,cp,ne Pr(DE(D)
forallleC,NEdo

tion. This forces nodes to distinguish between “broadctisks, 13 Ifl e &andpn € O, s(1) = s(l) + w(n)d(n)
over which data is only used for transform, and “forwarditigks, 14: end for

over which data is used for both transform and routing. s thi 15: end for

case, broadcast links for € O are the(m,n) € E’ such that 16: end for

m € (B, NE) — C, and forwarding links are then,n) € E’ such
thatm € Cn, U {pn} (with B,, C,, andp,, defined as in Section 2).
The “transform” neighbors of are N, = (B, UC,, U {pn}) NE

3.4. Discussion

for n € O. Moreover, it is clear that there are no broadcast linksThis transform construction provides greater de-cori@tathan

for n € £ and the forwarding links are then,n) € E’ such that
m € Cn U{pn}. AlSO, N,y = (Cn U{pn}) NOforn e &.

3.2. Filter Design and Computation

Define linear prediction operators, ; and update operatots,,,; at

nodesn € O; andm € &;, respectively. These filters can be de-

signed in a variety of ways. For instance, the prediction @pdhate

in [3] and is unidirectional unlike in [2]. There is, howeyan
intimate connection betwe€ehr and¢ and the performance of the
transform. We propose the following transmission schedutéch
assigns nodes further from (closer to) the sink earliee()atime
slots to provide a natural flow of data towards the sink. Ineoth
words, nodes furthest from the sink first forward to theirgues
in T, then nodes second furthest process their data and forward
to their parents, etcetera. L%, = {k : depthk) = m} and



dmaee = max(depth. We first uniquely assighCa,,.,.. | time slots
to the nodes irCg,, .., i.€., eachn € Lq,,.. IS assigned a unique
time slott(n) € {1,2,...,|L4,...|}. For each set,,, we assign
time slots to nodes in the same way, where eaeh.,, is assigned
a unique time slot(n) € {Nm + 1, Npm + 2,..., Njy + |Ln |},
with N,,, = S>¢mes |£;]. At each depthm, nodes with fewer
neighbors are assigned earlier time slots and those witle racr
assigned later time slots. This allows nodes with many righto
receive, and hence utilize, data over most of their avaléibks in
G’. Note that, though joint optimization of compression anatirg
was considered in our previous work [4], better overall perfance
(in terms of cost, reconstruction quality and transmissiemay)
may be achieved if compression is jointly optimized withting
and transmission scheduling. This is a topic for future work

4. EXPERIMENTAL RESULTS

In this section we compare the tree-based wavelet in [3] thaihuni-
directional lifting transform presented here. As discdsisere and
as demonstrated in [3], the cost for using the transformsljr2]

is higher than the tree based wavelet and so we omit it from our
comparisons. For both transforms, we use the predict andtepd
filter design proposed in [2]. We also compare against theofise

“delayed processing” for the tree-based wavelet. In palgi¢ since
even (odd) depth nodes in the tree are even (odd) in the tnansf

the grandchildren of each even node will also be even. Siack s

grandchildren are even nodes themselves, their coefficartiow-
pass coefficients. Moreover, every node will have accedwstodef-
ficients of its grandchildren. Thus, each even node can apphbd-
ditional level of decomposition to the low-pass coefficgeat their
grandchildren (i.e. more de-correlation) with no added.ch®des
of depth one can do the same for their even children. Thistoam
is still unidirectional since the coefficient of each even@adfor the
first level of decomposition) will be completed at its graacgmt.

Routing Topology

Altemative Labeling on SPT

g

0 100 20 E) 00 50 600 0 100 20 E) 00 50 60

(a) Transform on SPT (b) Transform on Graph

Fig. 2. Transform definition on SPT and on graph. Circles denote even
nodes and x's denote odd nodes. The sink is shown in the cantesquare.
Solid lines represent forwarding links. Dashed lines defwobadcast links.
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We use an AR-2 model to generate (hoise-free) simulatioa dat

with high spatial correlation. A randomly generated 50 nodée

work is used with a graph obtained using a fixed radio rangacit e

node. The shortest path routing tree (SPT) is shown in F&). e
use the transmission schedule discussed in Section 3.4tiTlwture
of the transform presented here is shown in Fig. 2(b).

Performance comparisons are shown in Fig. 3, which plots enLl]

ergy consumption versus reconstruction quality (in terrh$Sig-
nal to Quantization Noise Ratio). Energy consumption is ehed
as in [6]. Each point corresponds to a different quantiratevel
with sequential entropy coding applied to coefficients aheaode.
The tree-based wavelet has worst performance, but impreiges
nificantly when adding delayed processing. The transfolopgsed
here does best since it exploits more correlation and isngaigbnal.

5. CONCLUSIONS

Given an arbitrary communication graph and a routing treehave
defined a set of conditions under which a lifting transforrmrisdi-
rectional. A sub-graph which contains all such transforras aiso
found and a lifting transform was constructed that exploitsst of
the correlation in the network by allowing nodes to use datyt
are responsible for forwarding and data they receive viadrast.
Experimental results show performance improvements veispect
to a lifting transform computed only along a routing tree. fAtire
work, we can consider other problems including selectirgtthe,
transmission schedule and transform jointly for a giverpgra

Fig. 3. Performance comparisons.
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