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Abstract—
Edge computing has emerged as an effective offloading

strategy for constrained devices. It enables low-capability
devices to leverage nearby resources for assistance with
computationally-intensive tasks. We envision a future where
Internet of Things (IoT) devices may autonomously transact
with other more powerful devices to request such offloading
services. We believe blockchain-based technologies can help
facilitate this process by tracking usage and managing pay-
ments. In this work we introduce SmartEdge, an Ethereum-
based smart contract for edge computing and show that it is a
low-cost, low-overhead tool for compute-resource management.

Index Terms—IoT, edge computing, smart contracts,
blockchain

1. Introduction

Cloud computing has emerged as a popular platform to
facilitate the storage and processing of information from
Internet of Things (IoT) devices [1]. In recent years an
alternative approach has been gaining momentum, namely
edge computing [2], which is a set of techniques for pro-
cessing information either locally or in close proximity to
the devices that generate the information, as opposed to a
centralized data center.

Recent work on offloading has discussed how edge
computing can manage limited resources and provide mech-
anisms for mobile devices to leverage them effectively [3].
The telecommunications study presented by Chen and Xu
[4] explores how the usage of small cell base stations (SBSs)
as edge computing enablers can improve latency and the
location awareness of resource utilization. However, due to
the expected higher demand in the future, there is a need
to relieve the high computational workload that may be
required for particular SBSs. To do so, Chen and Xu [4] talk
about the opportunity for creating coalitions of these devices
to share their resources, which also includes a payment-
based mechanism for proportionally fair utility as well as
a trust network for minimizing security risks. In contrast,
our work on SmartEdge aims to provide an easier way to
handle resource allocation without preexisting relationships
through the utilization of smart contracts.

There are a few prior works that address blockchain and
edge computing. Xiong et al.’s work [5] is about the creation
of a mobile chain using edge computing as a complement
of previous applications in the areas of healthcare, finance,
and so on. This study analyzes a prototype model in two
different scenarios: one where the relation between mining
rewards and optimal edge service price is fixed, and another
where this is variable and provides results which can be
leveraged by these types of providers when defining an
optimal resource management policy.

Stanciu’s study [6] explores the implementation of a
blockchain-based technology to support distributed control
systems in the realm of edge computing, using Hyperledger
Fabric to generate function blocks as smart contracts which
will be executed by the blockchain and delegate the tasks
and resources using Docker containers and Kubernetes for
the orchestration of container execution.

As we can see, previous efforts have discussed edge
computing as an opportunity to solve the computational
resource limitation existent in IoT systems. Additionally,
these studies have presented blockchain as a viable platform
to develop a mechanism that can resolve this issue as well
as provide additional features to the system. However, to
our knowledge, this is the first work to present the design
and implementation of a smart-contract for edge computing
based on the public permissionless blockchain Ethereum.

2. Smart Contracts on Ethereum

The phrase smart contract was first coined by Nick
Szabo [7]. It refers to the verification, monitoring and ex-
ecution of contracts including transfer of money using a
software implementation. While it is possible to implement
certain simple smart contracts in the original Bitcoin pro-
tocol [8], Ethereum was the first open Blockchain to be
explicitly designed with programmability of smart contracts
in mind [9]. It is designed to be a state transition machine
with code being executed simultaneously by all miners on
the decentralized Ethereum Virtual machine [10]. Ethereum
allows in principle for Turing-complete computations.

We give a brief overview on how smart contracts work
on Ethereum. A smart contract on Ethereum can be coded
using a specialized programming language called Solid-
ity [11] (there are alternative approaches too, but Solidity
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is by far the most popular today), and deployed through an
initial transaction. Smart contracts have their own specific
address. A contract consists of state variables and functions.
The functions can be called by additional transactions ad-
dressed to the contract to trigger changes in the state vari-
ables, make payments, etc. In order to support the storage,
computation and communication costs of executing smart
contracts there are fixed “gas” fees associated with each
operation that must be paid by the caller.

For any transaction there is a gas limit, which should be
more than the amount of gas needed for the transaction (if
the gas limit is less than the needed amount, an out of gas
exception occurs and the transaction is not executed). Fur-
ther each transaction must also have a gas price (measured in
GWei per gas) associated with it, which is chosen based on
current market conditions to be high enough to incentivize
the quick inclusion of the transaction into the blockchain.
Roughly speaking, when there is network congestion, the
gas price needed for quick inclusion of the transaction is
higher.

Smart contracts have certain key limitations that must be
kept in mind. One is that they are only triggered to change
state by transactions sent to the contract address, and don’t
have any other automatic way to connect to events outside
the chain. Second, they also cannot communicate directly
to a server or piece of code that is outside the blockchain.
However, they can emit events which can be subscribed to
from outside code using the Ethereum API. And ultimately
because of the gas costs and gas limits per block (not a fixed
limit, but based on a moving average of gas usage over a
window), they cannot be arbitrarily complicated.

3. Design and Implementation of the Smart-
Edge Smart Contract

We break down the design of a smart contract into three
key steps and describe them below in the context of our
design of SmartEdge1:

1) identify the parties involved in the smart contract
2) identify key states in the lifetime of the smart

contract
3) identify and define the methods that trigger state

transitions

3.1. Parties Involved

To design a smart contract it is helpful to first identify the
parties involved in transactions. The design of the contract
for SmartEdge assumes that there are two types of parties
who interact through Ethereum, as shown in Figure 1. The
first party is the compute node. The compute node refers to
the computing resource that will be made available through
the SmartEdge contract to perform work. The second party
is the data node, which we also refer to as the counterparty.

1. The SmartEdge source code will be made available online at
https://github.com/ANRGUSC/SmartEdge

The data node possesses data that needs processing and the
program that should be used to process it. In this paper, we
collectively refer to the data and the program as a job.

Figure 1. Example of SmartEdge participants

3.2. State Machine

Second, it is helpful to identify the key states that occur
in the lifetime of the smart contract. During the lifetime of
a job that is processed through SmartEdge, the contract will
proceed through a series of states. These states are shown in
Figure 2. Each state requires that either the compute node
or data node take an action to move the contract into the
next state.

There are a total of five states in the SmartEdge contract.
We describe them here:

• Unavailable: In this state, the compute node is not
available to take any job requests.

• Available: The compute node is announcing a price
at which it is prepared to allocate its resources. It
will accept the first job that comes along.

• Pending: The compute node has received a job
request and is considering whether or not to accept
it. The compute node must first retrieve the data and
program from the specified location. The location,
represented by a URL, could refer to a folder located
on the data node itself or some other accessible re-
source with the files. We chose to use a URL because
anything passed to the contract will be stored on the
blockchain. It is impractical to store files directly on
the blockchain so we use the URL here instead as an
indirect reference. While considering whether or not
to accept the job, the compute node could also take
into consideration the reputation of the data node
as there may be malicious users. Reputation is not
monitored by the SmartEdge contract itself but we
imagine a separate system could be utilized for this
purpose.

• Computing: In this state, the compute node is busy
processing a job.

• Completed: At this phase, the compute node has
successfully completed a job and is waiting for
confirmation from the data node to conclude the
interaction. The compute node will provide a URL
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Figure 2. SmartEdge State Machine

for the data node to retrieve the result. The data node
has the option of of accepting or rejecting the result
which we will discuss in more detail later.

3.3. Contract Methods and Events

Third, it is important to identify the methods (which are
called by corresponding transactions sent to the contract)
that trigger changes between the states. In this section we
describe the methods of our SmartEdge contract. Calling
these methods trigger the state transitions as shown in
Figure 2 and will also fire off Events that can be used by
applications outside of the blockchain. We will discuss in
Section 4 how we use these Events in our experiments.

When a new SmartEdge contract is first instantiated, it
starts off in the Unavailable state. Through the setAvail-
able() method, the compute node is able to set the bid price

for computation. The bid price represents a fixed cost per
unit of time. This price is set under the assumption that a
known and fixed resource will be allocated for processing
for the duration of a job handled by the contract. Since
it is not necessarily known ahead of time how long a job
may take, we believe this pricing scheme provides a fair
valuation of the work performed. The setAvailable() method
also verifies that the compute node has placed enough funds
in escrow. The compute node’s escrow is used to assess
any penalties for falsified work. The amount required for
escrow is a parameter that can be specified prior to contract
deployment. After all conditions for availability are satisfied,
the setAvailable() method will change the contract state to
Available and emit the MadeAvailable event.

While in the Available state, a counterparty may
begin a request for work to be performed through the accept-
Bid() method. When calling this method, the counterparty
will send a URL where files pertaining to the job can be
found. This includes the data and the processing program.
The acceptBid() method also takes a payment from the
counterparty to hold in escrow as the computation is being
performed. The cost of the job will later be deducted from
this amount. The minimum amount required for the coun-
terparty escrow is established prior to contract deployment.
If the escrow requirements are satisfied, the contract will
then enter the Pending state.

In the Pending state, the contract owner has the option
of accepting and rejected a proposed job. We include this
capability to allow the owner to assess the complexity of the
job and the reputation of the counterparty. If the owner does
not want to accept the job, the jobRejected() method may be
called taking the contract back into the Available state.
The counterparty’s escrow will be returned in this case. If
the owner accepts the job, then the jobAccepted() method
will be called. This method will establish the start time of
the job and send the contract into the Computing state.

The compute node is expected to be processing the job
while in the Computing state. If for some reason the
compute node never finishes the job or is simply taking too
long, then the job can be cancelled by the counterparty using
the jobTimedOut() method. This method will refund the
counterparty’s escrow and place the contract back into the
Unavailable state. The amount of time required to elapse
before a timeout can occur is established in the contract
prior to deployment. If the job is successfully completed,
then the compute node will call the jobCompleted() method.
This establishes the job’s finish time, announces the location
of the result, and places the contract into the Completed
state.

When in the Completed state, one of three things may
happen. Firstly, in an ideal scenario, the counterparty will
check the results and be satisfied. By calling the resultVeri-
fied() method, the counterparty pays the costs of the job with
their escrow and is refunded the remaining balance. The
contract is then taken back into the Unavailable state.
Secondly, if the counterparty believes the results are fraud-
ulent, the resultRejected() method may be called. This will
cause all of the counterparty’s escrow to be refunded and
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the contract will go into the Unavailable state. Lastly,
if the counterparty takes too long to respond regarding the
result, then the compute node may call the resultTimedOut()
method. The compute node will receive payment for the
work that was completed and the remaining balance of the
counterparty’s escrow will be refunded. The amount of time
required for a result timeout is configured in the contract
prior to deployment. As with the other two related actions,
the contract will then enter the Unavailable state.

4. Experimental Setup

Our testbed consists of two components as shown in
Table 1. We use a Raspberry Pi 3 to serve as our data
node and a more powerful desktop PC as our compute
node. For development purposes, our compute node also
serves as our Ethereum node. We create a test blockchain
using Ethereum’s Truffle development framework [12]. As
shown in Figure 3, the two devices are connected wirelessly
through a WiFi router.

Device CPU RAM
Data Node

(Raspberry Pi 3)
ARM Cortex-A53

(1.2 GHz)
1 GB

Compute Node
(Desktop PC)

Intel Core i7-4770
(3.4 GHz)

16 GB

TABLE 1. HARDWARE SPECIFICATIONS

To automate the actions taken by the compute node and
data node during our experiments, we utilize contract events.
When emitted, these events are stored in a transaction’s log
and can be used to trigger callbacks in interested applica-
tions. We implement event callbacks in our testing frame-
work using the Web3.js library [13]. Examples of the events
used in our contract are shown in Listing 1. Events are the
preferred method for monitoring a smart contract because
they provide push-based notifications as opposed to pull-
based notification where an application would constantly
have to poll the blockchain to check for changes.

// Transition Events
event MadeAvailable();
event BidAccepted(string url);
event JobRejected();
event JobAccepted();
event JobCompleted(string url);
event JobTimedOut();
event ResultVerified();
event ResultTimedOut();
event ResultRejected();

Listing 1. Contract events

5. Results

Through a series of experiments we seek to evalu-
ate the effectiveness of our proposed smart contract and
demonstrate that it can support edge computing in an IoT
environment. In particular, we aim to assess if SmartEdge
achieves the following properties:

Figure 3. Network topology

• Low-overhead: Given that the purpose of edge com-
puting is to speed up processing, SmartEdge should
not contribute significantly to the delay of executing
a job.

• Low-cost: As a smart contract, there are transaction
costs associated with using SmartEdge. These costs
should not be significant relative to the value it
provides.

5.1. Transaction Costs

Table 2 shows the gas costs associated with using
the SmartEdge contract. For the compute node owner, the
SmartEdge contract will cost about $3.96 USD to deploy on
the Ethereum blockchain. We believe this to be a reasonable
upfront cost for the contract. The contract is reusable so the
owner should eventually be able to recover the deployment
cost. The remaining contract methods are all an order of
magnitude cheaper, costing $0.18 USD or less per call.

Method Gas Ether USD
constructor 1,832,908 0.005498724 $3.96

setAvailable() 83,997 0.000251991 $0.18
acceptBid() 74,942 0.000224826 $0.16

jobRejected() 31,161 0.000093483 $0.07
jobAccepted() 47,848 0.000143544 $0.10

jobCompleted() 69,270 0.000207810 $0.15
jobTimedOut() 23,116 0.000069348 $0.05
resultVerified() 30,030 0.000090090 $0.06

resultTimedOut() 27,422 0.000082266 $0.06
resultRejected() 29,578 0.000088734 $0.06

TABLE 2. TRANSACTION COSTS (AS OF MAY 3, 2018)

5.2. Overhead

To evaluate the overhead of SmartEdge, we first created
workload to test with. We developed a job that involves read-
ing integers from a file line-by-line and determining their
multiplicative factors. The input file contains numbers that
are randomly selected from the range 1,000 - 2,000,000,000.
The small version of this file (input.txt) consists of 10,000
integers while the large version consists of 100,000. A
python script (factor.py) determines the factors using the
pyprimes library. The file sizes for all files are shown in
Table 3. The result files corresponding to each input file are
shown as well.

We measured the execution time of the factorization job
using the data node, compute node, and SmartEdge. The
results are shown in Table 4. The job takes over 3 minutes
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Transferred Files Size
input.txt (small) 102 KB
input.txt (large) 1,020 KB

factor.py 494 B
result.txt (small) 198 KB
result.txt (large) 1 MB

TABLE 3. FILE SIZES

to execute on a Raspberry Pi 3. However, when the job is
executed using SmartEdge, it only takes 8.6 seconds. There
is an overhead of 2 seconds compared to executing the job
directly on the compute node. It should be noted that this 2
second overhead includes the time it takes to transfer the job
to the compute node and the result back to the data node.

Platform Execution Time (seconds)
Data Node 182.9

Compute Node 6.6
SmartEdge 8.6

TABLE 4. FACTORIZATION TASK EXECUTION TIME (SMALL INPUT)

Figure 4 shows the percent of time the SmartEdge
contract spends in each state. As expected, the Computing
state dominates the time which is the desired behavior. How-
ever, we realized that in the Truffle development blockchain,
blocks are mined instantly which is not an accurate represen-
tation of mining time in practice. We re-ran the experiment
using Truffle’s Ganache blockchain, with the mining time
set to the Ethereum average of 14 seconds. The results are
shown in Figure 5. In this figure we can infer that the mining
time for each transaction dominates the time spent in each
state of the contract and is an important consideration when
choosing to offload a job.

We ran the experiment one more time to see how the
durations would be affected if the execution time of the job
was higher relative to the block mining time. The execution
time of the job with the larger input file is 67 seconds
when directly run on the compute node. Indeed, we can
see in Figure 6 that the percentage of time spent in the
Computing increased significantly relative to the other
states.

We believe that a larger input file and result file would
have a similar impact on the Available and Completed
states, respectively, as they would affect the file transfer
times. We aim to investigate this hypothesis in future work.

6. Risks and Security Issues

There are some issues in the current design of our
contract that we have identified and discuss below.

Results Verification: Due to the computational con-
straints on smart contracts, we believe it is difficult in
general to verify that a job was properly performed through
the smart contract itself. While there are techniques for
verifiable computing [14], the expensive costs of circuit
generation and homomorphic encryption make it generally
impractical for this context. For now, we leave it up to

Figure 4. Time spent in each SmartEdge state with instant mining

Figure 5. Time spent in each SmartEdge state with 14-second mining

the data node to verify that the result is valid. If it is
trivial to check all of the result, then the data node may do
so. However, if result verification is also computationally
intensive, then the data node can randomly plant some test
data in the original input file for which the result is already
known. For example, if we assume a similar job structure
as in our experiments, then the data node can plant test data
at every nth line of the input file. Alternatively, the test
data can be placed in a more randomize fashion as long as
the data node can keep track of the placement. The data
node can then use the result for those particular values as a
proxy to determine if the rest of job was actually performed
correctly.

On the other hand, the data node may be malicious and
so the compute node could be at risk. A malicious data node
could reject a result to avoid having to pay for the execution
of their job. For this aspect of the problem we believe a
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Figure 6. Time spent in each SmartEdge state with 14-second mining and
a larger input file

reputation-based system could be useful. A compute node
can check the reputation of a data node before accepting
their job to avoid such a situation. Another possibility is that
the job itself is crafted with some malicious intent. However,
we imagine that all jobs processed through SmartEdge will
be executed in a sandbox, such as a virtual machine or
container, so that it is contained and isolated from the rest
of the host system.

Data Exchange: Another security issue in the current
design of SmartEdge is the safe transmission of the informa-
tion between the data node and the compute node. Currently
URLs are used to specify the location of files. Once this
information enters the smart contract it becomes publically
accessible information. This could present a problem if the
data being exchanged is sensitive.

7. Future Work

We have several possible improvements we would like
to incorporate into our implementation of SmartEdge.

Data Privacy: As mentioned in Section 6, the safe
transmission of the information between the data node and
the compute node may be a concern. A simple solution to
solve this problem would consist of encrypting the URL
in such a way that the keys are only known among the
participants for each job.

Bid Curves: In the current version of SmartEdge, the
bid price for a compute node is fixed. However, we believe
a useful modification would be to define the bid price as a
function of completion time. The benefits of this change are
that, on one hand, it will provide an incentive to the compute
nodes for early job completion and, on another hand, it will
have as a consequence diminishing returns or penalty for
late job completion.

Auctioning Contract: Another possible improvement to
the current system is the creation of a separate auctioning

contract that can automatically match data nodes with the
most appropriate compute nodes. Currently data nodes deal
with a compute node directly, but if they want to shop
around and consider multiple resources, the auctioning con-
tract can manage that process for the data node automati-
cally.

8. Conclusions

We have presented SmartEdge, a new Ethereum-based
smart contract for edge computing. It allows nodes to of-
fload computation in a verifiable manner to edge computing
devices belonging to other parties in exchange for payment.
We believe SmartEdge will be a valuable tool for IoT
applications. While our current implementation serves as
a proof-of-concept, we aim to continue development on
SmartEdge.
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