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Abstract—This paper considers a component-level deceleration
technique in BS operation, called speed-scaling, that is more
conservative than entirely shutting down BSs, yet can conserve
dynamic power effectively during periods of low load while
ensuring full coverage at all times. By formulating a total cost
minimization that allows for a flexible tradeoff between delay and
energy, we first study how to adaptively vary the processing speed
based on incoming load. We then investigate how this speed-
scaling affects the design of network protocol, specifically, with
respect to user association. Based on our investigation, we propose
and analyze a distributed algorithm, called SpeedBalance, that
can yield significant energy savings.

I. INTRODUCTION

Recently, potential harmful effects to the environment

caused by CO2 emissions and the depletion of non-renewable

resources bring renewed focus on the need to develop more

energy-efficient underlying network infrastructures [1]. In par-

ticular, the focus of this paper is on reducing the power

consumption at base stations (BSs) as they are the key source

of heavy energy usage in cellular networks, reported to amount

to about 60-80% [2]. From the perspective of mobile network

operators, reducing energy consumption is not only a matter

of social responsibility towards being green and sustainable

but also tightly related to their business survivability in com-

ing years. They are spending huge operational expenditures

(OPEX) to pay electricity bills. Moreover, it is expected to

grow due to explosive growth in data demand and the possible

increase of energy price [3]. According to a study from ABI

Research [4], the collective cellular network OPEX will reach

$22 billion in 2013. Thus, reining back the spiraling OPEX is

crucial to the continuing success of operators.

There have been many studies on dynamic BS switching

techniques for energy conservation [2], [5]–[8], which allow

the system to entirely shut down some underutilized BSs and

transfer the corresponding load to neighboring BSs during low

traffic periods such as nighttime. It has substantial potential

to obtain energy savings by even reducing static (or standby)

power. Nevertheless, the operators are reluctant to turn off their

BSs not only due to the technical challenges of implementing

it in practice, but also due to concerns about possible serious

degradation in user experience: (i) users originally in the

switched-off cell need to communicate with farther BSs (e.g.,
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more mobile power consumption for file uploading), and (ii)

there is always a danger of creating coverage holes.

Thus, in this paper, we consider to incorporate a component-

level deceleration technique in BS operation that is more

conservative than turning off BSs, yet can conserve dynamic

power effectively. This technique, called dynamic voltage

frequency scaling (DVFS, or simply speed-scaling) [9], [10],

allows a central processing unit (CPU) to adapt its speed for

energy conservation based on incoming processing demand.

Note that examples of in-BS processing are increasingly

abundant from OFDM modulation, coding, to even security

and multimedia conversion. It is also worthwhile mentioning

that DVFS lowers heat dissipation as well. As a consequence,

it can reduce the power consumption in cooling equipment

contributing to a considerable amount of total energy con-

sumption, where this exerting influence is often linear [11].

In the meantime, measurements of real BSs over several

days indicate that the power consumption varies only about 2%

for a GSM BS and 3% for a UMTS BS over time regardless

of its load level [11]. This implies that typical macro BSs

deployed today do not adopt dynamic power saving features.

More recently, however, Alcatel-Lucent has demonstrated the

feasibility of exceptional dynamic power savings on BSs by

software upgrades [12] and it can be expected that such

BSs will become even more widespread in the near future.

Nevertheless, the applications of these features to BSs and

their impacts on the design of network protocols in cellular

networks have not been fully understood yet.

Our objective and contributions: The goal of this paper is to

(i) characterize an equilibrium resulting from the interaction

between speed-scaling and load balancing for green cellular

networks and to (ii) propose a distributed iterative optimal

speed control and user association policy. The main contribu-

tions of the paper are summarized as follows:

1) We develop a theoretical framework for BS energy saving

that jointly encompasses speed-scaling and user associa-

tion. To the best of our knowledge, this work is the first to

consider speed-scaling as a tool addressing a flexible trade-

off between delay performance and energy consumption in

both networking and processing components of BSs.

2) We first derive an optimal processing speed for two dif-

ferent processors having different capabilities: static speed-

scaling and gated-static speed-scaling, and then present the

optimal structure of speed-scaling-aware load balancing.



Motivated by the above, we propose SpeedBalance, an

algorithm that can be implemented in a totally distributed

manner. We further evaluate the performance of SpeedBal-

ance through extensive simulations under an acquired 3G

cellular topology and traffic trace.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Model and Notation

1) Network and traffic model: We consider a downlink

cellular wireless network with a set of base stations (BSs) B,

which serve a region L ⊂ R
2. Let x ∈ L denote a location and

i ∈ B be the index of a typical i-th BS. File transfer requests

are assumed to arrive following a spatially inhomogeneous

Poisson point process with arrival rate per unit area λ(x)
and file sizes which are independently distributed with mean

1/µ(x) at location x ∈ L, so the traffic load demand is defined

as γ(x)
.
= λ(x)

µ(x) <∞ [bits/sec]. Note that this captures spatial

traffic variability such as a hot spot.
2) Channel model: The average transmission rate of a user

located at x and served by BS i is denoted by ci(x) [bits/sec].

Note that ci(x) is location-dependent but not necessarily

determined by the distance from the BS i. Hence, it can

capture shadowing effect, e.g., ci(x) can be very small in a

shadowed area where the channel gain is very low.
3) Processing model: Each BS i is assumed to have a

processing component such as CPU with a scalable speed si
[cycles/sec] in (0, si,max]. Flows may have different process-

ing demands. We represent this notion by processing density

w(x), which is defined as the average number of CPU cycles

required per bit for the flow at location x. The processing

demand of the traffic load at location x is then w(x)γ(x).
4) System utilization and feasible region: Fig. 1 illustrates

our system model, where a BS is decomposed into two parts:

one part with processing components and the other part with

RF functionalities. A routing function pi(x) specifies the

probability that a flow at location x is associated with BS i.
We will see later that, however, the optimal pi(x) will turn out

to be either 1 or 0, i.e., deterministic routing is optimal. As

there are processing and transmission resources, we can define

two types of system utilization (i.e., the fractions of time the

processor or network is busy) for BS i as follows:

Processing utilization: ρ
(p)
i

.
=

∫

L

w(x)γ(x)

si
pi(x)dx, (1)

Network utilization: ρ
(n)
i

.
=

∫

L

γ(x)

ci(x)
pi(x)dx. (2)

We further denote the vectors containing processing uti-

lizations and network utilizations of all BSs by ρ(p) =

(ρ
(p)
1 , · · · , ρ

(p)
|B|) and ρ(n) = (ρ

(n)
1 , · · · , ρ

(n)
|B| ), respectively.

Definition 2.1 (Feasibility): The set F of feasible system

utilization ρ = (ρ(p), ρ(n)) is given by

F =
{

ρ | 0 ≤ ρ
(p)
i , ρ

(n)
i ≤ 1− ǫ,

0 ≤ pi(x) ≤ 1,
∑

i∈B pi(x) = 1,

0 < si ≤ si,max, ∀i ∈ B, ∀x ∈ L
}

,

(3)
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Fig. 1. Flow-level queueing model in the dual-resource environment.

where ǫ is an arbitrarily small positive constant. Hence, the

feasible system utilization ρ has the associated processing

speed vector s = (s1, · · · , s|B|) and routing probability vector

p(x) = (p1(x), · · · , p|B|(x)) for all x ∈ L.

B. Problem Formulation

The objective function we consider is

min
ρ∈F

E[N] + ηE[P], (4)

where N is the expected number of flows in the system and

P is the system power consumption.1 Note that the parameter

η ≥ 0, controls the tradeoff between delay and energy. When

η is zero, we only focus on delay performance, however, as η
grows, more emphasis is given to energy conservation.

(i) The cost function of delay performance: We consider the

M/GI/1 multi-class processor sharing (PS) system [13]. We

focus on this model not only because PS is a tractable model

of current scheduling policies, but also because multi-class

can reflect the fact that users see different service rates and

file sizes based on their locations. Using standard queueing

theory, E[N], the summation of the expected number of flows

in two serial queues for all BSs, is then given by

E[N] =
∑

i∈B

[

φ
(p)
i (ρ

(p)
i ) + φ

(n)
i (ρ

(n)
i )

]

, (5)

where φ
(p)
i (ρ

(p)
i ) =

ρ
(p)
i

1−ρ
(p)
i

and φ
(n)
i (ρ

(p)
i ) =

ρ
(n)
i

1−ρ
(n)
i

are the

expected number of flows in each queue, respectively.

(ii) The cost function of energy consumption: We consider a

general cost function of energy consumption, which consists

of two types of powers expended in the processing and

networking components, respectively.

E[P] =
∑

i∈B

[

ψ
(p)
i (ρ

(p)
i ) + ψ

(n)
i (ρ

(n)
i )

]

, (6)

The networking components are assumed to gradually con-

sume more power as the activity level increases. Thus, the

energy cost for networking is given by

ψ
(n)
i (ρ

(n)
i ) = biρ

(n)
i , (7)

1From Little’s law and energy-power relationship, the general problem (4)
is equivalent to minimizing E[D] + ηE[E], where N is the expected number
of flows in the system and P is the system power consumption.



where bi > 0 is the maximum networking power of BS i,

when fully utilized, i.e., ρ
(n)
i = 1, which includes the power

consumptions of Tx antenna, power amplifier and so on.
The remaining is to define the form of the energy cost for

processing ψ
(p)
i (·), which also depends on the capability of

the processor for provisioning its speed. We deal with two

different types of processors introduced in [10]: static speed-

scaling (SS) and gated-static speed-scaling (GS).

We do not know at this moment the explicit form of ψ
(p)
i (·)

although we will derive it in Section III-A later, which is one

of our contributions. For now, we try to express the energy

cost with a processing speed s. Let g(s) denote the power

consumption when the processor is running at speed s. In the

domain of processor design, it has been typically assumed to

be polynomial, i.e., g(s) = asβ . Thus, ψ
(p)
i (·) is given by

ψ
(p)
i (ρ

(p)
i ) =

{

ais
β
i , when SS, (8a)

aiρ
(p)
i sβi , when GS, (8b)

where ai > 0 and β > 1 are some constants. Note that, for

the case of GS, the energy cost is only incurred during the

fraction of time the processor is busy, i.e., ρ
(p)
i .

III. SPEED-SCALING-AWARE OPTIMAL LOAD BALANCING

In this paper, we consider not only delay and energy

consumption in BS’s networking components but also consider

delay and energy consumption in BS’s processing components.

We rewrite our original problem in (4) as follows.

Speed-scaling-Aware Load Balancing [SA-LB]:

min
ρ∈F

Ω(ρ) =
∑

i∈B

[

φ
(p)
i (ρ

(p)
i ) + φ

(n)
i (ρ

(n)
i )

︸ ︷︷ ︸

delay performance

+η
(
ψ
(p)
i (ρ

(p)
i ) + ψ

(n)
i (ρ

(n)
i )

︸ ︷︷ ︸

energy consumption

)]

A. Speed-scaling Given Processing Demand

We shall start by considering a given processing demand.

In this case, we prove that the delay performance and energy

consumption of the networking component can be ignored in

the original problem in (4) and the problem can be further

decomposed into intra-cell speed-scaling subproblems.

Theorem 3.1: For any fixed routing probability p(x), the

problem in (4) is reduced to |B| independent subproblems that

find an optimal speed si for each BS i.

min
si

Γi

si − Γi

+

{

ηais
β
i , when SS, (9a)

ηaiΓis
β−1
i , when GS, (9b)

where Γi
.
=

∫

L
w(x)γ(x)pi(x)dx. We call this problem intra-

cell optimal speed-scaling.
Proof: Due to the space limitations, the proof is provided

in our technical report [14].
When the problem in (9) is feasible, differentiating and

solving gives the following optimal conditions:

for SS, zss(si)
.
= sβ−1

i (si − Γi)
2 =

Γi

ηaiβ
, (10)

for GS, zgs(si)
.
= sβ−2

i (si − Γi)
2 =

1

ηai(β − 1)
. (11)

Since the function zss(si) (resp. zgs(si)) is equal to zero

at si = Γi and monotonically increases for si > Γi, it

will eventually cross the positive constant value Γi

ηaiβ
(resp.

1
ηai(β−1) ) just once. Let si,ss and si,gs denote the unique point

that satisfies (10) and (11) for si > Γi, respectively. This can

be explicitly solved for some β, e.g., si,gs = Γi+
√

1
ηai

when

β = 2 and si,ss =
1
2

(

Γi +

√

Γ2
i + 4

√
Γi

3ηai

)

when β = 3.

Substituting Γi = ρ
(p)
i si into (10) and (11) and after

some simplification, we first obtain the following closed form

expression for the optimal speed si as a function of ρ
(p)
i :

si(ρ
(p)
i ) =







β

√

ρ
(p)
i

ηaiβ(1−ρ
(p)
i

)2
, for SS,

β

√
1

ηai(β−1)(1−ρ
(p)
i )2

, for GS.
(12)

We have expressed the energy cost for processing with a

processing speed si in (8). Now we can write it in a more

explicit form as a function of the processing utilization ρ
(p)
i .

ψ
(p)
i (ρ

(p)
i ) =







ρ
(p)
i

ηβ(1−ρ
(p)
i

)2
, for SS,

ρ
(p)
i

η(β−1)(1−ρ
(p)
i

)2
, for GS.

(13)

B. Optimal Structure of Speed-scaling-aware Load Balancing

Based on the speed-scaling derived in the previous section,

we now investigate the optimal structure of speed-scaling-

aware load balancing.

Theorem 3.2: Suppose that the problem [SA-LB] is fea-

sible. Let us denote the optimal system utilization ρ∗ =
(ρ∗(p), ρ∗(n)), i.e., solution to [SA-LB]. Then, the following

user association rule2 for the MT at location x is optimal:

i∗(x) = argmin
j∈B

[

M
(p)
j

w(x)
+

M
(n)
j

cj(x)

]

, ∀x ∈ L, (14)

where M
(p)
j = [

(
1 − ρ

∗(p)
j

)−2
+ ηψ

′(p)
j (ρ

∗(p)
j )]/si(ρ

∗(p)
j )

and M
(n)
j =

(
1− ρ

∗(n)
j

)−2
+ ηbj are metrics that can be

computed at the j-th BS side.

Proof: The proof is a generalization of that of [15], with

the additional energy cost. The problem [SA-LB] is a convex

optimization because its feasible set F has been proved to

be convex and the objective function is the sum of convex

functions. Hence, it is sufficient to show that, for all ρ ∈ F ,
〈
∇Ω(ρ∗),∆ρ∗

〉
≥ 0, where ∆ρ∗ = ρ− ρ∗. (15)

Let p(x) and p∗(x) be the associated routing probability

vectors for ρ and ρ∗, respectively. Then, (14) generates the

deterministic cell coverage, i.e.,

p∗i (x) = 1
{

i = argmin
j∈B

Mj(x)
}

, (16)

2This association rule can be interpreted as saying that each MT selfishly
tries to minimize the sum of two types of cost: (i) processing cost per unit

CPU speed and (ii) networking cost per unit Tx capacity.
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where Mj(x) =
M

(p)
j

w(x) +
M

(n)
j

cj(x)
. Then, the inner product

〈
∇Ω(ρ∗),∆ρ∗

〉
can be calculated such as

=
∑

i∈B

[

{

φ
′(p)
i (ρ

∗(p)
i ) + ψ

′(p)
i (ρ

∗(p)
i )

}

·

(

ρ
(p)
i − ρ

∗(p)
i

)

+
{

φ
′(n)
i (ρ

∗(n)
i ) + ψ

′(n)
i (ρ

∗(n)
i )

}

·

(

ρ
(n)
i − ρ

∗(n)
i

)

]

=

∫

L

γ(x)
∑

i∈B

Mi(x) ·
(
pi(x) − p∗i (x)

)
dx.

(17)

From (16), as p∗i (x) is an indicator for the minimizer of

Mi(x), we have the following inequality:

∑

i∈B

Mi(x) · pi(x) ≥
∑

i∈B

Mi(x) · p
∗
i (x) (18)

Substituting (18) into (17) yields the condition in (15), which

completes the optimality proof.

C. Distributed Iterative Algorithm

To determine the association in (14), MTs need to know

ρ∗ a priori. However, this will be relaxed in our proposed

distributed algorithm, called SpeedBalance, which can achieve

the global optimum in an iterative manner. The distributed

algorithm involves two parts. At the k-th iteration period,

Mobile terminal: 1© MTs estimate the transmission rate

ci(x) and receive the system utilization ρ[k], e.g., through

broadcast control messages from BSs. 2© Then, a new flow

request for a MT simply selects the BS i[k](x) based on

the deterministic rule in (14), but using the current system

utilization ρ[k] instead of the optimal one ρ∗.

Base station: 1© Each BS i adapts its processing speed si
according to (12). 2© It measures the system utilization ρ

[k+1]
i ,

calculates the metrics
(
M

(p)
i ,M

(n)
i

)
, and then broadcasts

them to MTs for the next iteration.

IV. NUMERICAL RESULTS

We first investigate the component-level power consumption

breakdown of LTE BSs in Fig. 2. This reveals that (i) signal

processing contributes to a considerable portion of total power

consumption, and (ii) cooling and power amplifier are also

major components than Tx antenna does. Note that micro BSs

typically do not have cooling components. Etc. (e.g., power

supply and battery backup) amounts to about 10%.
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Fig. 3. Energy-delay tradeoff by SpeedBalance w/ SS. As η increases, energy
savings can be obtained at the cost of delay increase.

Based on these data in Fig. 2, we choose parameters for our

energy cost function. We consider the power amplifier and

antenna as networking components, and consider the signal

processing and cooling as processing components. To capture

the static power of these components, 25% of their total

power consumptions is considered as static power. Thus, we

set ai for macro and micro BSs to be 106.6 and 5.3 so that

their maximum dynamic power consumptions at the maximum

speed s = 1.6 [Gcps] are equal to 75% of (348+234)W and

28.8W. We set likewise bi for macro and micro BSs to be

284.3 and 7.5. The macro and micro BSs have the transmission

powers of 43.8dBm and 33dBm, respectively. Each MT’s

request has exactly one file that is log-normally distributed

with mean 1/µ(x) = 100 Kbyte and the processing density

w(x) over space is considered to be uniform. Other simulation

parameters are given in [14].

A. Performance Under A Mixed Macro/Micro BS Topology

We first verify the energy-delay tradeoff of SpeedBalance

and also compare its performance with a conventional scheme

using the signal strength-based user association and do not

adopt the speed-scaling. Fig. 3 shows tradeoff curves by

varying the energy-delay tradeoff parameter η from 10−4 to

100 for the different values of arrival rate λ(x). The results

are consistent with our expectations: the higher η is, the more

possible energy savings are possible at the cost of delay.

In order to examine where and how the energy savings

come from, we first plot Figs. 4 (a) and (b) that show the

convergence of processing speeds, networking and processing

utilizations for the cases of low η = 10−3 and high η = 10−1.

As can be seen, BSs slow down their processing speeds when

η is high (i.e., giving more emphasis on energy conservation)

compared to the case of low η. This is one of the main reasons

for reduction in power consumption. There is another reason

beyond the speed-scaling. Fig. 5 illustrates the snapshots of

cell coverage by SpeedBalance for both cases. By comparing

two figures, we can clearly see that micro BSs have large
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coverages for high η. In other words, more MTs are associated

with and served by the energy-efficient micro BSs.

On the other hand, per-flow delay will grow as η in-

creases. This is because reducing the processing speed and

concentrating the traffic load in the micro BSs will result in

the increase of the processing and networking utilizations as

shown in Fig. 4. However, in Fig. 3, it is noteworthy that

the most of energy savings can be obtained at η = 10−3

while not penalizing the delay performance, compared to

the conventional scheme. Thus, we will choose η = 10−3

throughout the rest of our simulation study.

B. Performance Under A Real 3G BS Deployment Topology

In order to obtain more realistic amount of energy savings,

we further consider the real map of BS layout consisting

of heterogeneous environments (urban, suburban and rural

areas) and normalized traffic trace for our simulation.3 TA-

BLE I summarizes the average energy use during one day. As

expected, compared to the conventional scheme, significant

amounts of energy savings can be achieved by SpeedBalance,

e.g., 31.8% and 36.4% for SS and GS in weekdays, 41.7%

3Due to the space limitations, the BS layout from [16], traffic trace, and
other interesting results are provided in our technical report [14].

TABLE I
AVERAGE ENERGY USE DURING ONE DAY

Conventional SpeedBalance SpeedBalance

scheme w/ SS w/ GS

Weekday 617.3kWh 421.3kWh 392.5kWh

Weekend 578.3kWh 336.9kWh 319.0kWh

and 44.8% for SS and GS in weekends. More energy savings

are expected during weekends than weekdays. This is because

the traffic load during weekends is relatively lower than that

during weekdays. Also note that GS can provide 3.2-4.6%

more savings than SS due to its superior characteristic.

V. CONCLUDING REMARKS

This paper considered speed-scaling to address the tradeoff

between delay and energy in both networking and processing

components of BSs. By investigating the optimal speed for

processors with SS and GS and the optimal structure of speed-

scaling-aware load balancing, we proposed a distributed iter-

ative algorithm, SpeedBalance. Extensive simulations showed

that compared to the conventional scheme, SpeedBalance can

yield significant energy savings about 30-45%.
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