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Abstract—We take a top-down approach of formulating the This model introduces virtual queues in the Lyapunov drift

rate control problem, over a collection tree, in a wireless sensor framework that capture the interference constraints iegjsh
network as a generic convex optimization problem and propose the network

a distributed back pressure algorithm using Lyapunov drift I . . . .
based optimization techniques. Primarily, we show that existing Ul Sécond contribution in this work is the experimental

theoretical results in the field of stochastic network optimization implementation of this distributed queue-based rate obntr
can be directly applied to a CSMA based wireless sensor network algorithm on a real low-power wireless platform (the Tmote
using our novel receiver capacity model. We back this claim Sky from Moteiv) over a CSMA MAC (the CC2420 commu-
by implementing our algorithm on the Tmote sky class devices. ni-aiion stack implemented in TinyOS 2.x). We provide dstai

Our experimental evaluation on a 5 node testbed shows that the imol tati d i f tal ltslwhi
empirically observed rate allocation on a real sensor network on ourimplementation and present experimental resultsiwni

testbed that uses our back pressure algorithm is close to the validate our analysis, bringing Lyapunov-based rate ebntr
analytically predicted values, justifying our claims. algorithms for wireless networks a step closer to reality.

I. INTRODUCTION Il. RELATED WORK

In recent years, the literature on wireless networks has bee Tpe problem of rate control in wireless sensor net-

enriched by several theoretical results that have developgorks has seen a rich set of proposals from a systems
new mathematical frameworks for des_,ign of optir_nal Crosserspective([3], [5], [9], [10], [11], [12], [18], [19]). Mst
layer protocols [2]. A particularly appealing stochasttwiork  of these protocols are designed purely from the perspective
optimization approach thgt yields simple distributed alhons ¢ congestion control and hence focus primarily on network
for dynamic scenarios is based on the use of Lyapun@pility. Many of these protocols implicitly or expligjtaim at
drifts [4]. _ _ ~_providing some notion of fairness while achieving congersti
The Lyapunov drift based techniques described in [#hntrol. However, to our knowledge, there is no prior work on
provide for distributed rate control based purely on loc@)actical rate control mechanisms for wireless sensor aris
observations of neighborhood queues. They guarantee {hg: provide the ability to optimize any generic convexityil
stability of the system and also provide mechanisms to &ehig,ction.
optimi;ation with respect to given utility functions. While 5+ contribution to the body of work on rate control in
attractive on theoretical grounds, to our knowledge theggreless sensor networks is to advocate a top-down approach
technlqlues have yet to be implemented in real wireless Ngl; gesigning rate control algorithms. In this work, we first
works = One reason it has not been easy to translate g jate the problem of rate control over a collection tiree
Lyapunov drift methodology from theory to practice is thajy;reless sensor networks, as a generic convex utility dpéim
it has been primarily developed under the assumption oftign problem. Using the Lyapunov drift framework, we then
time-slotted system, implying a TDMA MAC. TDMA-based,rasent a distributed algorithm and a proof of concept syste
wireless networks are generally harder to implement duB€lo t,siementation that solves the convex optimization proble
challenges associated with time-synchronization, p#eity  T4ggjylaset al. in [16] and [17] first introduced the design of

across m_ultiple—hops_,. . _ backpressure algorithms based on Lyapunov drift techsitpue
Our primary contribution in this work is to sh_ow that rate, .hieve network stability. The work by Neety al. ([7], [8]),
control algonthms based on the Lyapunov drift frameworgnd Stolyaret al. ([15]) significantly builds on the original
can be built over a§ynchronous CSMA-based MAC pro.tocokﬁlork by Tassiulagt al. by showing that Lyapunov drift based
Specifically, for a wireless sensor network, we model thel-avay ;. nressure algorithms can be designed not only to aghiev
able bandwidth using the concept of receiver capacity [13]aryork stability but also to optimize system wide utiligs

This work is supported in part by NSF grants numbered 03478847028, 10Ng as the system wide utility function is convex. The frame
0430061 and 0325875 work presented in [7] and [8] allows for the transformatidn o

1Although we have anecdotal evidence that an implementaticsinaifar the constrained optimization problem to a queueing thaoret
theoretically-derived queue back-pressure algorithmeisghattempted in an [ . . .
ongoing DARPA-funded project, we are not aware of any prioblished Problem by associating a virtual queue with each constraint
implementations of such techniques. in the original optimization problem. Optimizing the dsifof



sending data to that nodg b) all transmitting nodes within
interference range of, and c) the transmissions made by
node i, must not exceed that node’s receiver capacity. This
model corresponds to a linear approximation of the capacity
region for each receiver. That is, any linear combination of
neighborhood transmission rates is feasible so long as the
6 net overheard rate does not exceed the receiver bandwidth.
Intuitively, one would expect such a linear rate region ap-
proximation to be reasonable for CSMA (operating on small
packet sizes~ 40 bytes) precisely because it minimizes
collisions through carrier sense (yielding similar surtesafor
different levels of contention between a set of users). We ha
previously validated the appropriateness of this appreakion
through experiments with real wireless devices [14].
Fig. 1. An illustrative example of the receiver capacity model We present an illustrative example using Figure 1 to
highlight the applicability of the receiver capacity model
the physical and and virtual queues then presents a tradedo ning the consraints of the above opt|m_|za_t|on problem.
igure 1 shows & node topology. The solid lines represent

between th? Stab'!'ty qf the system e}nd utility optlml_zano the collection. The dashed lines quantify the interference
There exists a rich literature on using Lyapunov drift based . ..~ .
: ; Xisting in the network. For example, when noflesends
approaches for solving problems of optimal power contro
LT . . (Jata to nodel at some rate, nod2 not only consumes the
rate control and energy optimization in wired and wwelescsOrres onding amount of capacity at nodéut also at node
networks which has been covered in [4]. Despite this the P g pactty

retically well grounded literature, specifically in the daim g.n;jl'gls_:s3|nd|cated by setting equal rates on the ligks: 1

of wireless ad-hoc networks, we are not aware of examplesFOr Figure 1, based on the constraints generated by the

of real systems employing the strategies designed using the . . N
Lyapunov drift based approach. This is primarily due to t e CoIver capacity model [13], the optimization problem can

underlying assumption of a slotted system, implying a TDM e rewritten as:

MAC. Our main contribution in this domain is to present P1:max » g;(r;) i € {2,3,4,5,6} (1)
a technique of implementing a Lyapunov drift based back- Vi

pressure algorithm for a CSMA based system in a wireless r2 493 48 4+ 2rt 4 2p° < B2 )
sensor network setting. We are able to achieve this obgectiv P2 4203 4t S 428 < B3 @)

due to the linear constraints presented by our receiverctgpa

model, which allows these constraints to be easily modeded a rP 42t 0 < B (4)
a set of virtual queues. Thus, the problem of designing back- 2+t + 205 + 9% < BP (5)
pressure algorithms using Lyapunov drifts in a CSMA setting r3+92r% < BS (6)
is tractable. ] ]
In Figure 1,72, andr; , are given by:
I1l. PROBLEM FORMULATION r2. = 24t
In wireless sensor networks, the dominant topology is a oy = T
collection tree where multiple sources are forwarding data
a single sink. We consider the following optimization penl IV. LYAPUNOV OPTIMIZATION FORMULATION
over a collection tree. Our objective is to find a distributed algorithm to solve the
max : Y gi(r;) optimization problem presented in Section lll.
Vi

By modeling optimization problem constraints as virtual
gueues, prior work in the area of stochastic network opti-

Wherer; is the time average source rate for each sourcemization ( [6], [8]) presents techniques minimizing theftdri
gi(r;) is assumed to be convex ands the capacity region for of a linear combination of the physical and virtual queues of
the collection tree. To solve the above optimization problethe whole system, thereby ensuring forwarding queue #tabil
we need to the know the capacity regianwhich constrains while obeying constraints. The objective function may be
the optimization problem. incorporated as a penalty or reward function included in the

We use the receiver capacity model presented in [13] énift bound, providing a final solution which trades system
order to define the capacity region for a wireless sensgueue size and latency for utility optimality. The moduhari
network collection tree leveraging a CSMA based MAC. Thef the algorithms resulting from this approach is one of its
core idea is to associate a constant bandwidth capacity wittimary attractions.
each receiver in the network. This capacity must be shared byPrior work such as ( [6], [8]) assumed a detailed knowledge
all transmitters within interference range of that receive of the physical layer channel capacity. This was then used by
particular, for any node, the rates allocated to a) all nodes possibly centralized channel optimizer in order to asgert

st.r; €A



optimal transmission rates per the Lyapunov drift minirticza The queuing dynamics of the physical quégét) is similar
algorithm. The implicit assumption in the allocation is tthato that of the virtual queues and is given by:
the underlying MAC is TDMA. Though there is nothing N
in the analysis that limits the methodologies to a TDMAUi(t +1) = max[Ui(t) — X;(?), 0] + > X0+ Rit) (8)
based approach. The Achilles’ heel of this approach seems Jec;
to be that the optimization agent must have knowledge of theThat is, each node first attempts to transmif;(¢) units
physical layer capacity region. The novelty of the solutioof data to its parent, then receivééj(t) units of data from
presented here is that, using existing approaches, we shew¢h child nodej. Note that we differentiate here attempted
that the optimization problem can be applied to a CSM#&ansmissions X;(¢)) and true transmissionsX((t)). The
based network as well. This is achieved by the additiondifference being that while it may be most optimal to trartsmi
constraints to the optimization problem which use the kegei a completeX; () units of data in this timeslot, the queue may
capacity model, and by relaxation of the exact channel ¢gpamot contain sufficient data to operate optimally, g(t) <
assumption in optimization ovex,(t). X ().

In this section, we present a Lyapunov drift based solution Combining the objective functiod_ g;(r;) with the queue-

i i Vi
to the problemP1 presented in Section III ing dynamics presented in equations (7) and (8), we can

perform a Lyapunov drift optimization that will result in an
A. Lyapunov Optimization with Receiver Capacity Virtual algorithm that has two components: a control decision and an
Queues admission decision. Each decision will be performed byever

Definitions of variables used in this Lyapunov formulatioode in the network at each time step. A node performs a
are given in Table I. For our Lyapunov drift formulation weCOntrol decision to determine whether it is optimal to forava -
assume that the system operates on slot boundaries ofafurafi@ckets up the collection tree. The admission decision is
T seconds. For analytical tractability we assume global syRérformed in order to determine if a local application layer
chronization between the nodes. We will relax this assusnptiPacket should be admitted to the forwarding queue. For ease
when we describe our protocol implementation. As mention& €xPosition, we refer the reader to Appendix A for detafls o
in summary earlier, the strength of our technique lies € Lyapunov drift analysis. We will now proceed to explain
decoupling the physical channel capacity region from t#@e control and at_dr_nlssmn decisions in fu_rt_her detail. .
transmission rate decision& ((t)s). We can therefore abstract 1) Control Decision : The control decision for a node
the channel capacity of our Lyapunov optimization as fofiowWith & parentt is the following:
we assume that all nodes can transmit smgltgneously wtithou [Ui(t) ) - Z:0)] >0 )
interference, and support only two transmission valuesa In
given slott, eachX;(t) is set to one of0, Binax }, With Binas  If condition (9) is true, maximizeX; (¢) by setting it toB,,qz.

a constant parameter in the deployment, likely set to a valpg mentioned earlier, the detailed derivation of the cdadit
marginally greater than the maximum receiver bandwidth Qf'esented in equation (9) are presented in Appendix A. A
any node in the network. This way, nodes toggle between fBde transmits data to the parent if and only if the diffeisént
and off modes of operation independently, with no concern fgackiog between the node and its parent exceeds the sum of
neighboring node’s activities. We rely on the receiver cétga virtual queues within the local node’s neighborhood.

model constraints to enforce stability over the CSMA channe 2) Admission Decision: The local admission decision for

Using the Lyapunov drift approach, we first convert eacf nodei is based on selecting;(t) so as to maximize the
of the constraints in the probleid1 to a virtual queue. Since following:
a constraint is associated with each nadgince every node

in the network is a receiver), we associate a virtual qugue Vopt Sg(Ri(t)) — Ui(t) - Ry(t) (10)
with each node. 2

The queuing dynamics for each of the virtual quedg&) The derivation of this admission decision has also been pre-
is given as follows: sented in Appendix A. Nodeé then selects a volume of local

admissions in timeslot equal toR;(¢) such that expression
(10) is maximized.

Note thatV,,;, the tuning parameter that determines how
Each time slot, the queue is first serviced (perhaps emptiedpsely we achieve optimal utility, appears only in the agimi
then arrivals are received. Eagh queue therefore receives thesion decisions. A%,,; grows, so does the acceptable backlog

sum of transmissions within the neighborhood of nédinen for which admissions are allowablé&((t)).

is serviced by an amount equal to the receiver capacity ofAn intuition for this behavior ofV/,,; can be obtained by
nodei. Therefore, for every timeslot in which neighborhoodiooking at the feasible solutions of the optimization pehl
transmissions outstrip the receiver capacity of the naddig, tP1. In the optimal solution ofP1, all the constraints ifP1
virtual queue will grow. In timeslot tZ;(¢) thus represents need to be tight. This implies that the system needs to be
the transmission volume by which the receiver capacity hasthe boundary of the capacity region, which further inmgplie
been exceeded sincg (¢) last emptied. Every node also haghat system will be unstable (queue sizes will be unbounded)
a physical forwarding queug;. If we want to keep the system stable, we need to keep the

Zi(t+1) = max([Z;(t) — B;, 0]+ > X;(t)  (7)
JED;



Symbol  Description
U;(t) The queue backlog for node i at time slot t
Z;(t)  Virtual queue backlog for node i's collision domain at timetsio
X;(t) The attempted transmissions up the tree by node i in time slot t
Xi(t) The actual transmission rate up the tree by node i in time slot t
R;(t) The admitted exogenous arrivals to node i in time slot t
B;  The receiver capacity of node i
D; The collision domain of node i, includes neighbors and node i
C; The set of one-hop children for which i is the forwarding agen
Zi(t)  The sum of all virtual queues within i’s collision domain im slot t
Zi(t) = ZV]’ sti€Dj Zj(t)
Ve The virtual queue multiplier, scales virtual queues for congpa with
forwarding queue backlogs

TABLE |
VARIABLES USED IN THE LYAPUNOV FORMULATION.

| areicatcy | forwarding engine, on a per slot basis. In addition to rate
3 estimation, the rate controller block updates the locaiusir

| Rate Controller | | Flow Controller | gueue using equation ( 7). This requires knowledge of the
1 local node’s receiver capacity, its current transmissiate r

and the transmission rate of all its neighbors who are active

in its broadcast domain. The rate controller establishgs it

| Routing Engine Forwarding Engine |

I I receiver capacity by setting it to the saturation throughpu
corresponding to the number of neighbors within its broatica

| Communication Stack | domain [14]. In this paper, we have hard-coded the receiver

capacities to 70 packets per second, a safe lower bound to

the optimal capacity. Techniques could be implemented that

would improve system performance by estimating the number

of active neighborhood transmitters in each time slot. V¢ fe

constraints loose. This requires that the system to actaevéhat for our basic proof of concept, such techniques lieidats
suboptimal solution with respect to the objective funcfibat the scope of this paper. o _
ensures Stabmty Thugy/opt tunes how C|Ose|y the a|g0rithm The flow controller block Implements the admission deci-

Operates to the boundary of the Capacity region_ sions. Though the LyapunOV analysis of Section IV makes
no assumptions on the form of the utility function other than

convexity, in order to simplify admission rate computation
we limited our laboratory testing to linear utility functis.
A. Hardware / Software Implementation Details By assuming linea7(R;(t)) we can simplify our admission

Our target platform was the Tmote sky class of device9ecisions. Ley(R;(t)) = u;- R;(t). Note that this reduces our
As mentioned earlier, our receiver capacity model has begfimission decision components of the Lyapunov drift bound
validated empirically for these devices [14]. Tiny OS is th# the following:
open source operating system that runs on the Tmote sky and v
hence our software architecture was designed specifically t —R;(t) - [;pt Cu; — UZ} (11)
work with the TinyOS infrastructure.

Figure 2 presents the software architecture of our implemen Under linear utility functions, the admission rate; ()
tation. Because the objective was to perform distributed rPecomes inconsequential, allowing for the following sienpl
control over a static tree, we use the routing engine pravidedmission criterion: for nodg if [% SUp — Ui(t)} > 0 then
by the collection tree protocol in TinyOS-2.0.2 [1]. Thetiog admit the application-layer send request.
engine helps build a tree rooted at a specific node, actinigeast The forwarding engine maintains the forwarding FIFO
sink. The rate controller block implements the control dieei  queue. This queue receives packets both from local admissio
given by condition (9). Though our analysis, presented #nd from children in the tree structure. The communication
Section IV, assumes that all events occur on slotted tirséack consists of the default TinyOS CSMA stack for the
boundaries, this is not the case for a real CSMA based MAC(C2420 radios which is the 802.15.4 radio present on the
Hence the rate controller implements a timer that fires evefynote sky platforms. Note that in order to carry out the aointr
T seconds. The control decision are thus made at the enddetision based on condition ( 9), knowledge is needed of
T seconds. It's essential to note that these timers are localthe number of transmissions{{(¢)) and virtual queue sizes
a node, making the decisions asynchronous. (Z(t)) of all neighbors during the prior time slot. Therefore,

The rate controller block also estimates the node’s curremtce every time slot, each node attaches their transmissien
transmission rate by maintaining an exponential weighteshd virtual queue size to the next transmitted MAC header
moving average of the number of packets transmitted by thad broadcasts the data packet instead of unicasting i6. Thi

Fig. 2. Software architecture for the distributed rate oginising Lyapunov
drifts on TinyOS 2.0.2

V. SYSTEMSIMPLEMENTATION



allows all neighboring nodes to overhear this informatiod a [es, e4, €5, €2,€1] = [%,2, 1.25,1,0]. Therefore, per unit of
retrieve it from the headers. As mentioned in Section IV-Adata transmitted, node 4 provides the highest systemyutilit
control decisions are carried out independently, withaterr and should receive the entire system achievable rate &thoca
communication between nodes. Our implementation thezefor In Figure 3 we depict convergence towards optimality.
allocates transmission tokens to the forwarding Enginenin &igure 3(a) depicts sub-optimal operation in the startugsph
all-or-none manner. Each node based on its control decisi@mesult of sub-optimal virtual queue sizes. In this phaséfjc
will either allocateB,,,,, or zeros forwarding tokens for thesources at nodes 4, 3 and 2 are able to forward data to the sink.
next time slot. This is where the virtual queues becomecatiti In Figure 3(b), the virtual queues grow, creating back-gues
as they ensure that our time average receiver bandwidth cerich obstructs node 2’s local admissions. In this phase, th
straints are not violated, even while individual nodesmfie back-pressure caused by neighborhood virtual queuesllis sti
to transmit at maximum rate during their active time slots. insufficient to halt local admissions by node 3. Therefore,
traffic continues to flow from sources at nodes 4 and 3. Fipally
B. Virtual Queue Multipliers in Figure 3(c), the virtual queues grow to their equilibrium
levels. At this point, the per-hop back-pressure is sufficie
X . . i . § halt localized admissions by both of nodes 2 and 3. Only
suppll_ed forZ;(t + 1)_|n equat!on_ ) _ﬂrst service th? QUL 46 4 has a sufficient forwarding queue backlog necessary to
then incorporate arrivals. This implies that Even In an €xyercome the back-pressure. We describe the three phases in
tremely stable system, where the queue empties every Dmeyreater detail below.

E”O|r<| to arrlvziﬂtS, tt:etVIrtual_ queue W'"thI% a_t(rz]qnt:EUOU Recall from equation (11) that if the queue backlog is
acklog equal to the transmissions overhéard within the€€nog . o than‘%ui,we reject the application layer admission

I's neighborhood. Even in relatively small neighborhodﬁ@ equest. This implies that local admissions will halt abpre-
could be large enough to overwhelm our real queues in t &termined queue backlog thresholds, equall‘j@" ;). For

cont;tf)lbd(;us!ons dr']Ctated bytcond|t|'on.(9). Th?. reS;z;ng the current topology, queue thresholds [k, Uy, Us, Us] are
on-off behavior, where any transmissions in timesgletou therefore[30, 60, 25, 10].

r_esult in large virtual queues and _silencing of transmmsiitm_ Figure 3(a) depicts the early startup phase. In this phase

timeslot ¢ +.1' -only to have .the- virtual queues the"? emptleﬂm virtual queues are small because the nodes have only

gnﬁ t\;?r;simlslsmﬂs i”?}wedﬂr'r? tl'misdmitk 1-nThrlt?f osécn:(atoryi recently been in violation of the time average receiver ciypa
ehavior 1S clearly non-optimal, and 1S an artitact ot MLl .. raint. Because the virtual gueues are small, cond(td)

too much relative weight on the virtual queues, represgntnaictates that in order for nodes to transmit, the forwarding

tlmTehaverage :\rlevcelvelr <t:_apaC|tty \t/r'](.)lat'onbl one is 1o | gueues need not exceed the local admission thresholdseAs th
erethare | 0 O;? u |(?rnhs_ 3_ Ifl plro den:. | ne 15 10 1N 4mission threshold is not being exceeded, we will seedraffi

crease the value ofo,e. This directly leads 10 farger qUeUCq, ., ¢4 rces at nodes 3 and 2 entering the system. This is a

backlogs, and therefore mitigates the effects of (relbtjve suboptimal behavior

smal!erthual queues, allowing for greater system thmg. Figure 3(b) depicts the system as it moves towards equi-

In wireless sensor networks, however, queue capacities A

Uite limited. Storing more than fifty packets can become?ium' As transmission rates continue to violate receive
q ' 9 . yp .~~~ .capacity, the virtual queues grow. This backpressure sause
a challenge. We therefore introduce a second optimizati

parameter, the virtual queue multiplidf The control i forwarding queues to sequentially grow above theirlloca
decision 0} condition (9) then becomeS'mult. admission thresholds. In this figure, for example, the value

of Z}(t) has grown to 12. A forwarding queue backlog of
X;(t) - [Ui(t) — Up(t) = Vit - Z(t) (12) at Ieast_12 pa(_:kets is therefore require_d i_n order to transmi
to the sink. This exceeds node 2's admission threshold of 10
. packets. Therefore all future local admission request kgl
C. An lllustrative Example rejected by node 2.

We now provide a simple illustrative example to give some Finally, Figure 3(c) depicts the system at equilibrium. ¢er
intuition on the admission and forwarding control decisiona special condition holds. The sum &f(¢) between node 4
Consider a five node linear forwarding topology as in topglogand the sink is exactly equal to node 4's admission threshold
1 of Figure 4. All nodes are considered to be traffic source$ 60 packets. No other node in the network is allowed to
(omitting the sink, node 1). All nodes are assumed to be withadmit local traffic, as the virtual queues have grown toodarg
range of one another, implying that interference links texifor any non-optimal source.
between all nodes. Assume a lingdi?;(¢)) = u; - R;(t). Let

Note that the discrete time queueing dynamics we h

[us, ua, uz, uz, wa] = 13,6,2.5,1,0], Vopr = 20, Vinure = 1, V1. EXPERIMENTAL EVALUATION
and B,,.. = 1. For this example, we assume that we have )
infinite sink-destined data at each of the sources. A. BExperimental Setup

With the linear topology and linear utilities defined here, In order to verify proper operation of our proposed al-
one can quickly determine the optimal rate allocation sehengorithm, we performed experiments using the Tmote sky
Node 5 provides three utility while requiring four transmisclass devices running TinyOS-2.0.2. We considered threte te
sions per unit of data that reaches the sink. This gives it apenarios. Two five node topologies were selected, as high-
efficiency of%. Repeating this computation yields efficienciefighted in Figure 4. Table Il indicates the utility paranrste



(a) Early Startup (b) Virtual Queues
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Fig. 3. An illustrative example of algorithm convergence pimal admission and transmission policies on a linear, fullgrected network with linear utility
functionsg(R;(t)). From startup, the system progresses from (a) to (b), theto ¢o) in equilibrium.

Fig. 4. Two test topologies utilized in experimentation.

and topology for each of the four test scenarios. Table Il
documents the parameters common to all scenarios.
These configurations were loaded onto five Tmote s
devices. In experimentation, each scenario was allowed
run for 25 minutes. Each node recorded the forwarding al
virtual queue backlogs, while the root node recorded gotsdpu
received from nodes in the system. In all tests, the netwo
were fully connected. We would like to extend the te

environment to a larger system in future work.

Using the receiver capacity model, as shown in Section Il
based on the utilizes and topologies we can pre-compute
optimal rate allocation for each of the scenarios. Optineat p

Scenario | us | us | us | uz | Topology | Rcv Cap

Topology 1 0 2 5 11 1 70

1 2 4 3 1 1 70

ns n4d | n3 = N2 = n1 2 51 1 |11 2 70

TABLE I
UTILITIES AND TOPOLOGIES FOR EACH OF THE THREE TEST SCENARIOS
Topology 2 n2

n4 \ ni Parameter Value
\ / Beacon Interval 300 milliseconds
n3 Token Allocation 25 per Active Timeslot

Vopt 20

/ Virtual Queue Multiplier 0.01

nd Per-node Receiver Capacity 70

TABLE Il

COMMON PARAMETERS FOR ALL TEST SCENARIOS

node transmission rates for all scenarios are given in Table
V.

B. Experimental Results

experiments are plotted in Figures 5, 6 and 7. Time average

1) Optimality Gap: Comparison with the optimal solutions
corded in Table IV indicates that there is a consistent
ap between achieved experimental results and LP optimal
N@nsmission rates.
Two possible explanations for this gap are as follows. First
re is some overhead required in our system implementatio
s the root node never generates or forwards traffic, there
would be no opportunity to broadcast virtual queue backlogs
\{\le therefore require a broadcast packet be sent by the root
e every second. This packet is then accounted for by the
system and cuts into the receiver capacities of all noddsmwit

Scenario | node5 PPS| node4 PPS| node3 PPS| node2 PPS
0 0 23.3 0 0
1 0 0 35 0
2 35 0 0 0

TABLE IV

For each of the scenarios, the results of the four 25-miNUte o mAL PACKET RATE ALLOCATIONS SUBJECT TO RECEIVER

goodputs have been recorded in Table V.

BANDWIDTH CONSTRAINTS FOR SCENARIOS) THROUGH 2.
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Fig. 5. Plots of results for scenario 0.
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Fig. 6. Plots of results for scenario 1.

40 nodes

20

Time Average Goodput
Local Forwarding Queue Backlog

0 200 400 600 800 1000 1200 1400

Time (secs)

Scaled Virtual Queue Size

nodel ——
node2 1
node3 e
noded
nodes

nodel perceived sum

4y IPENPIIINY

0 200 400 600 800 1000
Time (secs)

(b) Local forwarding queue sizes.

1200 1400

1000 1200 1400

0 200 400 600 800
Time (secs)

(c) Local virtual queue backlogs.

nodel
node2
60 F node3 e
noded
node3

Scaled Virtual Queue Size

nodes
nodel perceived sum

Y ROPPIANIIAL v i o

By

0 200 400 600 800 1000
Time (secs)

1200 1400

(b) Local forwarding queue sizes.

0 200 400 600 800 1000 1200 1400

Time (secs)

(c) Local virtual queue backlogs.

nodel
node2
60| node3
noded
nodes

Scaled Virtual Queue Size

nodel perceived sum

St s ORI !
RS v gt

0
0 200 400 600 800 1000
Time (secs)

1200 1400

0 200 400 600 800 1000 1200
Time (secs)

1400

(a) Average goodput rates received at the sink. (b) Local forwarding queue sizes. (c) Local virtual queue backlogs.

Fig. 7. Plots of results for scenario 2.

the roots neighborhood. In our test environment, all nodés,; = 20, node 3 therefore admits packets up to a forwarding
overhear the root, so all nodes incur costs within theimuairt queue size of 30 packets. At equilibrium, as node 3 is two hops
gueues as a result of this mandatory broadcast. Additignalirom the sink, this leads to a scaled neighborhood virtuabgu
consider that leaf nodes often are not optimal, and that siodmcklog for node 3 equals 15, which is evident in Figure 6(c).
sitting behind the optimal traffic generator are very unlike Since the forwarding queue backlog at node 2 is no more then
ever forward or generate packets once equilibrium is rehch&5 and given our rather large per timeslot token allocations
The effect of this, however, is that their broadcast updatedative to these queue sizes, occasionally the queue & 2od
containting real and virtual queue backlogs will halt, teeg empties below 10. This is the admission threshold for node
in stale system state information. We therefore also requ2 and hence when forwarding queue size goes below this
that all nodes not admitting or forwarding any traffic mudt st threshold, source traffic from node 2 is admitted. This l¢ads
generate a minimum of one packet per second. The optimalibe suboptimal behavior observed in Figure 6(a). To make the
gap is therefore variable and depends upon the numberrafe allocation closer to optimal, we would need to enlarge
inactive nodes. our value of V,,; such that the differential in forwarding
Second, there is a true optimality gap between LP optimalieues between node 2 and node 3 would be sufficiently
and Lyapunov formulations and it is a function ©f,; and large. Increasing/,,; was not an option in our setup, as the
Vinuit [4]. The derivation of this bound is part of our futurequeues had already reached maximum sustainable values on
work. This suboptimal behavior is clearly visible in scéaar our Tmote Sky device ( 50 packets).
1. Note that in Figure 6(a) node 2 receives 4.28 packets2) Virtual Queue Behavior: From a theoretical standpoint,
per second, though node 2 is not in the optimal solutiom a fully connected topology, all local virtual queues sldou
The optimal source node for this scenario is node 3 withave identical backlogs. However, in our experiments, note
uz = 3. Based on the control decision in equation(11), with that all local virtual queues exhibit slow drifts away frohetr



gce”ar'o ”Odiipps nodlegsPPS nOde?OPPS nOdi_ZSPPS adapt to network dynamics. To our knowledge, there are no

1 11 08 6.5 73 existing cross layer rate control protocols, involving dgmic

2 30.0 11 0.7 12 routing, that perform utility optimization over a wirelessnsor
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a wireless sensor network setting. We have formulated tgg]
collection tree rate control problem as a constrained conv
optimization using the receiver capacity model [13] for a
CSMA based wireless sensor network . As a solution, wé
propose a back pressure algorithm designed using a Lygy
punov drift based optimization framework. The back pressur
algorithm provides near optimal utility while maintainingl |
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experimental evaluation over a 5 node testbed, we obseate th Vg;;‘ij*’éf;f n;gégr?emorkgnformanon Theory Applications Worlkshop.
the empirical behavior matches our analysis. This valglate [13] A. Sridharan and B. Krishnamachari. Maximizing networtkization
claims. with max-min fairness in wireless sensor networkth Intl. Sympo-

In this work we have not characterized the effect¥gj, on i;@;ﬂs'\?\?\?gmg and Opfimizetion In Motile, Ad Hoc, and Wireless

pt), 2007.
queue sizes and optimality. We plan on presenting theaieti¢l4] A. Sridharan and B. Krishnamachari. Maximizing networtiization
bounds on the time average queue back logs, and bounds on \év(i)tQSmax—min fairness in wireless sensor networkdreless Networks,

achievable system utility. These bounds are dependenteon ) a.L. Stolyar. Maximizing Queueing Network Utility Subjt to Stability:
parameterV,,;. Theoretically, larger values df,,; result in Greedy Primal-Dual Algorithm. Queueing Systems, 50(4):401-457,

utility that approaches thlma“ty' This comes at the cdst ilB] ﬁ.oqél.ssiulas. Dynamic link activation scheduling in nitudip radio
larger queue sizes leading to larger end-to-end packeyslel networks with fixed or changing topology. 1991.
It would therefore be worthwhile investigating the tradé, of[17] L. Tassiulas and A. Ephremides. Stability propertiescofistrained
in terms of queue sizes and optimality, with smaller valukes o ﬂ]“uelt‘i‘ﬁ(')’égrzzisge:;fwi?gsSDcehC?;.jgr']'”a%%c"c'%'r?tfof?rlgggf";‘;{’)Teetgirn‘gégg"fp
Vopt.- the 29th |EEE Conference on, pages 2130-2132, 1990.
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examples where, using the Lyapunov drift framework, back
pressure algorithms can be designed that present a node in th APPENDIXA
network with not only control and admission decisions, but LYAPUNOV OPTIMIZATION
also routing decisions [8]. The primary advantage of such anRefer to Table | for definitions of variables used in the
algorithm is that it might result in higher throughput anduleb following work. Let the discrete time queueing equations fo



forwarding queuesl(;(¢)) and virtual queuesA;(t)) be those Where

defined by update equations (8) and (7) respectively. Weedefln

the Lyapunov function as follows:

LU, Z(t) =Y U + > ZX(1)

Let the Lyapunov drift be represented By (t), Z(t)).

BIL(T(t + 1), Z(¢ + 1)
L), Z0)|0 (1), Z()

The Lyapunov drift can be computed as follows.

AU(1), Z(t)) =

= L Ki+XG;
X;(8) 12:(t)}

=2-> 0 | ZiE{B: — )

JjE€D;

Ri(1)|Ua(t)}

~2- 3 |Ui(t) - B ~ X X0 -

JEC;

Prior work in the field of Lyapunov optimization( [6], [8])
has shown that minimizing Lyapunov drift provides guaradte
stability over system inputs lying within the capacity @ui

Squaring the forwarding queue discrete time queueing eqdedditionally, any algorithm which minimizes the Lyapunov

tion yields the following:

Ut+t) Ut <
—2-Ph@%{xxﬂ—gzjxa@y—Rxwﬂ
JjeC;
2
HXOP + | X X500+ Rit)
JjE€C;

(13)

bound of (15) has been proven to result in system queues that
are at worst a constant multiple of the optimal.

As was demonstrated in [6], we can now incorporate a utility
function into the drift bound. LeY (¢) = > G;(R;(t)) be the

system utility, as defined in thg proQIem formulation of St
[ll. We subtractV,,, - E{Y (¢)|U(¢), Z(t)} from both sides of
(15), yielding:

A() = Vop - EY (OIU (1), Z(t)} < 6 (16)

Note that in typical systems, there exists a bound to the
maximum valuesX;(¢) and R;(t) can take on. Our problem \ynere

formulation in Section Ill limitedX;(¢) to at mostB, 4. Let
the bound on admissions per timeslot Bg** for node .
We'll define constanty; as follows:

2
G, = [Bmax]2 + {Zjecn Bpaz + R;_nam}
2

> (X + | 2 X;(t) + Rilt)

JEC;

=23 | Zi(HE{B; - 462[:)‘Xj(t) 1Z;(t)}
=23 |Ui(t) - B{X:(t) — gé X;(t) — Ri()|Ui(t)}

Vot - EXY (1)U (1), Z(t)}

Similar manipulation can be carried out for the virtual |n order to minimize the right hand side of (16) in ex-

queues.
Zit+1t) —Z2(t) <
9. [Zi(t) RUEDY Xj(t)}l
+Bi+ | 2 Xj(t)l
JjED;

Define constanf(; in a manner similar ta;:

Ki E Bmaz (t>‘|

JED;

2 X (t)]

> B} +
JED;

pectation, it is sufficient to ensure we minimize the right
hand side for every system stafé(¢),Z(t)). We can neglect
constant terms involvind(; andG;. The remaining terms can
be separated into coefficients multiplying;(t) and R;(t).
The goal of our algorithm is then to minimize these terms
through intelligent selection of per-timeslot decisiomighles
X;(t) and R;(t). As was the case in prior Lyapunov drift
work, the resulting algorithm can be broken into two pieces:
a transmission control decision and an admission control
decision. The control and admission decision are the same as
the condition (9) and expression (10) presented in secton |
1) Control Decision : Consider node i with parent node
k. The coefficient associated with transmission variab)ét)
is:

— [Uitt) = Zitt) - U(t)] (17)

Substitution ofz; and K; into equations (13) and (14), then  Therefore, if transmission rates;(t) and X;(t) are inde-
summing over all nodes, and finally taking the expectationpendentvi, j, then in order to minimize the right hand side of

with respect to ;(¢),
drift bound:

AU @), Z(1t) <T

Z;(t)), yields the following Lyapunov (16) we maximizeX;(t) Vi such that (17) is negative. A node

therefore transmits data to the parent whenever the diffiale
backlog between the node and its parent exceeds the sum of

(15) virtual queues within the local node’s neighborhood.



2) Admission Decision: Consider node i. The coefficient

associated with admission variahlg(¢) is:
Vo
= |57 9(Rilt) = Ui Rit) (18)

Therefore, in order to minimize the right hand side of (16) we
maximize R;(t) Vi such that (18) is negative. This equates to
a simple admission control scheme. If the forwarding queue
size scaled by admission rate exceevéﬁ times the utility
for all admission rates, then the admission request is tegjlec
Otherwise, a rate is chosen which maximizgég; (t))—R;(¢).
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