
Fast Data Collection in Tree-Based
Wireless Sensor Networks

Özlem Durmaz Incel, Amitabha Ghosh, Bhaskar Krishnamachari, and Krishnakant Chintalapudi

Abstract—We investigate the following fundamental question—how fast can information be collected from a wireless sensor network

organized as tree? To address this, we explore and evaluate a number of different techniques using realistic simulation models under

the many-to-one communication paradigm known as convergecast. We first consider time scheduling on a single frequency channel

with the aim of minimizing the number of time slots required (schedule length) to complete a convergecast. Next, we combine

scheduling with transmission power control to mitigate the effects of interference, and show that while power control helps in reducing

the schedule length under a single frequency, scheduling transmissions using multiple frequencies is more efficient. We give lower

bounds on the schedule length when interference is completely eliminated, and propose algorithms that achieve these bounds. We

also evaluate the performance of various channel assignment methods and find empirically that for moderate size networks of about

100 nodes, the use of multifrequency scheduling can suffice to eliminate most of the interference. Then, the data collection rate no

longer remains limited by interference but by the topology of the routing tree. To this end, we construct degree-constrained spanning

trees and capacitated minimal spanning trees, and show significant improvement in scheduling performance over different deployment

densities. Lastly, we evaluate the impact of different interference and channel models on the schedule length.

Index Terms—Convergecast, TDMA scheduling, multiple channels, power control, routing trees.

Ç

1 INTRODUCTION

CONVERGECAST, namely, the collection of data from a set of
sensors toward a common sink over a tree-based

routing topology, is a fundamental operation in wireless
sensor networks (WSNs) [1]. In many applications, it is
crucial to provide a guarantee on the delivery time as well as
increase the rate of such data collection. For instance, in
safety and mission-critical applications where sensor nodes
are deployed to detect oil/gas leak or structural damage, the
actuators and controllers need to receive data from all the
sensors within a specific deadline [2], failure of which might
lead to unpredictable and catastrophic events. This falls
under the category of one-shot data collection. On the other
hand, applications such as permafrost monitoring [3] require
periodic and fast data delivery over long periods of time,
which falls under the category of continuous data collection.

In this paper, we consider such applications and focus on
the following fundamental question: “How fast can data be
streamed from a set of sensors to a sink over a tree-based topology?”
We study two types of data collection: 1) aggregated
convergecast where packets are aggregated at each hop, and

2) raw-data convergecast where packets are individually
relayed toward the sink. Aggregated convergecast is applic-
able when a strong spatial correlation exists in the data, or
the goal is to collect summarized information such as the
maximum sensor reading. Raw-data convergecast, on the
other hand, is applicable when every sensor reading is
equally important, or the correlation is minimal. We study
aggregated convergecast in the context of continuous data
collection, and raw-data convergecast for one-shot data
collection. These two types correspond to two extreme cases
of data collection. In an earlier work [4], the problem of
applying different aggregation factors, i.e., data compression
factors, was studied, and the latency of data collection was
shown to be within the performance bounds of the two
extreme cases of no data compression (raw-data converge-
cast) and full data compression (aggregated convergecast).

For periodic traffic, it is well known that contention-free
medium access control (MAC) protocols such as Time
Division Multiple Access (TDMA) are better fit for fast data
collection, since they can eliminate collisions and retrans-
missions and provide guarantee on the completion time as
opposed to contention-based protocols [1]. However, the
problem of constructing conflict-free (interference-free)
TDMA schedules even under the simple graph-based
interference model has been proved to be NP-complete. In
this work, we consider a TDMA framework and design
polynomial-time heuristics to minimize the schedule length
for both types of convergecast. We also find lower bounds
on the achievable schedule lengths and compare the
performance of our heuristics with these bounds.

We start by identifying the primary limiting factors of
fast data collection, which are: 1) interference in the wireless
medium, 2) half-duplex transceivers on the sensor nodes, and
3) topology of the network. Then, we explore a number of
different techniques that provide a hierarchy of successive

86 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

. Ö.D. Incel is with the Department of Computer Engineering, Bogazici
University, Istanbul 34342, Turkey.
E-mail: ozlem.durmaz@tam.boun.edu.tr.

. A. Ghosh is with the Department of Electrical Engineering, Princeton
University, F-310, Engineering Quad, Olden Street, Princeton, NJ 08544.
E-mail: amitabhg@princeton.edu.

. B. Krishnamachari is with the Ming Hsieh Department of Electrical
Engineering, University of Southern California, 3740 McClintock Avenue,
EEB 300, Los Angeles, CA 90089. E-mail: bkrishna@usc.edu.

. K. Chintalapudi is with Microsoft Research, Bengaluru, India.
E-mail: krchinta@microsoft.com.

Manuscript received 5 Nov. 2009; revised 14 Oct. 2010; accepted 15 Dec.
2010; published online 2 Feb. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2009-11-0482.
Digital Object Identifier no. 10.1109/TMC.2011.22.

1536-1233/12/$31.00 � 2012 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

improvements, the simplest among which is an interfer-
ence-aware, minimum-length TDMA scheduling that en-
ables spatial reuse. To achieve further improvement, we
combine transmission power control with scheduling, and
use multiple frequency channels to enable more concurrent
transmissions. We show that once multiple frequencies are
employed along with spatial-reuse TDMA, the data collec-
tion rate often no longer remains limited by interference but
by the topology of the network. Thus, in the final step, we
construct network topologies with specific properties that
help in further enhancing the rate. Our primary conclusion
is that combining these different techniques can provide an
order of magnitude improvement for aggregated converge-
cast, and a factor of 2 improvement for raw-data con-
vergecast, compared to single-channel TDMA scheduling
on minimum-hop routing trees.

Although the techniques of transmission power control
and multichannel scheduling have been well studied for
eliminating interference in general wireless networks, their
performances for bounding the completion of data collec-
tion in WSNs have not been explored in detail in the
previous studies. The fundamental novelty of our approach
lies in the extensive exploration of the efficiency of
transmission power control and multichannel communica-
tion on achieving fast convergecast operations in WSNs.
Besides, we evaluate the impact of routing trees on fast data
collection and to the best of our knowledge, this has not
been the topic of previous studies. As we will discuss in
Section 2, some of the existing work had the objective of
minimizing the completion time of convergecasts. How-
ever, none of the previous work discussed the effect of
multichannel scheduling together with the comparisons
of different channel assignment techniques and the impact
of routing trees and none considered the problems of
aggregated and raw convergecast, which represent two
extreme cases of data collection, together.

As the new concepts in this paper, we introduce
polynomial-time heuristics for TDMA scheduling for both
types of data collection, i.e., Algorithms 1 and 2, and prove
that they do achieve the lower bound of data collection time
once interference is eliminated. Besides, we elaborate on the
performance of our previous work, a receiver-based
channel assignment (RBCA) method, and compare its
efficiency with other channel assignment methods and
introduce heuristics for constructing optimal routing trees
to further enhance data collection rate. The following lists
our key findings and contributions:

. Bounds on convergecast scheduling. We show that
if all interfering links are eliminated, the schedule
length for aggregated convergecast is lower
bounded by the maximum node degree in the
routing tree, and for raw-data convergecast by
maxð2nk � 1; NÞ, where nk is the maximum number
of nodes on any branch in the tree, and N is the
number of source nodes. We then introduce optimal
time slot assignment schemes under this scenario
which achieve these lower bounds.

. Evaluation of power control under realistic setting.
It was shown recently [5] that under the idealized
setting of unlimited power and continuous range,
transmission power control can provide an un-
bounded improvement in the asymptotic capacity

of aggregated convergecast. In this work, we
evaluate the behavior of an optimal power control
algorithm [6] under realistic settings considering the
limited discrete power levels available in today’s
radios. We find that for moderate size networks of
100 nodes, power control can reduce the schedule
length by 15-20 percent.

. Evaluation of channel assignment methods. Using
extensive simulations, we show that scheduling
transmissions on different frequency channels is
more effective in mitigating interference as com-
pared to transmission power control. We evaluate
the performance of three different channel assign-
ment methods: 1) Joint Frequency Time Slot Scheduling
(JFTSS), 2) Receiver-Based Channel Assignment [7], and
3) Tree-Based Multichannel Protocol (TMCP) [8]. These
methods consider the channel assignment problem
at different levels: the link level, node level, or
cluster level. We show that for aggregated conver-
gecast, TMCP performs better than JFTSS and RBCA
on minimum-hop routing trees, while performs
worse on degree-constrained trees. For raw-data
convergecast, RBCA and JFTSS perform better than
TMCP, since the latter suffers from interference
inside the branches due to concurrent transmissions
on the same channel.

. Impact of routing trees. We investigate the effect of
network topology on the schedule length, and show
that for aggregated convergecast, the performance
can be improved by up to 10 times on degree-
constrained trees using multiple frequencies as
compared to that on minimum-hop trees using a
single frequency. For raw-data convergecast, multi-
channel scheduling on capacitated minimal span-
ning trees (CMSTs) can reduce the schedule length
by 50 percent.

. Impact of channel models and interference. Under
the setting of multiple frequencies, one simplifying
assumption often made is that the frequencies are
orthogonal to each other. We evaluate this assump-
tion and show that the schedules generated may
not always eliminate interference, thus causing
considerable packet losses. We also evaluate and
compare the two most commonly used interference
models: 1) the graph-based protocol model, and
2) the Signal-to-Interference-plus-Noise Ratio
(SINR)-based physical model.

The rest of the paper is organized as follows: in Section 2,
we discuss related works. In Section 3, we describe the
problem formulation and state our assumptions. In Section
4, we analyze the lower bounds on the schedule length for
aggregated and raw convergecast, and propose algorithms
that achieve the corresponding bounds. In Section 5, we
focus on power control and multichannel scheduling as
mechanisms to eliminate interference. Section 6 explains the
impact of routing topologies, and Section 7 presents
detailed evaluation results. Finally, we draw our conclu-
sions in Section 8.

2 RELATED WORK

Fast data collection with the goal to minimize the schedule
length for aggregated convergecast has been studied by us

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 87

in [7] and [9], and also by others in [5], [10], and [11]. In [7],
we experimentally investigated the impact of transmission
power control and multiple frequency channels on the
schedule length, while the theoretical aspects were dis-
cussed in [9], where we proposed constant factor and
logarithmic approximation algorithms on geometric net-
works (disk graphs). Raw-data convergecast has been
studied in [1], [12], [13], and [14], where a distributed time
slot assignment scheme is proposed by Gandham et al. [1]
to minimize the TDMA schedule length for a single channel.
The problem of joint scheduling and transmission power
control is studied by Moscibroda [5] for constant and
uniform traffic demands. Our present work is different
from the above in that we evaluate transmission power
control under realistic settings and compute lower bounds
on the schedule length for tree networks with algorithms to
achieve these bounds. We also compare the efficiency of
different channel assignment methods and interference
models, and propose schemes for constructing specific
routing tree topologies that enhance the data collection rate
for both aggregated and raw-data convergecast.

The use of orthogonal codes to eliminate interference has
been studied by Annamalai et al. [10], where nodes are
assigned time slots from the bottom of the tree to the top such
that a parent node does not transmit before it receives all the
packets from its children. This problem and the one
addressed by Chen et al. [11] are for one-shot raw-data
convergecast. In this work, since we construct degree-
constrained routing topologies to enhance the data collection
rate, it may not always lead to schedules that have low
latency, because the number of hops in a tree goes up as its
degree goes down. Therefore, if minimizing latency is also a
requirement, then further optimization, such as constructing
bounded-degree, bounded-diameter trees, is needed. A
study along this line with the objective to minimize the
maximum latency is presented by Pan and Tseng [15], where
they assign a beacon period to each node in a Zigbee network
during which it can receive data from all its children.

For raw-data convergecast, Song et al. [12] presented a
time-optimal, energy-efficient packet scheduling algorithm
with periodic traffic from all the nodes to the sink. Once
interference is eliminated, their algorithm achieves the
bound that we present here; however, they briefly mention
a 3-coloring channel assignment scheme, and it is not clear
whether the channels are frequencies, codes, or any other
method to eliminate interference. Moreover, they assume a
simple interference model where each node has a circular
transmission range and cumulative interference from
concurrent multiple senders is avoided. Different from
their work, we consider multiple frequencies and evaluate
the performance of three different channel assignment
methods together with evaluating the effects of transmis-
sion power control using realistic interference and channel
models, i.e., physical interference model and overlapping
channels and considering the impact of routing topologies.
Song et al. [12] extended their work and proposed a TDMA-
based MAC protocol for high-data-rate WSNs in [16].
TreeMAC considers the differences in load at different
levels of a routing tree and assigns time slots according to
the depth, i.e., the hop count, of the nodes on the routing
tree, such that nodes closer to the sink are assigned more
slots than their children in order to mitigate congestion.

However, TreeMAC operates on a single channel and
achieves 1=3 of the maximum throughput similar to the
bounds presented by Gandham et al. [1] since the sink can
receive every three time slots.

The problem of minimizing the schedule length for raw-
data convergecast on single channel is shown to be NP-
complete on general graphs by Choi et al. [13]. Maximizing
the throughput of convergecast by finding a shortest-length,
conflict-free schedule is studied by Lai et al. [14], where a
greedy graph coloring strategy assigns time slots to the
senders and prevents interference. They also discussed the
impact of routing trees on the schedule length and proposed a
routing scheme called disjoint strips to transmit data over
different shortest paths. However, since the sink remains as
the bottleneck, sending data over different paths does not
reduce the schedule length. As we will show in this paper, the
improvement due to the routing structure comes from using
capacitated minimal spanning trees for raw-data converge-
cast, where the number of nodes in a subtree is no more than
half the total number of nodes in the remaining subtrees.

The use of multiple frequencies has been studied
extensively in both cellular and ad hoc networks; however,
in the domain of WSN, there exist a few studies that utilize
multiple channels [8], [17], [18]. To this end, we evaluate the
efficiency of three particular schemes that treat the channel
assignment at different levels.

3 MODELING AND PROBLEM FORMULATION

We model the multihop WSN as a graph G ¼ ðV ;EÞ, where
V is the set of nodes, and E ¼ fði; jÞ j i; j 2 V g is the set of
edges representing the wireless links. A designated node
s 2 V denotes the sink. The euclidean distance between two
nodes i and j is denoted by dij. All the nodes except s are
sources, which generate packets and transmit them over a
routing tree to s. We denote the spanning tree on G rooted
at s by T ¼ ðV ;ET Þ, where ET � E represents the tree
edges. Each node is assumed to be equipped with a single
half-duplex transceiver, which prevents it from sending and
receiving packets simultaneously. We consider a TDMA
protocol where time is divided into slots, and consecutive
slots are grouped into equal-sized nonoverlapping frames.

We use two types of interference models for our
evaluation: the graph-based protocol model and the SINR-
based physical model. In the protocol model, we assume
that the interference range of a node is equal to its
transmission range, i.e., two links cannot be scheduled
simultaneously if the receiver of at least one link is within
the range of the transmitter of the other link. In the physical
model, the successful reception of a packet from i to j
depends on the ratio between the received signal strength at
j and the cumulative interference caused by all other
concurrently transmitting nodes and the ambient noise
level. Thus, a packet is received successfully at j if the
signal-to-interference-plus-noise ratio, SINRij, is greater
than a certain threshold �, i.e.,

SINRij ¼
Pi � gijP

k6¼i Pk � gkj þN
; ð1Þ

where Pi is the transmitted signal power at node i, N is the
ambient noise level, and gij is the propagation attenuation

88 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

(link gain) between i and j. We use a simple distance
dependent path-loss model to calculate the link gains as
gij ¼ d��ij , where the path-loss exponent � is a constant
between 2 and 6, whose exact value depends on external
conditions of the medium (humidity, obstacles, etc.), as well
as the sender-receiver distance. We assume that the level of
interference is static and does not change over time. For
simplicity and ease of illustration, we use the protocol
model in all the figures.

We study aggregated convergecast in the context of
periodic data collection where each source node generates a
packet at the beginning of every frame, and raw-data
convegecast for one-shot data collection where each node
has only one packet to send. We assume that the size of each
packet is constant. Our goal is to deliver these packets to the
sink over the routing tree as fast as possible. More
specifically, we aim to schedule the edges ET of T using a
minimum number of time slots while respecting the
following two constraints:

. Adjacency constraint. Two edges ði; jÞ 2 ET and
ðk; lÞ 2 ET cannot be scheduled in the same time
slot if they are adjacent to each other, i.e., if
fi; jg

T
fk; lg 6¼ �. This constraint is due to the half-

duplex transceiver on each node which prevents it
from simultaneous transmission and reception.

. Interfering constraint. The interfering constraint de-
pends on the choice of the interference model. In the
protocol model, two edges ði; jÞ 2 ET and ðk; lÞ 2 ET
cannot be scheduled simultaneously if they are at 2-
hop distance of each other. In the physical model, an
edge ði; jÞ 2 ET cannot be scheduled if the SINR at
receiver j is not greater than the threshold �.

Since we consider data collection to be periodic in
aggregated convergecast, each of the edges in ET is
scheduled only once within each frame, and this schedule
is repeated over multiple frames. Thus, a pipeline is
established after a certain frame, and then onward the sink
continues to receive aggregated packets from all the source
nodes once per frame. We explain further details about the
pipelining in the next section. On the other hand, in one-shot
data collection for raw-data convergecast, the edges in ET
may be scheduled multiple times and no pipelining takes
place. We use the terms link scheduling and node scheduling
interchangeably as they are equivalent in our case. Note that
the two other scenarios, which we do not consider in this
paper due to space constraints, are one-shot aggregated
convergecast and periodic raw-data convergecast.

The key difference in terms of scheduling between
periodic and one-shot data collection is that a node in the
periodic case does not have to wait for data from its children
before being scheduled. This is because a link is scheduled
only once within each frame and each node generates a packet
in the beginning of every frame, so a pipelining is eventually
established. However, in the case of one-shot data collection,
a node needs to wait for data from its children before being
scheduled, which we refer to as the causality constraint.

To summarize the steps in our design, we start with tree
construction and then continue with interference-aware
scheduling. If the nodes can control their transmission
power, scheduling phase is coupled with a transmission
power control algorithm. If the nodes can change their

operating frequency, channel scheduling can be coupled
with time slot scheduling as it is the case with the JFTSS
algorithm (Section 5.2.1) or first channels are assigned and
then time slot scheduling continues as in the case of RBCA
explained in Section 5.2.3. However, the TMCP algorithm
(Section 5.2.2) considers tree construction and channel
assignment jointly and then does the scheduling of time slots.

4 TDMA SCHEDULING OF CONVERGECASTS

In this section, we first focus on periodic aggregated
convergecast and then on one-shot raw-data convergecast.
Our objective is to calculate the minimum achievable
schedule lengths using an interference-aware TDMA pro-
tocol. We first consider the case where the nodes commu-
nicate on the same channel using a constant transmission
power, and then discuss improvements using transmission
power control and multiple frequencies in the next section.

4.1 Periodic Aggregated Convergecast

In this section, we consider the scheduling problem where
packets are aggregated. Data aggregation is a commonly
used technique in WSN that can eliminate redundancy and
minimize the number of transmissions, thus saving energy
and improving network lifetime [19]. Aggregation can be
performed in many ways such as by suppressing duplicate
messages; using data compression and packet merging
techniques; or taking advantage of the correlation in the
sensor readings.

We consider continuous monitoring applications where
perfect aggregation is possible, i.e., each node is capable of
aggregating all the packets received from its children as
well as that generated by itself into a single packet before
transmitting to its parent. The size of aggregated data
transmitted by each node is constant and does not depend
on the size of the raw sensor readings. Typical examples of
such aggregation functions are MIN, MAX, MEDIAN,
COUNT, AVERAGE, etc.

In Figs. 1a and 1b, we illustrate the notion of pipelining
in aggregated convergecast and that of a schedule length on
a network of six source nodes. The solid lines represent tree
edges, and the dotted lines represent interfering links. The
numbers beside the links represent the time slots at which
the links are scheduled to transmit, and the numbers inside
the circles denote node ids. The entries in the table list the
nodes from which packets are received by their correspond-
ing receivers in each time slot. We note that at the end of
frame 1, the sink does not have packets from nodes 5 and 6;
however, as the schedule is repeated, it receives aggregated
packets from 2, 5, and 6 in slot 2 of the next frame. Similarly,
the sink also receives aggregated packets from nodes 1 and
4 starting from slot 1 of frame 2. The entries f1; 4g and
f2; 5; 6g in the table represent single packets comprising
aggregated data from nodes 1 and 4, and from nodes 2, 5,
and 6, respectively. Thus, a pipeline is established from
frame 2, and the sink continues to receive aggregated
packets from all the nodes once every six time slots. Thus,
the minimum schedule length is 6.

4.1.1 Lower Bound on Schedule Length

We first consider aggregated convergecast when all the
interfering links are eliminated by using transmission power
control or multiple frequencies. Although the problem of

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 89

minimizing the schedule length is NP-complete on general
graphs, we show in the following that once interference is
eliminated, the problem reduces to 1 on a tree, and can be
solved in polynomial time. To this end, we first give a lower
bound on the schedule length, and then propose a time slot
assignment scheme that achieves the bound.

Lemma 1. If all the interfering links are eliminated, the schedule
length for aggregated convergecast is lower bounded by �ðT Þ,
where �ðT Þ is the maximum node degree in the routing tree T .

Proof. If all the interfering links are eliminated, the
scheduling problem reduces to 1 on a tree. Now since
each of the tree edges needs to be scheduled only once
within each frame, it is equivalent to edge coloring on a
graph, which needs number of colors at least equal to the
maximum node degree. tu

Once all the interfering links are eliminated, concurrency
is still limited by the adjacency constraint due to the half-
duplex transceivers, which prevents a parent from trans-
mitting when it is already receiving from its children, or
when its parent is transmitting.

4.1.2 Assignment of Time Slots

Given the lower bound �ðT Þ on the schedule length in the
absence of interfering links, we now present a time slot
assignment scheme in Algorithm 1, called BFS-TIMESLO-

TASSIGNMENT, that achieves this bound.

Algorithm 1. BFS-TIMESLOTASSIGNMENT

1. Input: T ¼ ðV ; ET Þ
2. while ET 6¼ � do

3. e next edge from ET in BFS order

4. Assign minimum time slot t to edge e respecting

adjacency and interfering constraints

5. ET ET n feg
6. end while

In each iteration of BFS-TIMESLOTASSIGNMENT (lines 2-
6), an edge e is chosen in the Breadth First Search (BFS)
order starting from any node, and is assigned the minimum
time slot that is different from all its adjacent edges
respecting interfering constraints. Note that, since we
evaluate the performance of this algorithm also for the case
when the interfering links are present, we check for the
corresponding constraint in line 4; however, when inter-
ference is eliminated this check is redundant. The algorithm
runs in OðjET j2Þ time and minimizes the schedule length
when there are no interfering links, as proved in Theorem 1.

To illustrate, we show the same network of Fig. 1a in Fig. 1c

with all the interfering links removed, and so the network is

scheduled in three time slots.
Although BFS-TIMESLOTASSIGNMENT may not be an

approximation to ideal scheduling under the physical

interference model, it is a heuristic that can achieve the

lower bound if all the interfering links are eliminated.

Therefore, together with a method to eliminate interference,

the algorithm can optimally schedule the network.

Theorem 1. If all the interfering links are eliminated, the

schedule length for aggregated convergecast achieved by BFS-

TIMESLOTASSIGNMENT is the minimum, i.e., �ðT Þ.
Proof. The proof is by induction on i. Let T i ¼ ðV i; Ei

T Þ
denote the subtree of T in the ith iteration constructed in

the BFS order, where Ei
T comprises all the edges that are

assigned a slot, andV i comprises the set of nodes on which

the edges inEi
T are incident. Note that, jEi

T j ¼ i, because at

every iteration, exactly one edge is assigned a slot. For

i ¼ 1, clearly the number of slots used is 1, equal to �ðT 1Þ.
Now, assume that the number of slots NðiÞ needed to

schedule the edges in T i is �ðT iÞ. In the ðiþ 1Þst
iteration, after assigning a slot to the next edge in BFS
order, the number of slots needed in T iþ1 can either
remain the same as before, or increase by 1. Thus,

Nðiþ 1Þ ¼ max NðiÞ; NðiÞ þ 1f g: ð2Þ

If it remains the same, Nðiþ 1Þ is still the maximum
degree of T iþ1 at end of ðiþ 1Þst iteration. Otherwise, if it
increases by 1, the new edge must be incident on a node
v�, common to both T i and T iþ1, such that the number of
incident edges on v� that were already assigned a time
slot at the end of ith iteration was �ðT iÞ. This is so
because in the BFS traversal, all the edges incident on a
node are assigned a slot first before moving on to the
next node, and because the slot assigned to the new edge
is the minimum possible that is different from all that
already assigned to the edges incident on v� until the ith
iteration. Thus, at the end of ðiþ 1Þst iteration, the
number of slots used NðiÞ þ 1 is equal to the number of
assigned edges incident on v� which, in turn, equals
�ðT iþ1Þ. This proves the inductive step. Therefore, it
holds at every iteration of the algorithm until the end
when i ¼ jV j � 2, yielding a schedule length equal to the
maximum degree �ðT Þ ¼ �ðT jV j�1Þ. Now, since assign-
ing different time slots to the adjacent edges of T is
equivalent to edge coloring T , which requires at least
�ðT Þ colors, the schedule length is minimum. tu

90 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

Fig. 1. Aggregated convergecast and pipelining: (a) Schedule length of 6 in the presence of interfering links. (b) Node ids from which (aggregated)
packets are received by their corresponding parents in each time slot over different frames. (c) Schedule length of 3 using BFS-
TIMESLOTASSIGNMENT when all the interfering links are eliminated.

4.2 One-Shot Raw-Data Convergecast

In this section, we consider one-shot data collection where
every sensor reading is equally important, and so aggrega-
tion may not be desirable or even possible. Thus, each of the
packets has to be individually scheduled at each hop en route
to the sink. As before, we focus on minimizing the schedule
length. Unlike in the case of periodic aggregated converge-
cast where a pipelining takes place and each of the tree edges
is scheduled only once within each frame, here the edges
could be scheduled multiple times and there is no pipelining.

The problem of minimizing the scheduling length for
raw-data convergecast is proved to be NP-complete even
under the protocol interference model by a reduction from
the well known Partition Problem [13]. Before getting into the
details, we first define the following terms: a branch is
defined as a subtree containing the sink as an endpoint; a
top-subtree is defined as a subtree that has a child of the sink
as its root. For instance, in Fig. 3, the branches are fs; 1; 4g,
fs; 2; 5; 6g, and fs; 3; 7g, while the top-subtrees are f1; 4g,
f2; 5; 6g, and f3; 7g.

4.2.1 Lower Bound on Schedule Length

As mentioned in Section 4.1.1, if all the interfering links are
eliminated using multiple frequencies, the only limiting
factor in minimizing the schedule length is the half-duplex
transceivers. In the following, we give a lower bound on the
schedule length under this scenario.

Lemma 2. If all the interfering links are eliminated, the schedule
length for one-shot raw-data convergecast is lower bounded by
maxð2nk � 1; NÞ, where nk is the maximum number of nodes
in any top-subtree of the routing tree, and N is the number of
sources in the network.

Proof. Let ni denote the number of nodes in top-subtree i.
Order the top-subtrees in nonincreasing order of their
sizes: nk � nk�1 � � � � � n1. Consider the routing tree
shown in Fig. 2. Since the nodes cannot receive multiple
packets simultaneously, N is a trivial lower bound to
receive all the packets. Next, consider the largest top-
subtree k, the root of which has to transmit nk packets to
the sink, and the children of this root have to forward
nk � 1 packets in total. Because of the half-duplex
transceivers, time slots assigned to the root of this top-
subtree must be distinct from all those assigned to its
children. Thus, in total, we need at least nk þ ðnk � 1Þ ¼
2nk � 1 distinct time slots. tu

We note that this bound of maxð2nk � 1; NÞ, which
applies only when all the interfering links are removed, is
smaller than the lower bound of 3N for general networks
and that of maxð3nk � 3; NÞ for tree networks, as computed
by Gandham et al. [1] for the 2-hop interference model. They
proposed a time slot assignment scheme for tree networks,

which requires each node to maintain a buffer that stores at
most two packets and minimizes the schedule length. In the
following, we describe a time slot assignment scheme that
computes a schedule of length exactly equal to the lower
bound when interference is eliminated and does not require
to store more than one packet in buffers at any time.

4.2.2 Assignment of Time Slots

We now describe a time slot assignment scheme in
Algorithm 2, called LOCAL-TIMESLOTASSIGNMENT, which
is run locally by each node at every time slot. The key idea is
to: 1) schedule transmissions in parallel along multiple
branches of the tree, and 2) keep the sink busy in receiving
packets for as many time slots as possible. Because the sink
can receive from the root of at most one top-subtree in any
time slot, we need to decide which top-subtree should be
made active. We assume that the sink is aware of the
number of nodes in each top-subtree. Each source node
maintains a buffer and its associated state, which can
be either full or empty depending on whether it contains a
packet or not. Our algorithm does not require any of the
nodes to store more than one packet in their buffer at any
time. We initialize all the buffers as full, and assume that
the sink’s buffer is always full for the ease of explanation.

Algorithm 2. LOCAL-TIMESLOTASSIGNMENT

1. node.buffer ¼ full
2. if {node is sink} then

3. Among the eligible top-subtrees, choose the one with

the largest number of total (remaining) packets, say

top-subtree i

4. Schedule link ðrootðiÞ; sÞ respecting interfering

constraint
5. else

6. if {node.buffer == empty} then

7. Choose a random child c of node whose buffer

is full

8. Schedule link ðc; nodeÞ respecting interfering

constraint

9. c.buffer = empty

10. node.buffer = full

11. end if

12. end if

The first block of the algorithm in lines 2-4 gives the
scheduling rules between the sink and the roots of the top-
subtrees. We define a top-subtree to be eligible if its root has at
least one packet to transmit. For a given time slot, we
schedule the root of an eligible top-subtree which has the
largest number of total (remaining) packets. If none of the top-
subtrees are eligible, the sink does not receive any packet
during that time slot.

Inside each top-subtree, nodes are scheduled according
to the rules in lines 5-12. We define a subtree to be active if
there are still packets left in the subtree (excluding its root)
to be relayed. If a node’s buffer is empty and the subtree
rooted at this node is active, we schedule one of its children
at random whose buffer is not empty. Our algorithm
guarantees (as proved in Lemma 3) that in an active subtree,
there will always be at least one child whose buffer is not
empty, and so whenever a node empties its buffer, it will

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 91

Fig. 2. Raw-data convergecast: largest top-subtree with nk nodes.

receive a packet in the next time slot, thus emptying buffers
from the bottom of the subtree to the top.

We run through an example shown in Fig. 3a to explain
the algorithm. In the first time slot, since the eligible top-
subtree containing the largest number of remaining packets
is f2; 5; 6g, we schedule the link ð2; sÞ, and the sink receives a
packet from node 2 in slot 1. In the second time slot, the
eligible top-subtrees are f1; 4g and f3; 7g, both of which have
two remaining packets. We choose one of them at random,
say f1; 4g, and schedule the link ð1; sÞ. Also, in the same time
slot since node 2’s buffer is empty, it chooses one of its
children at random, say node 5, and schedule the link ð5; 2Þ.
In the third time slot, the eligible top-subtrees are f2; 5; 6g
and f3; 7g, both of which have two remaining packets. We
choose the first one at random and schedule the link ð2; sÞ,
and so the sink receives node 5’s packet (relayed by node 2).
We also schedule the link ð4; 1Þ in the third time slot because
node 1’s buffer is empty at this point. This process continues
until all the packets are delivered to the sink, yielding an
assignment that requires seven time slots. Note that, in this
example, 2nk � 1 ¼ 5, and so maxð2nk � 1; NÞ ¼ 7. In Fig. 3b,
we show an assignment when all the interfering links are
present, yielding a schedule length of 10.

In the following, we prove that the algorithm requires
exactly maxð2nk � 1; N) slots when all the interfering links
are eliminated. Before giving the details of the proof, we
first highlight the two key insights of the algorithm: 1) the
sink is kept busy in receiving packets for as many time slots
as possible, and 2) a node’s buffer is not empty for two or
more consecutive time slots so long as the subtree rooted at
this node is active. The first one is evident from the
scheduling rule between the sink and the top-subtrees. We
prove the second insight in the following lemma:

Lemma 3. In an active subtree, a node with an empty buffer
always has a child and a parent whose buffers are full.

Proof. We prove it by induction on time slot t. The parent
and grandparent of node i are denoted by pðiÞ and gpðiÞ;
similarly, a child and a grandchild of i are denoted by
cðiÞ and gcðiÞ, respectively. Slightly abusing notation, we
also use these symbols to denote the state of the buffers
on the respective nodes.

At t ¼ 1, the lemma is trivially true because all the
buffers are full. Suppose the lemma holds for t ¼ k, i.e.,
every node whose buffer is empty has a child and a
parent whose buffers are full. At t ¼ kþ 1, each node
with an empty buffer schedules one of its children whose
buffer is full. The following two situations can occur:

. Node i is full, while pðiÞ and cðiÞ are both empty.

. Nodes i and pðiÞ are both full, while cðiÞ is empty.

For the first case, we need to show that both pðiÞ and
cðiÞ (since now they are empty) have a child and a parent
whose buffers are full. Clearly, pðiÞ has a child with a full
buffer because i is now full. Similarly, pðiÞ also has a
parent with a full buffer because a transmission took
place from pðiÞ to its parent at t ¼ kþ 1. For the latter,
cðiÞ has a parent with a full buffer because transmission
took place from cðiÞ to i at t ¼ kþ 1. If the child of cðiÞ,
i.e., gcðiÞ, was empty at t ¼ k, then gcðiÞ also had a child
with a full buffer because the lemma was true at t ¼ k.
Therefore, at t ¼ kþ 1, the child of gcðiÞ transmits and
fills up its parent’s buffer. Otherwise, if gcðiÞ was full at
t ¼ k, then it also remains full at t ¼ kþ 1 because it
cannot transmit to its parent cðiÞ, which was full at t.

For the second case, cðiÞ transmitted and pðiÞ did not.
For this to happen, gpðiÞ was full at t ¼ k and either
empties or remains full at t ¼ kþ 1. If it empties, gpðiÞ
has a parent with a full buffer because it transmitted at
t ¼ kþ 1, and also has a child with a full buffer because
pðiÞ did not transmit. If it remains full, at t ¼ kþ 1 nodes
i, pðiÞ, and gpðiÞ are full, cðiÞ is empty, and gcðiÞ is full as
we showed in the first case. So, the lemma holds for
t ¼ kþ 1, and the proof follows. tu

Theorem 2. If all the interfering links are eliminated, the
schedule length for raw-data convergecast achieved by
algorithm LOCAL-TIMESLOTASSIGNMENT is the minimum,
i.e., maxð2nk � 1; NÞ.

Proof. Let ni be the number of nodes in top-subtree i.
Order the top-subtrees in nonincreasing order of their
sizes: nk � nk�1 � � � � � n1. Suppose nk >

Pk�1
i¼1 ni; then

maxð2nk � 1; NÞ ¼ 2nk � 1. From Lemma 1, we know
that it takes at least 2nk � 1 slots to schedule all the
packets originated in top-subtree k. Out of these, the sink
can use at most nk � 1 slots to receive packets from the
other top-subtrees, which have a total of at most nk � 1
packets. Also, when nk >

Pk�1
i¼1 ni, the root of the largest

top-subtree k gets scheduled once in every two time
slots. Therefore, the schedule length is at most 2nk � 1.

Now suppose nk �
Pk�1

i¼1 ni; then maxð2nk � 1; NÞ ¼
N . We need to show that there always exists an eligible
top-subtree to complement for the largest one when it is
not eligible. In this case, the sink will receive packets in
every slot, because otherwise it remains idle during some
time slots and the first condition nk >

Pk�1
i¼1 ni will be met.

Thus, we will prove that the algorithm keeps the
inequality nk �

Pk�1
i¼1 ni as an invariant.

In any given time slot t, the algorithm schedules an
eligible top-subtree that has the largest number of
remaining packets. At slot tþ 1, therefore, we have
nk ¼ nk � 1, and the following three cases might arise:

. Top-subtree k still has the largest number of
remaining packets with nk � nk�1 � � � � � n1.
Then, the root of k is again chosen to transmit
at tþ 1, and the inequality still holds as nk � 1 �Pk�1

i¼1 ni.

. Top-subtree k and at least another one, say j, have
an equal number of remaining packets. Then, the

92 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

Fig. 3. Raw-data convergecast using algorithm LOCAL-TIMESLOTAS-

SIGNMENT: (a) Schedule length of 7 when all the interfering links are
removed. (b) Schedule length of 10 when the interfering links are
present.

root of j is chosen, and the inequality still holds
because nj � 1 �

Pk�1
i¼1 ni � 1 (since nj ¼ nk � 1).

. Top-subtree k does not have the largest number of
remaining packets, implying that there were other
top-subtrees with an equal number of packets left
as k in slot t. Then, the root of a new largest top-
subtree j is chosen, and the inequality holds since
nj � 1 �

Pk�1
i¼1 ni � 1 (since nj ¼ nk).

Thus, the algorithm keeps the inequality as an
invariant, and there always exists a top-subtree that can
be alternately scheduled with the largest top-subtree.
When nk ¼ 1,

Pk�1
i¼1 ni � 1 ¼ 1, which means that there are

two packets left at two different top-subtrees that can be
scheduled in alternate slots. Since this inequality holds for
all the N steps, the sink always finds a top-subtree to
receive packets from, and therefore it takes N slots.
Moreover, Lemma 1 implies that a top-subtree becomes
eligible after a transmission because its root is filled up in
the next slot. Therefore, the theorem follows. tu

5 IMPACT OF INTERFERENCE

So far, we have focused on computing spatial-reuse TDMA
schedules where transmissions take place on the same
frequency at a constant transmission power. In this section,
we focus on different methods to mitigate the effects of
interference on the schedule length. First, we discuss the
benefits of using transmission power control and explain
the basics of a possible algorithm. Then, we discuss the
advantages of using multiple channels by considering three
different channel assignment schemes.

5.1 Transmission Power Control

In wireless networks, excessive interference can be elimi-
nated by using transmission power control [6], [20], i.e., by
transmitting signals with just enough power instead of
maximum power. To this end, we evaluate the impact of
transmission power control on fast data collection using
discrete power levels, as opposed to a continuous range
where an unbounded improvement in the asymptotic
capacity can be achieved by using a nonlinear power
assignment [5]. We first explain the basics of one particular
algorithm that we use in our evaluations in Section 7.

The algorithm proposed by ElBatt and Ephremides [6] is
a cross layer method for joint scheduling and power control
and it is an optimal distributed algorithm to improve the
throughput capacity of wireless networks. The goal is to
find a TDMA schedule that can support as many transmis-
sions as possible in every time slot. It has two phases: 1)
scheduling and 2) power control that are executed at every
time slot. First, the scheduling phase searches for a valid
transmission schedule, i.e., largest subset of nodes, where no
node is to transmit and receive simultaneously, or to
receive from multiple nodes simultaneously. Then, in the
given valid schedule, the power control phase iteratively
searches for an admissible schedule with power levels chosen
to satisfy all the interfering constraints. In each iteration, the
scheduler adjusts the power levels depending on the
current RSSI at the receiver and the SINR threshold
according to the iterative rule: Pnew ¼ �

SINR � Pcurrent. Accord-
ing to this rule, if a node transmits with a power level

higher than what is required by the threshold value, it
should decrease its power and if it is below the threshold, it
should increase its transmission power, within the available
range of power levels on the radio. If all the nodes meet
the interfering constraint, the algorithm proceeds with the
schedule calculation for the next time slot. On the other
hand, if the maximum number of iterations is reached and
there are nodes which cannot meet the interfering con-
straint, the algorithm excludes the link with minimum
SINR from the schedule and restarts the iterations with the
new subset of nodes. The power control phase is repeated
until an admissible transmission scenario is found.

5.2 Multichannel Scheduling

Multichannel communication is an efficient method to
eliminate interference by enabling concurrent transmissions
over different frequencies [21]. Although typical WSN radios
operate on a limited bandwidth, their operating frequencies
can be adjusted, thus allowing more concurrent transmis-
sions and faster data delivery. Here, we consider fixed-
bandwidth channels, which are typical of WSN radios, as
opposed to the possibility of improving link bandwidth by
consolidating frequencies. In this section, we explain three
channel assignment methods that consider the problem at
different levels allowing us to study their pros and cons for
both types of convergecast. These methods consider the
channel assignment problem at different levels: the link level
(JFTSS), node level (RBCA), or cluster level (TMCP).

5.2.1 Joint Frequency Time Slot Scheduling

JFTSS offers a greedy joint solution for constructing a
maximal schedule, such that a schedule is said to be
maximal if it meets the adjacency and interfering constraints,
and no more links can be scheduled for concurrent
transmissions on any time slot and channel without
violating the constraints. Approximation bounds on JFTSS
for single-channel systems and its comparison with multi-
channel systems are discussed in [22] and [23], respectively.

JFTSS schedules a network starting from the link that has
the highest number of packets (load) to be transmitted.
When the link loads are equal, such as in aggregated
convergecast, the most constrained link is considered first,
i.e., the link for which the number of other links violating
the interfering and adjacency constraints when scheduled
simultaneously is the maximum. The algorithm starts with
an empty schedule and first sorts the links according to the
loads or constraints. The most loaded or constrained link in
the first available slot-channel pair is scheduled first and
added to the schedule. All the links that have an adjacency
constraint with the scheduled link are excluded from the list
of the links to be scheduled at a given slot. The links that do
not have an interfering constraint with the scheduled link
can be scheduled in the same slot and channel whereas the
links that have an interfering constraint should be sched-
uled on different channels, if possible. The algorithm
continues to schedule the links according to the most
loaded (or most constrained) metric. When no more links
can be scheduled for a given slot, the scheduler continues
with scheduling in the next slot. Fig. 4a shows the same tree
given in Fig. 1a which is scheduled according to JFTSS
where aggregated data are collected. JFTSS starts with link

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 93

(2; sink) on frequency 1 and then schedules link (4,1) next
on the first slot on frequency 2. Then, links (5,2) on
frequency 1 and (1; sink) on frequency 2 are scheduled on
the second slot and links (6,2) on frequency 1 and (3; sink)
on frequency 2 are scheduled on the last slot.

An advantage of JFTSS is that it is easy to incorporate the
physical interference model; however, it is hard to have a
distributed solution since the interference relationship
between all the links must be known.

5.2.2 Tree-Based Multichannel Protocol

TMCP is a greedy, tree-based multichannel protocol for data
collection applications [8]. It partitions the network into
multiple subtrees and minimizes the intratree interference by
assigning different channels to the nodes residing on
different branches starting from the top to the bottom of
the tree. Fig. 4b shows the same tree given in Fig. 1a which is
scheduled according to TMCP for aggregated data collec-
tion. Here, the nodes on the leftmost branch are assigned
frequency F1, second branch is assigned frequency F2, and
the last branch is assigned frequency F3 and after the
channel assignments, time slots are assigned to the nodes
with the BFS-TimeSlotAssignment algorithm. The advantage
of TMCP is that it is designed to support convergecast traffic
and does not require channel switching. However, conten-
tion inside the branches is not resolved since all the nodes
on the same branch communicate on the same channel.

5.2.3 Receiver-Based Channel Assignment

In our previous work [7], we proposed a channel assign-
ment method called RBCA where we statically assigned the
channels to the receivers (parents) so as to remove as many
interfering links as possible. In RBCA, the children of a
common parent transmit on the same channel. Every node
in the tree, therefore, operates on at most two channels, thus
avoiding pairwise, per-packet channel negotiation over-
heads. The algorithm initially assigns the same channel to
all the receivers. Then, for each receiver, it creates a set of
interfering parents based on SINR thresholds and itera-
tively assigns the next available channel starting from the
most interfered parent (the parent with the highest number
of interfering links). However, due to adjacent channel
overlaps, SINR values at the receivers may not always
be high enough to tolerate interference, in which case the
channels are assigned according to the ability of the
transceivers to reject interference. We proved approxima-
tion factors for RBCA when used with greedy scheduling in
[9]. Fig. 4c shows the same tree given in Fig. 1a scheduled
with RBCA for aggregated convergecast. Initially, all nodes

are on frequency F1. RBCA starts with the most interfered
parent, node 2 in this example, and assigns F2. Then, it
continues to assign F3 to node 3 as the second most
interfered parent. Since all interfering parents are assigned
different frequencies, sink can receive on F1.

6 IMPACT OF ROUTING TREES

Besides transmission power control and multiple channels,
the network topology and the degree of connectivity also
affect the scheduling performance. In this section, we
describe schemes to construct topologies with specific
properties that help to reduce the schedule length.

6.1 Aggregated Data Collection

We first construct balanced trees and compare their
performance with unbalanced trees. We observe that in both
cases, the sink often creates a high-degree bottleneck. To
overcome this, we then propose a heuristic, as described in
Algorithm 3, by modifying Dijkstra’s shortest path algorithm
to construct degree-constrained trees. Note that constructing
such a degree-constrained tree is NP-hard. Each source node
i in our heuristic keeps track of the number of its children,
CðiÞ, which is initialized to 0, and a hop count to the sink,
HCðiÞ, which is initialized to 1. The algorithm starts with
the sink node, and adds a node i0 62 T at every iteration to the
tree such that HCði0Þ is minimized. It stops when jT j ¼ jV j,
or when no more nodes can be added to the tree because the
neighbors of all these new nodes have reached the limit on
their maximum degree. Consequently, in this latter situation,
the heuristic might not always generate a spanning tree. In
our evaluation presented in Section 7.3, we consider only
those instances of the topologies where spanning trees with
the specified degree constraint are produced.

Algorithm 3. DEGREE-CONSTRAINED TREES

1. Input: GðV ;EÞ, s, max degree
2. T fsg
3. for all i 2 V do

4. CðiÞ 0; HCðiÞ 1
5. end for

6. HCðsÞ 0

7. while jT j 6¼ jV j do

8. Choose i0 62 T such that:

9. (a) ði; i0Þ 2 E, for some i 2 T with CðiÞ <
max degree� 1

10. (b) HCði0Þ is minimized

11. T T [fi0g
12. HCði0Þ ¼ HCðiÞ þ 1

13. CðiÞ CðiÞ þ 1

14. if 8i 2 V , CðiÞ ¼ max degree then

15. break

16. end if

17. end while

To illustrate the gains of degree-constrained trees,
consider the case when all the N nodes are in range of
each other and that of the sink. If the nodes select their
parents according to minimum hop without a degree
constraint, then all of them will select the sink, and this
will give a schedule length of N . However, if we limit the
number of children per node to 2, then this will result in

94 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

Fig. 4. Scheduling with multichannels for aggregated convergecast:
(a) Schedule generated with JFTSS. (b) Schedule generated with
TMCP. (c) Schedule generated with RBCA.

two subtrees rooted at the sink, and if there are enough
frequencies to eliminate interference, the network can be
scheduled using only two time slots, thus achieving a factor
of N=2 reduction in the schedule length.

6.2 Raw-Data Collection

As emphasized in [13], routing trees that allow more parallel
transmissions do not necessarily result in small schedule
lengths. For instance, the schedule length is N for a network
connected as a star topology, whereas it is ð2N � 1Þ for a line
topology once interference is eliminated. Theorem 1
suggests that the routing tree should be constructed such
that all the branches have a balanced number of nodes and
the constraint nk < ðN þ 1Þ=2 holds. In this section, we
construct such routing trees.

A balanced tree satisfying the above constraint is a
variant of a capacitated minimal spanning tree [24]. The CMST
problem, which is known to be NP-complete, is to
determine a minimum-hop spanning tree in a vertex
weighted graph such that the weight of every subtree
linked to the root does not exceed a prescribed capacity. In
our case, the weight of each link is 1, and the prescribed
capacity is ðN þ 1Þ=2. Here, we propose a heuristic, as
described in Algorithm 4, based on the greedy scheme
presented by Dai and Han [25], which solves a variant of the
CMST problem by searching for routing trees with an equal
number of nodes on each branch. We augment their scheme
with a new set of rules and grow the tree hop by hop
outward from the sink. We assume that the nodes know
their minimum-hop counts to sink.

Algorithm 4. CAPACITATED-MINIMALSPANNINGTREE

1. Input: GðV ;EÞ, s
2. Initialize:
3. B roots of top subtrees // the branches

4. T fsg [B
5. 8i 2 V , GSðiÞ unconnected neighbors of i

at further hops

6. 8b 2 B, WðbÞ 1

7. h 2

8. while h 6¼ max hop count do

9. Nh unconnected nodes at hop distance h
10. Connect nodes N 0h that have a single potential

parent: T T
S
N 0h

11. Update Nh Nh nN 0h
12. Sort Nh in non-increasing order of jGSj
13. for all i 2 Nh do

14. for all b 2 B to which i can connect do

15. Construct SSði; bÞ
16. end for

17. Connect i to b for which WðbÞ þ jSSði; bÞj is

minimum

18. Update GSðiÞ and WðbÞ
19. T T

S
fig
S
SSði; bÞ

20. end for

21. h hþ 1

22. end while

Rule 1. Nodes with single potential parents are con-
nected first.

Rule 2. For nodes with multiple potential parents, we
first construct their growth sets (GS) and choose the one with

the largest cardinality for further processing, breaking ties
based on the smallest id. We define the growth set of a node
as the set of neighbors (potential children) that are not yet
connected to the tree and have larger hop counts.

Rule 3. Once a node is chosen based on the growth sets
according to Rule 2, we construct search sets (SS) to decide
which potential branch the node should be added to. A
search set is thus branch specific and includes the nodes
that are not yet connected to the tree and are neighbors of a
node that are at a higher hop count. In particular, if the
chosen node has access to branch b, and has a neighbor that
can connect to only branch b if b is selected, then this
neighbor and its potential children are included in the
search set for b. However, if the neighbor has access to at
least one other branch even after b is selected, then it is not
included in the search set.

The search sets guarantee that the choices for the nodes
at longer hops to join a particular branch are not limited by
the decision of the joining node. This balances out the
number of nodes on different branches and prevents one to
grow faster than others. Once the search sets are con-
structed, we choose the branch for which the sum of its load
(W) and the size of the search set is minimum.

To illustrate the merit of search sets, consider the
situation shown in Fig. 5. Dotted lines represent potential
communication links and solid lines represent already
included tree edges. At this point, node 4 is being
processed, and the loads on branches b1 and b2 are 2 and
4, respectively, where bi denote the branch rooted at node i.
The search set SSð4; b1Þ is f8; 9; 10g, because the neighbor
node 8 has access to only b1 if b1 is selected by node 4.
However, the search set SSð4; b2Þ is empty, because the
neighbor node 8 has access to another branch b1 (via node
3). Therefore, the sum of the load and the size of the search
set for b1 is 5, and that for b2 is 4. So, we attach node 4 to b2,
and in the next step attach node 8 to b1. This balances out
the number of nodes over the two branches.

7 EVALUATION

In this section, we evaluate the impact of transmission
power control, multiple channels, and routing trees on the
scheduling performance for both aggregated and raw-data
convergecast.

We deploy nodes randomly in a region whose dimen-
sions are varied between 20� 20 m2 and 300� 300 m2 to
simulate different levels of density. The number of nodes is
kept fixed at 100. For different parameters, we average each
point over 1,000 runs. We use an exponential path-loss
model for signal propagation with the path-loss exponent �

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 95

Fig. 5. Balanced tree construction: Node 4 is attached to b2 based on the
search sets; load on both b1 and b2 is 5.

varying between 3 and 4, which is typical for indoor
environments. We also use the physical interference model
and simulate the behavior of CC2420 radios that are used
on Telosb and TmoteSky motes and are capable of
operating on 16 different frequencies. The transmission
power can be adjusted between �24 and 0 dBm over eight
different levels, and the SINR threshold is set to � ¼ �3 dB.1

We first evaluate the schedule length for single-channel
TDMA, and then its improvement using transmission
power control, multiple channels, and routing trees.

7.1 Impact of Transmission Power Control

We investigate two cases: 1) when nodes transmit at
maximum power, and 2) when nodes adjust their
transmission power according to the algorithm described
in Section 5.1. In both cases, nodes communicate on the
same channel and use minimum-hop routing trees. In the
first case, time slots are assigned according to BFS-
TIMESLOTASSIGNMENT for aggregated data, and accord-
ing to LOCAL-TIMESLOTASSIGNMENT for raw data. In the
second case, we follow the scheduling rules in [6].

7.1.1 Aggregated Convergecast

Fig. 6a shows the variation of schedule length with density
for different values of � on minimum-hop trees. We
observe that the schedule length decreases as the deploy-
ment gets sparser. This happens because at low densities,
the interference is less, and so more concurrent transmis-
sions can take place. In the densest deployment (L ¼ 20)
when all the nodes are within the range of each other, the
sink is the only parent, and the network is scheduled in
99 time slots regardless of power control. However, in
sparser scenarios, using power control, the network can be
scheduled with fewer time slots as the level of interference
goes down. We achieve a 10-20 percent reduction in
schedule length for the best case.

We also observe that power control is more effective in
reducing the schedule length for denser deployments than
in sparser ones where the results tend to be similar. This is
due to the discrete power levels and limited power range.
Moreover, due to the �95 dBm threshold for the transcei-
vers to be able to decode a signal successfully, further
power reduction is limited.

7.1.2 Raw-Data Convergecast

For raw-data convergecast, we observe in Fig. 6b that the
schedule length increases as the network gets sparser on
minimum-hop trees. This is counterintuitive because in
sparse networks, the reuse of slots should be higher which
would reduce the schedule length. However, as the network
gets sparser, the number of nodes that can directly reach the
sink decreases and packets have to be relayed over more
hops. Thus, more packets need to be scheduled than in a
single hop. We see that the number of packets to be scheduled
increases faster than the reuse ratio. In the densest setting
where all the nodes can directly reach the sink, the schedule
length is 99, which is equal to the number of sources.

With power control, we observe a reduction in the
schedule length in Fig. 6b as some of the interfering links
are eliminated, thus increasing slot reusability. When
� ¼ 3:0, most of the interference can be eliminated by
power control, and beyond which the structure of the
routing tree, especially the number of nodes nk on the
largest branch with ð2nk � 1Þ > N , becomes the bottleneck.
However, for � � 3:5, power control cannot always elim-
inate interference as networks get sparser and nodes tend to
transmit at their maximum power.

7.2 Impact of Multichannel Scheduling

In this section, we analyze the performance of the channel
assignment methods discussed in Section 5.2. We use
CC2420 radios that have 16 channels in the 2.4 GHz range,
with adjacent channels overlapping according to the
rejection and blocking values given in the data sheet.
We assume that the nodes transmit at maximum power and
use minimum-hop trees. In TMCP and RBCA, time slots are
assigned according to BFS-TIMESLOTASSIGNMENT for
aggregated convergecast and LOCAL-TIMESLOTASSIGN-

MENT for raw-data convergecast. The path-loss exponent
is taken as 3.5.

7.2.1 Aggregated Convergecast

Comparing the plots in Figs. 7a and 6a, we observe that the
channel assignment methods achieve schedule lengths that
are shorter than those achieved by power control. While it’s
true that power control helps in reducing the effects of
interference, this gain is limited due to the discrete levels and
limited range of transmission power (e.g., CC2420 has eight
different power levels between 0 and �24 dBm). In sparse
deployments, nodes cannot reduce their transmit power

96 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

Fig. 6. Scheduling on minimum-hop trees with and without power
control: (a) Aggregated convergecast. (b) Raw-data convergecast.

Fig. 7. Scheduling on minimum-hop trees with multiple channels:
(a) Aggregated convergecast. (b) Raw-data convergecast.

1. Due to variation in signal strength, a fading margin can be included
such that some of the packets can still be captured if the RSSI is slightly
lower than the threshold. Such a model [26] can easily be incorporated in
our experiments, in which case retransmissions of lost packets should also
be considered in calculating the schedule length.

below a certain threshold because a transceiver cannot
decode signals below the sensitivity level �95 dBm). As
shown in Fig. 6a, for L > 200, the schedule lengths are similar
when nodes transmit at maximum power or when they
adjust their power levels. Moreover, in mid-sparse deploy-
ments (60 � L � 180, Fig. 6a), the limited range and discrete
power levels restrict the nodes to adjust their transmit
powers. On the other hand, multichannel communication
even with just two frequencies (Fig. 7a) can eliminate the
interference limitations, and beyond this, the performance
gains are limited by the connectivity structure. By transmit-
ting on different channels, interference is eliminated by the
high adjacent/alternate channel rejection values of the C2420
radio, and the channels behave like orthogonal.

In Fig. 7a, sparser deployments (L > 140) with multi-
channel communication show a 40 percent reduction in
schedule length as compared to transmitting on a single
channel with maximum power. However, in denser
deployments, multiple channels do not help much due to
increased connectivity, with the sink as a bottleneck in the
densest setting. From Fig. 7a, we observe that JFTSS and
RBCA can optimally schedule the network using 16
channels, i.e., they achieve the lower bound, as shown by
the line “Lower Bound-MHST.” The advantage of RBCA
over JFTSS is that it takes into account the topological
characteristics: a parent node receives data on the same
channel from its children, and does not have to switch
channels in every slot. In dense deployments, TMCP
performs better due to the different routing trees con-
structed, i.e., when L ¼ 20, RBCA and JFTSS construct a star
topology, whereas TMCP constructs a 2-branch tree with
two channels and a 16-branch tree with 16 channels.

7.2.2 Raw-Data Convergecast

In Fig. 7b, we observe that none of the methods can
eliminate interference completely with two channels;
however, JFTSS and RBCA can do so with six or more
channels at different densities (plots are not shown due to
lack of space). We also see that TMCP needs 16 channels to
reach a performance similar to that achieved by RBCA and
JFTSS with only two channels. This is because in JFTSS and
RBCA, when a node is receiving from its children, its parent
can transmit simultaneously on a different channel, which
is not possible due to intrabranch interference in TMCP.
The results also verify that JFTSS and RBCA can achieve a
schedule length which is bounded by maxð2nk � 1; NÞ,
shown as “Lower Bound-MHST,” so long as the number of
available channels is sufficient to eliminate interference.
Compared to the results on a single channel in sparser
scenarios, we achieve a reduction of up to 40 percent on the
schedule length. In very dense scenarios, the improvement
is small because most of the nodes can directly reach the
sink, and so the limiting factor becomes the half-duplex
transceiver.

7.2.3 Required Number of Channels

In this section, for the different channel assignment
methods, we evaluate the required number of channels to
completely eliminate interference as a function of deploy-
ment density. In our simulation results, as shown in Fig. 8a,
we assume that the number of available channels is
unlimited so as to show the upper bounds.

With RBCA and JFTSS, the number of channels required is
low for dense networks as the number of receivers is low. In
particular, when L ¼ 20, all the nodes can directly connect to
the sink, and so only one frequency is needed. As the network
gets sparser, the number of receivers increases, and thus
more frequencies are required to support concurrent
transmissions. However, for L � 80, the number of nodes
that are being connected to the same parent slowly dominates
the effect of the number of receivers, and since the network
gets very sparse, the number of channels required further
goes down as the level of interference decreases.

The trends of both RBCA and JFTSS are quite similar, and
the number of channels required is no more than the number
of available channels on CC2420 radios (16 channels). On the
other hand, TMCP requires many more channels as each
branch is on a different channel. This is expensive for
deployments where a lot of nodes can directly connect to the
sink, and thus are assigned different channels because they
form different branches. Thus, one needs to optimize the
channel usage.

7.2.4 Interference Models and Orthogonal Channels

We now evaluate the impact of interference and channel
models on the schedules, in particular, the idealistic
assumption of the protocol model and the orthogonality
assumption. We examine the feasibility of the schedules
based on the adjacent and alternate channel rejection values
of the transceivers and the SINR threshold.

Fig. 8b shows the results for JFTSS in terms of the
percentage of nodes that are incorrectly scheduled (hence-
forth, referred to as errors). The top two lines show the
errors for two and 16 channels with both the assumptions,
whereas the bottom line shows the errors only for the
orthogonality assumption. We observe that the errors
are much higher in sparser deployments, because although
the interference created by an individual sender is not high
enough to jam concurrent transmissions, the cumulative
effect from multiple senders is very high, which is not
captured in the protocol model. On the other hand, in dense
deployments, a single transmitter can jam another one
because of smaller internode distances and higher level of
interference. In such cases, some of the nodes might select
the next available channels for concurrent transmissions;
however, interference can still be high because the channels
in reality are not perfectly orthogonal. After the peak, the
network gets sparser and interference reduces. We note
that, our simulations corroborate previous results [27] that

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 97

Fig. 8. (a) Bounds on the number of frequencies. (b) Percentage of
incorrectly scheduled links.

the protocol model may result in serious interference, and
adjacent channel interference cannot always be ignored.

7.3 Impact of Routing Trees

In the preceding sections, we observed that although
interference can be substantially eliminated by using power
control and multiple channels, connectivity of the tree still
limits the performance. In the following, we discuss the
improvements with routing tress.

7.3.1 Aggregated Convergecast on Degree-Constrained

Trees

Fig. 9a shows the variation of schedule length with density
when the maximum tree degree is 3 (in sparser scenarios,
with a maximum degree of 2, it was not always possible to
construct connected topologies). The top two lines are for
nodes transmitting at maximum power, and nodes using
power control. The bottom two lines are for JFTSS and
RBCA. When nodes transmit with maximum power, we
observe a reduction in the schedule length in dense
deployments as compared to non-degree-constrained trees
shown in Fig. 6a. We also notice further improvement with
power control in denser deployments than in sparser ones.

When nodes are assigned channels using RBCA, we see a
factor of more than 2 reduction in the schedule length in
dense deployments (L < 120), as compared to that using
RBCA on minimum-hop spanning trees. We also observe
that the schedule lengths are much larger than the
maximum degree in the routing tree for dense deploy-
ments, as compared to those in sparse scenarios (L � 120).
Considering deployments at different densities, routing
over minimum-hop degree-constrained spanning trees
together with RBCA achieves an order of magnitude
improvement than routing over minimum-hop spanning
trees while transmitting at maximum power. When we use
JFTSS, the schedule length is close or equal to the maximum
degree since it can handle interference using multiple
channels more effectively by reusing and assigning them to
the links instead of the receivers.

7.3.2 Raw-Data Convergecast on CMST

Fig. 9b shows the variation of schedule length on CMST.
The impact of such routing trees is more prominent in
sparser networks (L � 200) than routing over minimum-
hop spanning trees (Fig. 7b). When L < 200, the length is
bounded by N . Beyond this point, it is almost always not
possible to construct trees where the constraint 2nk � 1 < N

holds. In such cases, the schedule length is limited by
2nk � 1. These results indicate that RBCA and JFTSS
combined with a suitable tree construction mechanism can
achieve a reduction of up to 50 percent in the schedule
length as compared to single-channel communication on
minimum-hop spanning trees.

8 CONCLUSIONS

In this paper, we studied fast convergecast in WSN where
nodes communicate using a TDMA protocol to minimize
the schedule length. We addressed the fundamental
limitations due to interference and half-duplex transceivers
on the nodes and explored techniques to overcome the
same. We found that while transmission power control
helps in reducing the schedule length, multiple channels are
more effective. We also observed that node-based (RBCA)
and link-based (JFTSS) channel assignment schemes are
more efficient in terms of eliminating interference as
compared to assigning different channels on different
branches of the tree (TMCP).

Once interference is completely eliminated, we proved
that with half-duplex radios, the achievable schedule length
is lower bounded by the maximum degree in the routing
tree for aggregated convergecast, and by maxð2nk � 1; NÞ
for raw-data convergecast. Using optimal convergecast
scheduling algorithms, we showed that the lower bounds
are achievable once a suitable routing scheme is used.
Through extensive simulations, we demonstrated up to an
order of magnitude reduction in the schedule length for
aggregated, and a 50 percent reduction for raw-data
convergecast. In future, we will explore scenarios with
variable amounts of data and implement and evaluate the
combination of the schemes considered.

REFERENCES

[1] S. Gandham, Y. Zhang, and Q. Huang, “Distributed Time-Optimal
Scheduling for Convergecast in Wireless Sensor Networks,”
Computer Networks, vol. 52, no. 3, pp. 610-629, 2008.

[2] K.K. Chintalapudi and L. Venkatraman, “On the Design of MAC
Protocols for Low-Latency Hard Real-Time Discrete Control
Applications over 802.15.4 Hardware,” Proc. Int’l Conf. Information
Processing in Sensor Networks (IPSN ’08), pp. 356-367, 2008.

[3] I. Talzi, A. Hasler, G. Stephan, and C. Tschudin, “PermaSense:
Investigating Permafrost with a WSN in the Swiss Alps,” Proc.
Workshop Embedded Networked Sensors (EmNets ’07), pp. 8-12, 2007.

[4] S. Upadhyayula and S.K.S. Gupta, “Spanning Tree Based
Algorithms for Low Latency and Energy Efficient Data Aggrega-
tion Enhanced Convergecast (DAC) in Wireless Sensor Net-
works,” Ad Hoc Networks, vol. 5, no. 5, pp. 626-648, 2007.

[5] T. Moscibroda, “The Worst-Case Capacity of Wireless Sensor
Networks,” Proc. Int’l Conf. Information Processing in Sensor
Networks (IPSN ’07), pp. 1-10, 2007.

[6] T. ElBatt and A. Ephremides, “Joint Scheduling and Power
Control for Wireless Ad-Hoc Networks,” Proc. IEEE INFOCOM,
pp. 976-984, 2002.

[7] Ö. Durmaz Incel and B. Krishnamachari, “Enhancing the Data
Collection Rate of Tree-Based Aggregation in Wireless Sensor
Networks,” Proc. Ann. IEEE Comm. Soc. Conf. Sensor, Mesh and
Ad Hoc Comm. and Networks (SECON ’08), pp. 569-577, 2008.

[8] Y. Wu, J.A. Stankovic, T. He, and S. Lin, “Realistic and Efficient
Multi-Channel Communications in Wireless Sensor Networks,”
Proc. IEEE INFOCOM, pp. 1193-1201, 2008.

[9] A. Ghosh, Ö. Durmaz Incel, V.A. Kumar, and B. Krishnamachari,
“Multi-Channel Scheduling Algorithms for Fast Aggregated
Convergecast in Sensor Networks,” Proc. IEEE Int’l Conf. Mobile
Adhoc and Sensor Systems (MASS ’09), pp. 363-372, 2009.

98 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 1, JANUARY 2012

Fig. 9. (a) Scheduling on degree-constrained minimum-hop trees.
(b) Scheduling on CMST.

[10] V. Annamalai, S.K.S. Gupta, and L. Schwiebert, “On Tree-Based
Convergecasting in Wireless Sensor Networks,” Proc. IEEE
Wireless Comm. and Networking Conf. (WCNC ’03), vol. 3,
pp. 1942-1947, 2003.

[11] X. Chen, X. Hu, and J. Zhu, “Minimum Data Aggregation Time
Problem in Wireless Sensor Networks,” Proc. Int’l Conf. Mobile Ad-
Hoc and Sensor Networks (MSN ’05), pp. 133-142, 2005.

[12] W. Song, F. Yuan, and R. LaHusen, “Time-Optimum Packet
Scheduling for Many-to-One Routing in Wireless Sensor Net-
works,” Proc. IEEE Int’l Conf. Mobile Ad-Hoc and Sensor Systems
(MASS ’06), pp. 81-90, 2006.

[13] H. Choi, J. Wang, and E. Hughes, “Scheduling for Information
Gathering on Sensor Network,” Wireless Networks, vol. 15, pp. 127-
140, 2009.

[14] N. Lai, C. King, and C. Lin, “On Maximizing the Throughput of
Convergecast in Wireless Sensor Networks,” Proc. Int’l Conf.
Advances in Grid and Pervasive Computing (GPC ’08), pp. 396-408,
2008.

[15] M. Pan and Y. Tseng, “Quick Convergecast in ZigBee Beacon-
Enabled Tree-Based Wireless Sensor Networks,” Computer Comm.,
vol. 31, no. 5, pp. 999-1011, 2008.

[16] W. Song, H. Renjie, B. Shirazi, and R. LaHusen, “TreeMAC:
Localized TDMA MAC Protocol for Real-Time High-Data-Rate
Sensor Networks,” J. Pervasive and Mobile Computing, vol. 5, no. 6,
pp. 750-765, 2009.

[17] G. Zhou, C. Huang, T. Yan, T. He, J. Stankovic, and T. Abdelzaher,
“MMSN: Multi-Frequency Media Access Control for Wireless
Sensor Networks,” Proc. IEEE INFOCOM, pp. 1-13, 2006.

[18] Y. Kim, H. Shin, and H. Cha, “Y-MAC: An Energy-Efficient Multi-
Channel MAC Protocol for Dense Wireless Sensor Networks,”
Proc. Int’l Conf. Information Processing in Sensor Networks (IPSN ’08),
pp. 53-63, Apr. 2008.

[19] B. Krishnamachari, D. Estrin, and S.B. Wicker, “The Impact of
Data Aggregation in Wireless Sensor Networks,” Proc. Int’l Conf.
Distributed Computing Systems Workshops (ICDCSW ’02), pp. 575-
578, 2002.

[20] J. Zander, “Performance of Optimum Transmitter Power Control
in Cellular Radio Systems,” IEEE Trans. on Vehicular Technology,
vol. 41, no. 1, pp. 57-62, Feb. 1992.

[21] P. Kyasanur and N.H. Vaidya, “Capacity of Multi-Channel
Wireless Networks: Impact of Number of Channels and Inter-
faces,” Proc. ACM MobiCom, pp. 43-57, 2005.

[22] G. Sharma, R.R. Mazumdar, and N.B. Shroff, “On the Complexity
of Scheduling in Wireless Networks,” Proc. ACM MobiCom,
pp. 227-238, 2006.

[23] X. Lin and S. Rasool, “A Distributed Joint Channel-Assignment,
Scheduling and Routing Algorithm for Multi-Channel Ad-Hoc
Wireless Networks,” Proc. IEEE INFOCOM, pp. 1118-1126, 2007.

[24] C.H. Papadimitriou, “The Complexity of the Capacitated Tree
Problem,” Networks, vol. 8, no. 3, pp. 217-230, 1978.

[25] H. Dai and R. Han, “A Node-Centric Load Balancing Algorithm
for Wireless Sensor Networks,” Proc. IEEE Conf. Global Telecomm.
(GlobeCom ’03), pp. 548-552, 2003.

[26] M. Zuniga and B. Krishnamachari, “An Analysis of Unreliability
and Asymmetry in Low-Power Wireless Links,” ACM Trans.
Sensor Networks, vol. 3, no. 2, p. 7, 2007.

[27] J. Grönkvist and A. Hansson, “Comparison between Graph-Based
and Interference-Based STDMA Scheduling,” Proc. ACM Mobi-
Hoc, pp. 255-258, 2001.

Özlem Durmaz Incel received the BSc and
MSc degrees in computer engineering from the
Yeditepe University, Turkey, in 2002 and 2005,
respectively. She received the PhD degree in
computer science from the University of
Twente, Netherlands, in March 2009. She is
currently a postdoctoral researcher in the
Networking Laboratory (NETLAB) of Bogazici
University, Turkey. Her dissertation is focused
on efficient data collection in wireless sensor

networks and was entitled “Multi-Channel Wireless Sensor Networks:
Protocols, Design and Evaluation.” She was a visiting student in the
Autonomous Networks Research Group of the University of Southern
California as part of her PhD studies from 2007-2008.

Amitabha Ghosh received the BS degree in
physics from the Indian Institute of Technology
Kharagpur, India, in 1996, and the ME degree
in computer science and engineering from the
Indian Institute of Science, Bengaluru, in 2000.
He received the PhD degree in electrical
engineering from the University of Southern
California in August 2010. Between 2000 and
2004, he worked for Alcatel-Lucent and
Honeywell on GSM/GPRS networks and wire-

less ad hoc networks. He is currently a postdoctoral researcher at
Princeton University. His research interest is in design and analysis
of algorithms for scheduling, routing, and power control for cellular
and wireless sensor networks.

Bhaskar Krishnamachari received the BE
degree in electrical engineering from The Cooper
Union in 1998, and the MS and PhD degrees in
electrical engineering from Cornell University in
1999 and 2002, respectively. He is an associate
professor in the Ming Hsieh Electrical Engineer-
ing Department at the University of Southern
California Viterbi School of Engineering. His
research interests are in the design and perfor-
mance analysis of protocols for next-generation

wireless networks. He received the US National Science Foundation
CAREER Award in 2004.

Krishnakant Chintalapudi received the MS
degree in electrical engineering from Drexel
University and the PhD degree in computer
science from the University of Southern
California. He is currently working as an
associate researcher at Microsoft Research,
India. His research interests include delay-
sensitive and fault-tolerant wireless sensor
networks, high-data-rate wireless sensor net-
work applications, hybrid sensor networks, and

wireless control and automation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

INCEL ET AL.: FAST DATA COLLECTION IN TREE-BASED WIRELESS SENSOR NETWORKS 99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

