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Abstract—We investigate the trade-off between two mutually
conflicting performance objectives — throughput and delay —
for fast, periodic data collection in tree-based sensor netorks
arbitrarily deployed in 2-D. Two primary factors that affec t the
data collection rate (throughput) and timeliness (delay) &e: (i)
efficiency of the link scheduling protocol, and (i) structue of the
routing tree in terms of its node degrees and radius. In this pper,
we utilize multiple frequency channels and design an efficig link
scheduling protocol that gives a constant factor approximton
on the optimal throughput in delivering aggregated data fran
all the nodes to the sink. To minimize the maximum delay
subject to a given throughput bound, we also design ar«, 3)-
bicriteria approximation algorithm to construct a Bounded-
Degree Minimum-Radius Spanning Tree, with the radius of the
tree at most 5 times the minimum possible radius for a given
degree boundA*, and the degree of any node at mosi\* + «,
where « and 8 are positive constants. Lastly, we evaluate the
efficiency of our algorithms on different types of spanning tees,
and show that multi-channel scheduling, combined with optinal
routing topologies, can achieve the best of both worlds in tens of
maximizing the aggregated data collection rate and minimiing
the maximum packet delay.

Index Terms—Convergecast, TDMA scheduling, multiple chan-
nels, routing trees, approximation algorithms.

. INTRODUCTION
ONVERGECAST, namely thenany-to-ondlow of data

C

and (ii) structure of the routing tree. A typical sensor nigle
equipped with a single half-duplex transceiver, using Wwhic

can either transmit or receive only one packet at any time.
Moreover, nodes very close to each other cannot transmit
simultaneously due to interference in the wireless medium.
It is shown that for periodic traffic, multiple frequencies
under spatial-reuséme division multiple acce4§ DMA) can
eliminate interference and enable more concurrent tragismi
sions [8], thus, enhancing the rate and providing bounds on
the completion time of convergecast [12]. In addition, sinc
TDMA protocols assign a dedicated time slot for each node
to transmit and allow it to enter sleep modes during inactive
periods, they perform well even under heavy traffic condgio
and achieve low duty cycles. We note that, although multiple
frequencies have been used in the domain of ad hoc networks,
their use in sensor networks is new and challenging, edpecia
due to resource constraints on the nodes. However, since
current sensor network hardware, such as CC2420 radios,
already support multiple frequencies, it is imperativet tiva

take their advantage in designing provably-efficient, mult
channel TDMA scheduling protocols.

In [8], the authors show that once interference is reduced
using multiple frequencies, the structure of the routirgptr
plays an important role in scheduling. It is shown that degre
constrained trees even with a single channel perform better

from a set of sources to a common sink over a tree-basgdy shortest-path trees (which have high degrees) with mul

routing topology, is & fundamental communication pringtiviiple channels. While it is true that the overall scheduling
in sensor networks. Such data flows can be tngger_ed eltqﬂrformancejoinﬂy depends on frequency-timeslot assitt

by external events, such as user queries to periodically ggly the routing tree structure, once multiple frequencies a

a snapshot view of the network, or can be automated o\Rleq to eliminate interference, high node degree becorees th

long durations. For real-time, mission-critical, and higita-
rate applications [1]-[3], it is often critical teimultaneously

next major bottleneck in achieving high throughput, beeaus
the children of a common parent need to be scheduled at

maximize the data collection rate and minimize packet delayjifferent time slots due to half-duplex radios. On the other
In addition, when summarized information is required or thg,ng trees with low node degrees avoid bottlenecks and allo
measurements are correlated, it is beneficial to aggregée ¢or more concurrent transmissions in the presence of meiltip
en route to the sink. .Th-IS helps in reducing redundancy a_ﬂ‘équencies. For a given deployment of nodes, however, a
the number of transmissions. We refer to such a data C@jmabpanning tree with low node degrees has large hop distances

process under aggregation aggregated convergecast

to the sink. Thus, if packet delays are measured purely in

Two primary factors that affect the data collection rate angdyms of hop counts, a tree with low node degrees is likely to

packet delays are: (i) efficiency of the link scheduling poat,
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incur high delays as opposed to one with high node degrees.
These two opposing factorsnode degreendhop distance
therefore, underscore the importance of the routing tapolo
in maximizing the rate and minimizing packet delays.

Fig. 1(a) shows &hortest-path tre¢SPT) on a network of
800 nodes randomly deployed in a region of six# x 200.
The sink is located at the center, and a link between any two
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Fig. 1. (a) Shortest Path Tree (SPT): high node degrees mitmmin hop distances to the sink. (b) Minimum InterferenceeT¢(MIT): low node degrees
but large hop distances to the sink. Dark lines represest édges, dotted lines represent interfering links on theeseemmunication graph. (c) Cost of
edge(u,v) is 11.

nodes exists if they are within a distance 2if from each constant factor approximation algorithm to construct ainmu
other. We observe that the nodes in the SPT have high degrees minimizing the maximum hop distance to the sink (i.e.,
but minimum hop distances to the sink. Fig. 1(b) shows rainimizes the maximum delay) for a given maximum degree
minimum spanning tre@ST) on the same deployment, whereconstraint. To the best of our knowledge, this is one of the fir
the cost of an edgéu,v) is equal to the number of nodesworks to simultaneously consider both throughput and delay
covered by the union of the two disks centered at nodaader the same framework in wireless sensor networks.
u and v, each of radius equal to their Euclidean distance The rest of the paper is organized as follows. Section I
d(u,v) (cf. Fig. 1(c)). This cost function gives a measure oflescribes related works. In Section Ill, we describe our mod
the interference by counting the number of nodes affected elg, assumptions, and problem formulation. Section 1V $esu
v and v communicating with just enough transmit power t@n designing a multi-channel link scheduling algorithm for
exactly reach each other. The MST thus constructed is knoaggregated convergecast, and Section V presents an hfgorit
as theminimum interference tre@MIT) [4], which clearly has for constructing a bounded-degree, minimum-radius rgutin
low node degrees but large hop distances to the sink. Thiree. We present our numerical evaluations in Section W, an
if an SPT is best for achieving low delays, an MIT is moréinally draw some conclusions in Section VII.
suitable for high data collection rate. However, we notd tha
the designer of a scheduling algorithm might not always have
the flexibility to construct the best possible routing treeme-  The scheduling problem with the objective to minimize
times, network designers/planners have specific conggraire the number of time slots required to complete convergecast
to socio-economic reasons (e.g., cost constraints), and ¢known as theschedule lengthhas been studied in [5]-[9] for
allow data flow only along specific paths in the network. laggregated data, and in [10]-[12] for raw data. Most of the
such cases, the routing tree is fixed and given a-priori, fexisting algorithms aim to maximize the number of concurren
example, a minimum-cost spanning tree with the cost functidransmissions and enable spatial reuse by devising sieateg
depending on edge lengths and link bit error rates (BER¥ eliminate interference.
In addition, there might be topological constraints thacéo  For aggregated convergecast, Annamalfail. [5], inves-
data to follow specific paths. For instance, in structurallithe tigate the use of orthogonal codes to eliminate interfezenc
monitoring, one can deploy nodes only at specific locatiomghere nodes are assigned time slots from the bottom of a
due to geometric constraints, and accordingly can havesacceonvergecast tree to the top. Similarly, in [6], the problem
to only fixed and pre-specified routing paths. is defined as avinimum Data Aggregation Tim@roblem
with the goal to find a collision-free schedule that routemda
In this paper, we consider aggregated convergecaatluin from the subset of nodes to the sink in the minimum possible
trarily deployed networks in 2-D, and design algorithms wittime. These studies, however, consider one-shot datactiothe
provably-good performance bounds flink schedulingand rather than continuous and periodic convergecast over long
constructingrouting topologiesto simultaneously maximize durations like in our case. In addition, they do not consider
the data collection rate and minimize packet delays. Motee impact of routing trees and instead focus ondhesality
specifically, our key contributions are twofold: (i) for avgh  constraintby which a node is not eligible to be scheduled
routing tree, we design a multi-channel link schedulingi@ro before it receives all the packets from its children.
col that gives a constant factor approximation on the ogtima In [7], Moscibroda theoretically shows that non-linear pow
aggregated data collection rate, and (ii) we design a bigait control mechanisms (without discrete power levels) can sig

Il. RELATED WORK



nificantly improve the scheduling complexity and capacity dhe maximum degree of any node plus the diameter, and use
wireless networks. In his work, the aggregated data capasit multi-commodity flowesults to prove the approximations. For
well as the notion of worst-case capacity, which conceres thomplete graphs, a®(/log. N)-approximation algorithm
guestion of how much information can each node transmit i® proposed by Konemanat al. [27] under the Euclidean
the sink regardless of the networks topology, are invetsdyja metric. It uses a combination of filtering and divide and
for typical worst-casestructures, such as chains. However, itonquer techniques to find a spanning tree of maximum node
does not consider further generalizations for convergeeses degreeA* and diameteO(y/loga- N - D).
and the trade-off between throughput and delay. Our work differs from the above in that we consider
In case of raw data convergecast, Gandheimal. [12] the routing tree construction problem eandom geometric
consider the scheduling problem using a single channel TDMgkaphs where the goal is to minimize the radius of a spanning
protocol. They describe an integer linear programming fotree subject to a predefined budget on the degree. In our
mulation and propose a distributed scheduling algorithat thprevious studies [8], [9], we had investigated the impact of
requires at mosi NV time slots for general networks, wheMe transmission power control and multiple frequency chasnel
is the number of nodes. A similar study [10] is presented mn the schedule length. In this work, we further extend
Choi et al. in which an NP-completeness result is proved othose results by studying the impact of routing trees on both
minimizing the schedule length for a single frequency. maximizing the aggregated sink throughput and minimizing
The use of multiple channels has been well researched in the maximum delay.
domain of ad hoc networks. To improve network throughput,
So et al. propose a MAC protocol that switches channels l1l. PRELIMINARIES
dynamically and avoids the hidden terminal problem usin'g .
temporal synchronization [13]. A link-layer protocol el A Model and Assumptions
SSCH is proposed by Babt al.that increases the capacity of We model the network as an undirected graph- (V, E),
IEEE 802.11 networks by utilizing frequency diversity [14]whereV is the set of nodes anfl is the set of edges rep-
In the domain of sensor networks, however, there exist few@senting communication links. We assume that the network
works using multiple channels. The first multi-frequency ®IA is connected, and all the nodes have a uniform transmission
protocol MMSN is proposed by Zhoet al. where the goal is rangeR whose value depends on a signal-to-noise-ratio (SNR)
to increase the aggregated throughput [15]. threshold. Thus, any two nodesandv can communicate with
Several optimization problems arising in the design of coneach other if their Euclidean distandé¢u, v) is at mostR.
munication networks can be modeled as constructing optim&e denote the sink by, and define theadius of a spanning
network topologies [21], in particular, spanning treestthéreeT on G rooted ats as the maximum hop distance from
satisfy certain constraints on node degrees, diametentak t any node to the sink. Each node is equipped with a single
cost. TheMinimum Degree Spanning Trgeoblem, where the half-duplex transceiver, using which it can either trartsoni
goal is to construct a spanning tree such that its maximure nogceive a single packet at any given time.
degree is minimized, is NP-hard on general graphs [20]. TheWe consider theprotocol interference modela.k.a. disk
best known algorithm proposed Furer and Raghavachari [2#Bph model), in which concurrent transmissions on two
computes a spanning tree with maximum node degree at medges interfere with each other if and only if: (i) the edges
A*+1, whereA* is the optimum node degree. In [23], Singtare adjacent, or (ii) both the transmissions are on the same
and Lau consider théMinimum Bounded Degree Spannindgrequency, and at least one of the receivers is within the
Tree problem where, given a degree bound on each vertéterference range of the non-intended transmitter. Theee
they find a spanning tree of optimal cost with each degrégpes of interferences are known pemary and secondary
exceeding its bound by at most one. TH@mimum Diameter conflicts, as illustrated in Fig. 2(a) and 2(b), respectiv&he
Spanning Tre@roblem is to construct a spanning tree such thaetting of the interference range is empirically deterrdiard
the tree diameter, defined as the longest hop distance hetwisetypically 2 to 3 times the transmission range [29]. In this
any pair of nodes, is minimized. On Euclidean graphs, thigork, we assume that it ig times R.
problem is solved in polynomial tim&(N?), and the result  Under a TDMA setting, consecutive time slots are grouped
extends to any complete graph whose edge weights satisfin® equal size frames that are repeated for periodic s¢hedu
distance metric [24]. The most recent result on generallgrapng. We assume that every node generates a single packet
is proposed in [25] that runs i®(mN + N2log N) time, in the beginning of each frame, and it has the ability to
wherem is the number of edges. aggregate all the packets from its children as well as its
Most closely related to our work is thBounded-Degree own into a single packet before transmitting to its parent.
Minimum-Diameter Spanning Trgeoblem, where the goal is The class of aggregation functions in this category include
to minimize the tree diameter subject to a degree constraidistributiveandalgebraicfunctions [16], where the size of an
The first bicriteria approximation algorithm on generalgita aggregated packet is constant regardless of the size ohthe r
is proposed by Rawet al. [26], which runs inO(mN log N) measurements. Typical examples of such aggregation ansti
time and finds a spanning tree of dege\* log N+log? N) are MIN, MAX, MEDIAN, COUNT, SUM, AVERAGE, etc.
and diameteiO(D log N), where A* is the minimum max-  We assume that transmissions on different frequencies are
imum degree of any spanning tree of diameter at midst orthogonal and non-interfering with each other. Althoubis t
The authors use the notion gfoise of a tree, defined as assumption may sometimes fail in practice depending on
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Fig. 2. (a) Primary conflict on adjacent edges and ex. (b) Secondary
conflict when transmissions are on the same frequencyfsand at least one

of the receivers is within the interference range of the imt@rded transmitter. Frame 1 Frame 2
1]2]3]4]5]6]] 1 | 2 [3[4]5]6
transceiver-specific adjacent channel rejection valuggere S| 112)3]-|-]-](14]|(256)3|-|-]|-
imental results [8] show that scheduling performance ramai L) - -|-]4]-]- - - il el
similar for both CC2420 and Nordic nrf905 radios. 2] -]-]-1-15]6 . - -|-15]6
We consider aeceiver-based frequency assignmstnategy, ©
Frame 1 Frame 2

in which we statically assign a frequency to each of the
receivers (parents) in the tree, and have the childrenrriins 1] 2 3] 1 ] 2 |3

on the same frequency assigned to their parent. Due to s||1](25) ]3] ((14](256)3
this static assignment, each node operates on at most two 1y - 4 | - - 4 -
frequencies, thus, incurring less overhead compared ter oth 2|5 - 6 5 - 6
dynamic assignments, such as pair-wise, per-packet @egoti C)

tion of frequencies. This receiver-based channel assighise

a Widely used approach in sensor networks as a conveni?ﬁt3- Aggregated convergecast: (a) Schedule length ohé slots with one
requency. (b) Schedule length of 3 time slots with two frengies. (c), (d):

way to organ_lze .mun"Channel prOto_COIS- because it SMI' Nodes from which aggregated data is received by their qooreding parents
synchronization issues as all receptions take place oraie s in each time slot over 2 consecutive frames for (a) and (spaetively.

channel at each node. For instance, using such a receisedba

strategy, a real-world implementation of a TDMA/FDMA so-

lution for bulk data collection in sensor networks is preaeen entries(1,4) and(2, 5, 6) represent single packets comprising
in [32], while the maximum achievable rate for aggregatesygregated data. Thus, starting at fraznehe sink continues
data collection is studied in [8]. In a recent work [35], thgo receive aggregated data froml the nodes once in every
performance of receiver-based channel assignment is als@me slots, and aipelineis established. We measure the
compared with two other strategies callgde-based multi- data collectionrate by the number of time slots required to
channel protocol(TMCP) [30] andjoint frequency-timeslot schedule all the tree edges exactly once per frame, and call
scheduling(JFTSS) [31], and is found to be superior thaf the schedule lengthMaximizing the data collection rate is
both. While JFTSS does not easily lend itself to a distridutehus equivalent to minimizing the schedule length. In Figp) 3
solution (since interference relationships between alkdi we show the benefits of multiple frequencies by assigning
must be known), in TMCP, contention inside the brancheffferent frequencies to the receiver nodesl, and 2. This

is not resolved because all the nodes on the same braaghinates all secondary conflicts and reduces the schedule

communicate on the same channel. length to only3 time slots, as shown in Fig. 3(d). We note that
multiple frequencies cannot eliminate primary conflicte doi
B. Problem Formulation the inherent property of the transceivers being half-duple

We first explain the process of aggregated convergecast anilulti-Channel Scheduling Problem:- Given a spanning
the notion ofschedule lengthFig. 3(a) shows a network @f tree7 onG, and K orthogonal fre_quenues, we want to assign
source nodes and a given routing tree whose edges are mafkdggquency to each of the receivers, and a time slot to each
by solid lines; dotted lines represent secondary conflits. of the edges irff” such that the schedule length is minimized.
also show a possible frequency and time slot assignment.  Since both node degree and tree radius affect the sched-

The left-most column in Fig. 3(c) lists the receiver nodegle length and packet delay, we formulate the problem of
(s, 1, and2), and the entries in each row list the nodes froonstructing routing trees as kacriteria optimization prob-
which packets are received by their corresponding receivéeém [28], in which, given an upper bound on the maximum
in each time slot. We note that at the end of framethe node degree, our goal is to minimize the tree radius. We call
sink has not yet received packets from nodess and 6, such atree 8ounded-Degree-Minimum-Radius Spanning Tree
however, as the same schedule is repeated, aggregatedspa¢B®MRST). The routing tree construction problem is formgall
from nodesl and 4, and node<, 5, and 6 reach the sink defined as follows.
starting from slotl and slot2, respectively, of frame. The Routing Tree Construction Problem: Given a graphz and



a constant parametér* > 2, we want to construct Bounded- Algorithm 1 BFS-TIMESLOT-ASSIGNMENT
Degree-Minimum-Radius Spanning TfEen G rooted at sink 1. Input: T' = (V, Er)
s, such that the radius @F is minimized while the degree of 2. while Ep # ¢ do
any node inT" is at mostA*. 3. e < next edge fromEr in BFS order;

We define an(«, 8)-bicriteria approximation of the routing 4.  Assign the minimum time slot te respecting adjacency
tree problem as one in which the maximum node degree is at ~ constraints;
mostA* + «, and the radius is at mogttimes the minimum 5. Er < Ep \ {e};
possible radius subject to the degree constraint, wheaad 6. end while
£ are positive constants. We note that in our formulation,
« is an additive factor whereass is a multiplicative factor.
Such bicriteria formulations are quite generic and robast, any two nodes irG¢ if their corresponding receivers @ are
the quality of approximation is independent of which of th#cident on two edges that form secondary conflicts.
two criteria the budget is imposed on, and it subsumes the casL EMMA 1: The numberK .. of frequencies that will be
where one wishes to optimize a functional combination of tifalifficient to remove all the secondary conflicts in the o@agin
two objectives, such as, maximizing the sum or product of t#§aphG is at mostA(Gc)+1, whereA(G¢) is the maximum
maximum node degree and tree radius. Bicriteria optindpati N0de degree .. We note that this upper boun®(G¢) +1
problems on spanning trees are often NP-hard on gendfah result of greedy coloring by first ordering the verticasd

graphs, and sometimes even on geometric graphs [28]. it may not be tight.
Proof: Since we create an edge between every two nodes

in Go whenever their corresponding receiversGhform a
secondary conflict, assigning different frequencies toryeve
We observed in Fig. 3(b), that multiple frequencies, whesuch receiver-pair i’ is equivalent to assigning different
assigned appropriately, can reduce the schedule length agjors to the adjacent nodes @ic. Thus, K. is equal to
eliminating secondary conflicts. In this section, our gaal the minimum number of colors needed to vertex calés,
to design a multi-channel link scheduling protocol that hascalled itschromatic numbery(Gc). Sincex(G) < A(G)+1,
provably-good performance guarantee on the optimal sd¢aedipr any arbitrary graplt;, the lemma follows. [ |
length. Formally, we define the decision version of the Multi As illustrated in Fig. 4(b), the frequencies assigned to the
Channel Scheduling Problem on arbitrary graphs (whereslinkeceivers inG¢ are as follows: frequency; to nodesl and
can exist between any pair of nodes) as follows. 2; f» to nodess3, 4, and8; f3 to nodess, 5, and6; and f, to
Multi-Channel Scheduling Problem (decision version node7. This particular frequency assignment is according to
Given a routing treel” on an arbitrary graphG, and two the heuristic calledargest Degree Firstin which we consider
positive integerg andg, is there an assignment of time slot$he nodes inGc in non-increasing order of their degrees and
to the edges of" using at mosy frequencies to the receiversassign the first available frequency such that no two adfacen

IV. MULTI-CHANNEL SCHEDULING

such that the schedule length is no more than nodes have the same frequency.
THEOREM 1: Multi-Channel Scheduling Problem is NP- Once all the secondary conflicts are eliminated by an
complete. appropriate frequency assignment to the receivers, the fol
The proof follows from Theorem 3 in [9]. lowing time slot assignment scheme, called BF®HSLOT-

ASSIGNMENT (running in O(|Ex|?) time), presented in Al-
. . o _ gorithm 1 minimizes the schedule length. In each iteration
A. Scheduling With Unlimited Frequencies (lines 2-6) of the algorithm, an edgds chosen in the Breadth-

The NP-hardness of the Multi-Channel Scheduling Problehirst-Search order (starting from any node), and is assigne
is due to the presence of interfering links that cause Smndthe minimum time slot that is different from all its adjacent
conflicts, making scheduling inherently difficult. This ig-b €dges. We prove in Theorem 2 that such an assignment gives a
cause many subsets of non-conflicting nodes are candiddfé8imum schedule length equal to the maximum degx¢€)
for transmission in each time slot, and the subset chosen0h?'. An illustration is shown in Fig. 4(c).
one slot affects the number of transmissions in the next slot THEOREM 2: After all secondary conflicts are removed,
A natural question to ask, therefore, is to find tm&imum Algorithm BFS-TIMESLOT-ASSIGNMENT gives a minimum
number of frequencies that can eliminaitt the secondary Schedule length equal t(T).
conflicts, which will then reduce the problem from being on  Proof: The lower boundA(T') follows trivially, because
a graph to being on a tree. This minimum, however, is agd-"ﬂ'r‘ne edges incident on the vertex with the maximum degree
NP-hard to compute for arbitrary graphs, as shown in [17]. i§quire at least\(T") distinct colors. For a BFS traversal on
the following, we give an upper bound, and show that whendtree, since an edge can conflict with at mastl’) — 1
sufficientnumber (i.e., unlimited) of frequencies is availabledges that come before it in the traversal, algorithm BFS-
the scheduling problem can be solved optimally in polyndmid IME SLOT-ASSIGNMENT usesA(T') colors. u
time.

Create aonstraint graphG¢ = (Ve, Ec) from the original B Scheduling with Limited Frequencies
graphG as follows (cf. Fig. 4(a) and 4(b) for an illustration). We showed in the previous subsection that all the secondary
For each receiver (parent) (&, create a node /. Connect conflicts can be removed when sufficient frequencies are



(b)

Fig. 4. (a) Original graplG; receiver nodes are shaded. (b) Constraint gi@phand a frequency assignment to the receivers according fgekaDegree
First. Here, 4 frequencies are sufficient to remove all theoséary conflicts, i.e., frequencies on adjacent nodes iieresht. () An optimal time slot
assignment with schedule length 3 after all the secondanjlicis have been removed.

available, allowing us to compute a minimum-length schedurhen, a load-balanced frequency assignmerit in ¢; is

in polynomial time. However, typically there is a limitatio defined as:

on the number of frequencies over which a transceiver can m* = arg min max {€(fr)} (2)
m

operate, and, as shown in Theorem 1, the scheduling problem ,
is NP-hard for agiven (constant) number of frequencies. In e denote the load on the maximally loaded frequency

this subsection, we take into account this constraint on tH8der mappingn* in cell ¢; by £ . In the following lemma,
number of frequencies of current WSN hardware, and desﬁ/ﬁ sketch a proof that load-balanced frequency assignraent i
P

an algorithm for the Multi-Channel Scheduling Problem thdYP-complete by reducing it from the well known problem of
gives a constant factor approximation on the optimal scleedd/inimum Makespan SchedulifyMS) on identical parallel
length. machines [19].

We divide the 2-D deployment region into a set of square L EMMA 2: Load-Balanced Frequency Assignment (LBFA)

grid cells {c;}, each of side length. We define two cells 'S NP-complete. . , _
to be adjacentto each other if they share a common edge Proof: Clearly, LBFA is in NP._ConS|der th(_a fo”‘?""'”g
or a common grid point. Thus, a cell can have either 3, gistance of the MMS problem. Given processing times of

or 8 adjacent cells depending on whether it is a corner céH,JO_bS’ RERE '_’t”’ ‘de an m_tegem, find an aSS|gnm_ent Qf
an edge cell, or an interior cell, respectively. In our apgto the jobs tom |de.n.t|cgl machllnes so that the com_pletlon time
to design an algorithm for minimizing the schedule lengttiMakespanis minimized. It is known that MMS istrongly
we decouple the frequency and time slot assignment phade-complete [19], and also admits a PTAS, originally due to
We first assign the frequencies to the receiverslinsuch Hochbaum :?md Shmoys [,33]' . .y

that the maximum number of nodes transmitting on the same VoW co_nS|derthe following reduction: For ea<_:h _mb:re_ate
frequency is minimized. Then, we employ a greedy time sI&'® (receiver) node;, and place all of them within a single

assignment scheme. We describe the two phases in defll- Without loss of generality, assume that the tintg's
below. are integral. Then, for each nodae, createt; neighbors and

1) Frequency Assignmentet R; = {v; v} denote place them in adjacent cells. Lastly, create one frequeocy f
1 gy Uny . . . . .
the set of receivers on a given routing tr&ethat lie in cell each machine. Clearly, the reduction runs in polynomiaétim
¢i, and letm : Ri — {fi,..., fx} be a mapping that assigns(because MMS is strongly NP-complete). Then, for each cell,
a frequency to each of these receivers. Note that;) = /i assigning the receivers to the frequencies in order to nik@m
. _] - . . . .
implies that all the children of;; transmit on frequencyf; the maximum load is the same as scheduling the jobs on the

due to the receiver-based frequency assignment strategy. machines in order to minimize the makespan. It_ is easy to see
DEFINITION 1: We define doad-balanced frequency as-that a solution for MMS corresponds to a solution of LBFA.

signmentin cell ¢; as an assignment of th§ frequencies to | erefore, the lemma follows. u

the receivers ifR;, such that the maximum number of nodes N Algorithm 2, we describe a frequency assignment
transmitting on the same frequency is minimized. scheme, called ®EQUENCY-GREEDY, which gives a constant

To express this formally, we define thead on frequency factor approximation on the optimal load. The basic idedef t

fx in cell ¢; under mappingn as the total number of children glgonthm is as follows: For each cel], we sort the receivers

of all the receivers iR, that are assigned frequengy, and in R; in non-increasing order of their in-degrees; let this order

denote it by¢*(f). We call the number of children of nodeP€: U1:-- -, Un,. Then, starting fromy;, we assign to each_
v; its in-degree and denote it byleg™™ (v;). Thus, subsequent node; a frequency that has the least load on it
/ ! so far, breaking ties arbitrarily. In Fig. 5(a), we illuseahis

() = Z deg™(v;) (1) scheme for two frequencig§ and f,, and three receivers,,
v €Rm(v;)=fi vg, andwvs, sorted in non-increasing order of in-degrees. First,



11 12 11 12 schedule all the edges in cell. Then, the minimum schedule
length, I', for the whole network is bounded by < 4 -
T3 Ya T Ta max; |7y, for any o > 2nR. . _ .
u v u_.‘ Proof: Consider the grid cells shown in Fig. 5(b) for
O @—0—Cg )
n = 1. Under the protocol interference model, a secondary
noo, 2, gt |2 conflict exists between any two nodes if they are within a
[ OO ray ) distancenR away from each other. This implies that interfer-
ence is spatially restricted and time slots can be reusexsacr
'3 & '3 [ cells that are well separated. In particular, for any 2nR,
a>2R two edgese = (u,v) ande’ = (v/,v’'), whose receivers
andv’ are in non-adjacent cells, must have their non-intended
(@) (b) transmittersu’ and u, respectively, more than distancen®

Fig. 5. (a) Frequency assignment according REBUENCY-GREEDY. Load away and, therefore, can be scheduled on the same time slot
on frequencies?(fi1) = 5, £(f2) = 5. White colored nodes transmit on regardless of the frequency assignment_

frequency f1; gray colored nodes transmit on frequengy. (b) Four pair- ; ) ;
wise disjoint sets of time slotg;, 72, v3, and~4 schedule the whole network. If the set of time SIOtS%' represents a unique color, then

Each sety; maps to a distinct color. the whole network can be scheduled using at most four dtstinc
colors such that no two adjacent cells have the same caar, i.
Algorithm 2 FREQUENCYGREEDY four pair-wise disjoint sets of time slots, as shown in Fign)5
1. for all non-empty cell; do Thus_, the total number of _time slots required is 4 times the
2. Sort receivers inR; in non-increasing order of in- maximum numbez)of slots in any sef. ) u
degrees: LEMMA 5 If LY denote the I(_)ad on the maximally loaded
3. Supposedegi™(vy) > deg™(vz) > ... > deg™(vn,); freq_uency in cellc_l- under mappingp : R; — {f1,..., fx}
4. for j=1ton; do a}chleved by glgorlthm REQUENCY-GREEDY, then any greed_y
5 Find frequencyf; that is least loaded (breaking tiest'me. slpt asilg!’\ment scheme can schedule all the edged in cel
arbitrarily): ¢; within 2L7 time slots. _
6. Assign f;, to v;: Proof: Consider a multi-graptd = ({f1, ..., fK},E’),
+  end for ! where for each edge = (vi,vy#), vi,vy € R; with
s end for o(v;) # o(vir), we have an edgép(v;), p(vi)) € E’. Note

that these will be multi-edges; let fx, i) denote the number
of edges betweerf, and f; in H. Then,deg(fx) < lf(fk),
wherelf(fk) is the load onf, under¢ in cell ¢;. By Ore’s

nodev, is assigned frequencj, incurring a load of 5, as it yheorem [18], which generalizes Vizing's theorem for edge

has 5 children._ Then node i§ assigned f_requencjé, giving coloring on multi-graphs, it follows that the edges /ih can
a load of 3. Finally, nodes; is also assigned frequendy, g colored usingnax; {1 (fi)} colors. Therefore, all edges of
because is the least loaded so far. In this particular case, tI}ﬁe forme = (v;,v;7) between two nodes iR with different
assignment achieves an optimal load of 5 on both frequencigg, encies can be colored inax {1°(f1)} 279 colors

In general, the following approximation holds. All the remaining edges either have only one end-point in
_LEMMQ 3 {Algonthm FREQUENCYGREEDY in cell ¢; 1. or have both end-points iR;, with the same frequency
gives a(s — ﬁ)-apprommatmn on the maximum 10" on their receivers; le§( f;,) denote the set of such edges with
achieved by an optimal load-balanced assignment their end-point irR; that are assigned frequengy. Note that

Proof: We show that REQUENCY¥GREEDY is identical |g( )| < 1?(f:), and edges € S(fi),¢’ € S(fi') can be
to Graham’s list scheduling for MMS according tongest assigned the same time slot/if # fi.. So all the remaining
processing time firs{LPT rule) [19]. Each receivevj € Ri  edges can be scheduled inax;, IS(fr)] < maxk{lf’(fk)}
corresponds to a job, and its in-degreeleg™ (v;) to time  time slots. Therefore, all edges in can be scheduled within
t; (assume integral). Each frequengy corresponds to a 9. max,{i?(f;)} = 2L? time slots, and the lemma follows.
processorm. The load on frequency is therefore equal m

to the total time processon, takes. Since we first sort the \we now prove our key approximation result.
receivers in non-increasing order of their in-degrees tlegefo THeEoOrREM 3: Given a routing treel’ on an arbitrarily
assigning them to the least loaded frequency, it is idehtica geployed network in 2-D, anfl” orthogonal frequencies, there
first sorting the jobs in non-increasing order of their pssieg  exists a greedy algorithm! that achieves a constant factor
times before assigning them to the least loaded machirg%.a.(g — 2+ )-approximation on the optimal schedule length,
Since LPT gives a(5 — 3z )-approximation, therefore, sowheres., > 0 is a constant for any > 27R.
does REQUENCYGREEDY. u Proof: Algorithm A consists of two phases. In Phase
2) Time Slot Assignmen©nce the receivers in each cell 1, we run algorithm REQUENCY¥GREEDY to assign thek
are assigned frequencies according to algorittREGUENCY  frequencies to the receivers in each cell. In Phase 2, we
GREEDY, we employ a greedy time slot assignment schemgeedily schedule anaximalnumber of edges in each time
for the whole network. slot. Let the schedule length of algorithih be T" 4, and that
LEMMA 4: Let y; denote theset of time slots needed to of an optimal algorithm be& PT'.



Due to the presence of interfering links, there exists ia closest to the node, breaking ties arbitrarily. We define a
constantu, > 0 depending on cell sizey, such that at cell to benon-emptyf it has at least one node, and define two
most u, edges in any cell, whose receivers are on the samells to beneighborsof each other if they share at least one
frequency, can be scheduled in the same time slot by emmmon side. The basic idea of the spanning tree constructio
optimal algorithm. algorithm is as follows.

Now, regardless of the assignment chosen by an optimalThe algorithm runs in two phases. In Phase 1, we construct
strategy, it will take at leastnax;{L" Z“O‘} time slots to abackbone treeTs = (Vg C V, Eg C E), from the original
schedule all the edges. This is becaiige is theminimumof graph G by choosing one representative node, callechl
the maximunmumber of edges that are on the same frequengybot, arbitrarily from each non-empty cell and connecting them

in cell ¢;. Thus, in a BFS order starting from the sink. While constructifig,
1 m* we also ensure that the hop distances along it are not too long
OPT 2 u_a - max {Li } 3) compared to a shortest-path tree @n This backbone tree
By running FREQUENCYGREEDY in cell c;, Lemma 3 determines the global structure of our solution.

In Phase 2, we constructlacal spanning tre@f minimum
radius within each cell from the remaining nodesVin\ Vg
L < <§ _ L) L (4) lying in that cell, while respecting the degree bouhd. This

T v is always possible because the nodes within each cell form a

implies

3 3K
and by scheduling a maximal number of edges in each tirs@mplete graphas the diameter of the circumcircle for each

slot, Lemma 5 impliegy;| < 2L?. Then, from Lemma 4: hexagonal cell is?. Finally, we construct the overall spanning
tree T' by taking the union of the backbone tree and all the
Fy < 4 m§X{|%|} local spanning trees. During the execution of the algorjthm
o we mark a cell if its local root has been included ifg;
< 8 mf“x{Li} otherwise the cell is unmarked. A formal description of the
4 1 . algorithm is given in Algorithm 3. We now describe the two
< 8-max { (g - 3_K> i } phases in detail below.
4 1 Phase 1 - Backbone Tree Construction:
< 8o |=—=—) -OPT L
(3 3K) 1) In the beginning, all the cells are unmarked. We initeliz

Tg with the sinks and mark its celk,.

We now derive a bound fop, using a classical result 2) Choose one local root arbitrarily from each non-empty
of circle packing due to Groemer [34]. Under the protocol  Cell- Let this set of nodes bR = {r,...,7.}. _
interference model, two edges can transmit simultanedisly 3) Consider those unmarked adjacent cétis} of s which
their receivers are at least a distange away from the non- intersect a circle of radiug centered as, and for which
intended transmitters. This implies that the maximum numbe ~ ©ne of the following conditions is met.
of edgesy., that can be scheduled simultaneously (on the @) Local rootr; in cell ¢; is a direct neighbor of.
same frequency) within a single cell is upper bounded by the b) Local rootr; in cell ¢; is not a direct neighbor of,

maximum number of nodes that can be placed with mutual ~ but there exists some other nodg, called ahelper
distance at leastR. From Groemer’s inequality, we know node that is a common neighbor of bothandr;.
that for a compact, convex s€t, the number of points of ~ ¢) Local rootr; in cell ¢; is neither a direct neighbor of
mutual distance at least 1 is bounded H¥<) + @ 1, s nor there is any helper node, but there existebper
where A(C) is the area and®(C) is the perimeter of”. For edge(wx, wy) whose one end, sayy, is incident in
a square grid cell of size, this equates t&j—; +2a+1, and cell ¢; and the other enab, in cell ;.
thus is an upper bound for, assuming)R > 1. In Fig. 6, these are the shaded cells.
4) For case a), connect directly to s and mark its celk;.
V. ROUTING TREE CONSTRUCTION UpdateTr by addingr; to Vp, and the edgér;, s) to

Ep. Nodesry, andrg in Fig. 6 are such nodes.

5) For case b), conneet; to s via the helper node. Mark
¢; and updatel’s by addingr; andwy to Vg, and the
two edges(r;,wy) and (wg, s) to Eg. In Fig. 6, nodes
r3 andrs are connected te via wy, and node-, via ws.
For case c), conneet; to s via the helper edge. Mark
¢; and updaté's by addingr;, wy, andwy to Vp, and
the three edge§;, wy), (wk, wy), and (wy, s) to Ep.
In Fig. 6, noder; is connected vidw, wy).

We now turn our attention to the routing tree construction
problem, where our goal is to design &m, 5)-bicriteria ap-
proximation to compute &ounded-Degree-Minimum-Radius
Spanning Tregsuch that the radius of the tree is at mgst
times the minimum possible radius for a given degree boun%)
A*, and the degree of any node is at mdst + «, wherea
and 3 are positive constants.

A. A Bicriteria Approximation Algorithm 7) Consider, in BFS order, these marked cghs} and re-
We tessellate the 2-D deployment region into a set of peat steps 3-6 with nodereplaced by the corresponding
hexagonal grid cells each of side lenglly2, as shown in local root inc;.

Fig. 6. We associate each node to a unique cell whose cent8) Continue until all the local roots ifR get connected.



Algorithm 3 Approximation algorithm forBounded-Degree
Minimum-Radius Spanning Tree
1. Input: G = (V, E); sink s; degree bound\* > 2
2. Output: BDMRST T of G
3. Tessellate the 2-D region into hexagonal grid cells, each
of side lengthR/2.
4. Associate each node to a unique cell whose center is
closest to the node.

5. Phase 1. Backbone Tree

6. All cells are unmarked.

7. Initialize T: Vs + {s}, Ep < ¢, mark cell ofs.

8. Choose one local root arbitrarily from each non-empty
cell; letR = {ry,...,r,} be the set of local roots.

9. Q< ¢;

10. ENQUEUEQ, s);

11. while Q@ # ¢ do

12.  u+ DEQUEUEQ);

13.  for all unmarked cells:; adjacent tou do

14, r; < local root inc;;
15. if Case (athen
16. Ve + Ve U{r;};
17. EB%EBU{(U,’I’J')};
Fig. 6. Backbone tree construction: Filled black circlegresent local roots 18. Mark Cj;
(chosen arbitrarily from each non-empty cell), and shadst @are adjacent 19 ENQUEUE(Q r )
cells of s that intersect the circle of radiug centered at, and satisfy one Ise ifC b ’h I
of the conditions (a), (b), or (c) of Phase 1. Iteration 1: &lo@otsry, ra, 20. else irLase ( )t en
r3, T4, T5, andrg are connected te. Nodesrs andrs are connected te 21. Ve + VU {rj, wk};
via helper nodew;, and noder, via helper nodews; noder; is connected oo Ep « EgU {(T wk) (wk u)}
via helper edgews, w3 ). i 7 ’ LR
23. Mark c¢;;
24, ENQUEUE(Qy Tj);

else if Case (c)then

We implement the BFS processing of the local roots in &
26. Ve « Vg U {r;, wi, wi };

queue data structure.

Phase 2 - Local Spanning Tree Construction: 27 Ep ¢ Bp U {0, won), (wi wie), (wir, w)s
) ; 28. Mark c;;
Consider the local root; in cell ¢;. Let the set of nodes 29 ENQUEUEQ, r);
in ¢; that are not yet connected to the backbone tre&be ' . ran
. 30 end if
{v1,...,vn,} C V \ V. Connectv; to r; treatingr; as its 31 end for

parent. Then, connect at moét* — 1 nodes (if those many )
. . . . . 2. end while
exist) fromV; to vy; these constitute the direct neighbors o ) .
. . ! 33, Phase 2: Local Spanning Tree
v1. Next, treating these direct neighbors as parents, connect
N . 4. for all non-empty cells:; do
at mostA* — 1 nodes to each one of them, if those many :
ex_lst. Fl_g. 7(a) _show§ an illustration of this phase. Cargin s6. LetV, — {v...v. } be the set of not yet connected
this until there is no isolated node left ¥;, and repeat the - .
. nodes inc; (V; induces a complete graph).
procedure for each of the non-empty cells. At the end of thi . o .
. . 37.  Construct local spanning tre€; of minimum radius
phase, each; contains a local spanning tréé rooted atr;, . )
: : - . with nodes inV; such that no node exceeds degfee
with each node (except the leaves and the last parent) hav%g end for
degreeA*. The overall spanning tre& is the union of the 39' retun T = Tpy U {T}}
backbone tred’s and all the local spanning tred§. ' B 7

. r; < local root incy;

B. Algorithm Analysis

THEOREM 4: Algorithm 3 gives an(«, 3)-bicriteria ap- Proof: We first show that all the local roots get connected
proximation to the Bounded-Degree-Minimum-Radius Spate the backbone tred’s. Since the original graplG is
ning Tree, wherex = 10 and 3 = 7. connected and the side length of each hexagonal céll/i5
The proof unfolds in the following lemmas. every non-empty cell must have at least one edge that crosses

LEMMA 6: Letr; andr; be any two local roots on thethe boundary of another non-empty cell. This means that the
backbone treel’s. Let Pg(r;,r;) be the shortest path onlocal root of every non-empty cell will be able to connect to
the original graphG betweenr; and r; consisting ofm  the local root of at least another non-empty cell using adrelp
hops. Then, the length of the unique simple p&if, (r;,;) node or at most one helper edge. Since the backbone tree is
betweenr; andr; on Ty is at most6m. constructed precisely in this manner, i.e., by connectilugal



(@) (b)

Fig. 7. (a) Local tree construction on an induced completplgrwithin
each cell for maximum node degre®* = 4; filled black circle represents
the local root. (b) Traversing the ed@ey,, uj1) along the shortest patAg
in graphG. Local rootsr;, andry; are at most distancBR away from
each other.

10

most 6 times the length of the path;. ]
LEMMA 7: The degree of a local root, a helper node, or a
node on a helper edge in the backbone tree is at most 12.
Proof: Recall that during the backbone tree construction,
a new local root from each non-empty cell adjacent to an
already chosen local roof; is connected either directly, via
a helper node, or via a helper edgerto This increases the
degree ofr; by at most one. Since the side length of each
cell is R/2, the maximum number of cells that are adjacent
to r; is at most 11; this will happen whery lies near one
of the corners within its celk;. There will be 6 cells that
are neighbors te; (i.e., share exactly one side wit}) and 5
other cells that are not neighborsdp Also, recall that during
constructing the local spanning trees within each cell, astm
one node is connected to the local root of that cell. Theegfor
the degree of any local root in the backbone tree is at most
12 in the worst case. A similar argument also holds for the
degree of any helper node. ]
Proof: (Theorem 4) Bound on the RadigsLet the radius
of an optimal spanning tree whose maximum node degree is
A* on graphG be OPT, and let that produced by Algorithm 3
be R(T'). Suppose* is a node farthest from sink and letm
be the hop distance on a shortest path tree (no degree bound)

root either directly, or using a helper node, or a helper edgeom s to v* on graphG. Then,OPT > m, because a degree

all the local roots get connected 1¢;.

Let Pa(ri,r;) = {ri = wo,u1,..., Um—1,umn = r;} be
the shortest path on grap&, and Pr,(r;,r;) = {r; =
Vo, V1, - -
backbone tred's. Note that eachy, is either a local root or
a helper node. We will show that for every edge., ux+1)
in P we add at most a constant number(of, v;4+1) edges
in PTB-

Consider the nodes,, ..., u.,—1, and traverse them in the
order as they appear ;. In parallel, traverse the path A,
by tracking the progress inPg, i.e., for every edge traversed
in Pz, we traverse a certain number of edgesHn,. Both
traversals start from the same cell (and the same ngde

Suppose at any give point, we are about to traverse the edge

(uk, ug+1). One of the two possibilities could occur: (i), and
uk+1 lie in the same cell, or (i, andug4 lie in different
cells, sayc, and cx11, respectively, as shown in Fig. 7(b).
In the first case, we do not traverse any edge’if,. In the

constraint can only increase the radius of a tree.
Now the nodev* can either be a local root, or a helper
node, or a node in a local spanning tree.

-,Un—1,v, = 7;} be the unique simple path on the . if v* is a local root, then by Lemma &(T") < 6m <

6-OPT.

if v* is a helper node or a node on a helper edge, then
the shortest path on the tree comprises a path fsdm

the local root of the cell containing*, plus an additional
hop from the local root ta*. Thus,R(T) < 6m + 1 <
6-OPT +1.

if v* is a node in a local spanning treég;, then the
shortest path on the tree comprises a path feota the
local root of the cell containing*, plus at mostR(T5;)
hops from the local root te*. Thus,

R(T) < 6m+ R(T})
< 6-OPT +OPT
= 7-OPT

second case, we make our traversal along the local roots and

helper nodes irPr,, such that the end point of the last edge

traversed inPr, is a local rootr;; that lies in the same cell

asugy1. This is always possible because each non-empty cell

contains a local root.
Since the Euclidean length of the ed@e,, ux+1) is at most
R, ux11 must lie in one of the adjacent cells@f. Also, since

The second inequality follows because the radius of each
local spanning tre@; constructed on the complete graph
within each cell is minimum, respecting degree constraint
A*, and soOPT > R(T}).
(Bound on the DegrgeFrom Lemma 7, the maximum node
degree of any node in the backbone tree is at most 12. Also,

the side length of each cell iB/2, the distance between thethe degree of any node is a local spanning tree is at most
local rootsr;, andr,..1 lying in cellsc; andey, 1, respectively, Thus, the degree of any node in the overall spanning tree is
is at most3R. Now, during the backbone tree constructioRounded bymax(A~*,12) < A* + 10, for any A* > 2.

phase in Algorithm 3, we first connect the local roots from Therefore, the theorem follows with = 10 and3 =7. m

all the non-empty adjacent cells of an already connected local

root before exploring other cells. Since connecting a locat

VI. EVALUATION

to the backbone tree takes at most 3 edges (when helper edgés this section, we evaluate the performance of our schedul-

are needed), the number of edges traversedgn for case
(i) is at most 6. Therefore, the length of the pat, is at

ing and routing tree construction algorithms using Matliaf-s
ulations on networks modeled aandom geometric graphs
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-B-Largest Degree First the parameten,,. Sincep,, decreases with decreasing and

* Upper Bound A(G¢) + 1] the smallest for which Lemma 4 holds i2R, we choose

a = 50. We first present the results for a single frequency,
and then discuss the case with multiple frequencies.

Fig. 9(a) and 9(b) show the schedule length and the
maximum packet delay, respectively, with increasing netwo
size on three different types of trees for a single frequency
Each point in the plot is averaged oveéf iterations. In

Number of Frequencies on SPT

*
Dﬂ:& ] each iteration, we deploy the nodes uniformly and randomly,
T construct the spanning trees, and then run the scheduling
‘ ., Igorithm. In oth d keep the node depl t fixed
o1 3 53 02 o5 algorithm. In other words, we keep the node deployment fixe
Network Density in a given iteration for all the three tree types in order to
preserve the underlying communication graph and minimize

Fig. 8. Number of frequencies required to remove all the séary conflicts L. . .
as a function of network density on shortest path trees. any statistical variation. The maximum degree bound on the

BDMRST is taken ag. We observe that the schedule lengths

on a BDMRST and MIT are very close to each other, whereas
We generate connected networks by uniformly and randonthyose on an SPT are much higher. This difference becomes
placing nodes in a square region of maximum <i@e x 200, more predominant with increasing network size because the
and connecting any two nodes that are at most dist&he€25 maximum node degrees on an SPT go up rapidly, as shown

apart. in Fig. 9(c). On the other hand, the maximum packet delays
on an SPT are minimum, and those on a BDMRST are very
A. Frequency Bounds close. However, the delays on an MIT are much higher due to

g very small and almost constant node degrees throughout,
shown in Fig. 9(c), which give rise to longer hop distances
us, scheduling on a BDMRST achieves the best of both
orlds in terms of having a small schedule length as well as
very close to smallest possible maximum delay.

In Fig. 8, we compare the number of frequencies needg
as a function of network density to remove all the second
conflicts on shortest path trees, as calculated from therup
boundA(G¢) + 1, and that fromLargest Degree Firs{LDF)
assignment. Here, the number of nodéss fixed at200, and
the lengthl of the square region is varied fro290 to 20; so
the densityd = N/I2, varies from0.005 to 0.5. ) )

The plot shows that the number of frequencies initiallfr- Multiple Frequencies on Schedule Length

increases with density, reaching a peak at arod5, and  gjnce multiple frequencies can eliminate interfering $ink

then steao_lily going down to one. This happens because_aglfd reduce the schedule length, we now evaluate their effect
two opposing factors. As the density goes up, the parerks I'Hn three different kinds of trees for our proposed multirotel

up with more ar!d more new nodes, Increasing the r‘umbers‘?:fheduling algorithm. Fig. 10(a), 10(b), and 10(c) show the
secondary conflicts; however, at the same time, the numbersa} o je lengths with increasing network size for one ethre
parents on the SPT gradually decreases because the deplay five frequencies on SPT, MIT, and BDMRST, respectively.
ment_ region gets smaller in size. As we keeP on increasing r\r/\fé observe that with SPT and MIT, the gains of utilizing
density further, the Iattgr effect_ starts dominating, afrtes multiple frequencies increase as the network gets largare

the numper of frequerymes reqwred_ depends on the numbef ol e case of an SPT, the schedule lengths with three and five
parents in the constraint gragty, this number goes down asgeq encies are almost the same. This is due to very high node
w_eII, until t_he network finally turns into a single hop netkor degrees on an SPT resulting in many primary conflicts in the
with the sink as the only parent. We also observe that i3ty o k than secondary conflicts. Recall that primary cotsfl
sparser networks there is a significant gap between the Uppg!l ot removable using multiple frequencies.

bound and the.LDF SChe".‘e' as oppose.d to that in dense{Ne also observe that an MIT benefits the most with multiple
networks. This is because in sparser settings there are man

parents, resulting in a highek(G¢) value, and assigning a re)éuenues. This is because an MIT has small node degrees

distinct frequency to the largest degree parent accordiriget and very large hop distances to the sink (cf. Fig. 1(b)), whic

. %ves rise to a lot of secondary conflicts but only a very few
LDF scheme removes more secondary conflicts at every s b ) .
mary conflicts. A typical path on an MIT from any node

than it does for denser settings when the parents are fewler %\ the sink looks almost like a linear network, where every
have comparable degrees. ) . .
non-adjacent edge can be scheduled simultaneously with two
_ frequencies. Note that, with one frequency, onigtance-2
B. Schedule Length and Maximum Delay edges i.e., edges whose end points are not incident on a
We evaluate the performance of the multi-channel schedabmmon edge, can be scheduled simultaneously. Lastly, we
ing algorithm A of Theorem 3 on three different kindssee that the schedule lengths on a BDMRST do not improve
of spanning trees — BDMRST, SPT, and MIT — with that all with multiple frequencies. This is due to almost canst
size deployment region fixed &00 x 200. Note that, the maximum hop distances to the sink and nearly constant

constant approximation factor in our algorithm depends agnaximum node degrees, as shown in Fig. 9(b) and 9(c).
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D. Degree Distribution and SINR Model

We note that the maximum node degrees on an SPT are
very high compared to those on an MIT and BDMRST.
Furthermore, they are nearly constant throughout the rr&two
size for both MIT and BDMRST. In order to gain more insights
on the effects of node degrees on the schedule length, we plot
the degree distribution of BDMRST, SPT, and MIT for three
different network sizes witllV = 150, 500, and800 nodes in
Fig. 11(a), 11(b), and 11(c), respectively. The bar graplasvs
the number of nodes that have degrees of particular values
averaged ove?0 iterations for each tree type.

For all network sizes, we observe that most of the nodes
on an SPT have degree one, whereas few have degrees very
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high. This is because large groups of degree one noqes (Ilegf12. A BDMRST constructed on the same deploymengasf nodes of
nodes) are connected to common parents, giving rise toFig 1(a) and 1(b). The node degrees are more uniform comigerthose on

lot of primary conflicts, and thereby being more resistant £ SPT and MIT.

improving the schedule length with multiple frequencies. |

MIT, we see that most of the nodes have degree two, and no

node has degree more than five. This is because most of f@re evenly distributed for all network sizes, as illugtthtn
paths from any node to the sink on an MIT look like a linedrig- 12 by a sample tree constructed on the same deployment
topology. We also observe that an MIT has a lot of pareff 800 nodes of Fig. 1(a).

nodes compared to an SPT, thus further explaining the reasoin our evaluation so far, we have considered the graph-
for much more improvement in the schedule length withased protocol interference model and evaluated the pedpos
multiple frequencies. Lastly, the degrees on a BDMRST aseheduling algorithm. However, since the protocol model-de
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Fig. 11. Node Degree Distribution of BDMRST, SPT, and MIT ftbree different network sizes with (& = 150, (b) N = 500, and (c) N = 800 nodes.

o
o

40

&-SPT, K=1] P throughput as well as minimizing the maximum packet delay.
35 :iﬁ Koy B” ] To this end, we proposed a multi-channel scheduling algaorit
30 L that has a worst-case constant factor approximation gtesan
S| i on the schedule length for arbitrarily deployed network&-n
2 . D. We also designed a spanning tree construction algorithm
32 ,,m" ] that achieves a constant factor bicriteria approximatioarg
Els o X : antee on minimizing the maximum hop distance in the tree
10 X — under a given node degree constraint. Our future work lies
o kT in extending the multi-channel scheduling algorithm foe th
T | more realistic SINR model in order to capture the cumulative
P 300 300 400 500 660 760 800 interference from concurrently transmitting distant recdé/e

Number of Nodes

also want to explore transmission power control mechanisms
Fig. 13. Percentage of nodes whose schedules conflict inItiR Siodel O_n the nodes to save energy. To this end_' considering g_en_eral
for different network sizes and three different number efjfrencies = 1, disk graphs where nodes can have different transmission
3, 5) on an SPT. ranges is also part of our future work.
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