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Multi-Channel Scheduling and Spanning Trees:
Throughput-Delay Trade-off for Fast Data

Collection in Sensor Networks
Amitabha Ghosh,̈Ozlem Durmaz Incel, V. S. Anil Kumar, and Bhaskar Krishnamachari

Abstract—We investigate the trade-off between two mutually
conflicting performance objectives – throughput and delay –
for fast, periodic data collection in tree-based sensor networks
arbitrarily deployed in 2-D. Two primary factors that affec t the
data collection rate (throughput) and timeliness (delay) are: (i)
efficiency of the link scheduling protocol, and (ii) structure of the
routing tree in terms of its node degrees and radius. In this paper,
we utilize multiple frequency channels and design an efficient link
scheduling protocol that gives a constant factor approximation
on the optimal throughput in delivering aggregated data from
all the nodes to the sink. To minimize the maximum delay
subject to a given throughput bound, we also design an(α, β)-
bicriteria approximation algorithm to construct a Bounded-
Degree Minimum-Radius Spanning Tree, with the radius of the
tree at most β times the minimum possible radius for a given
degree bound∆∗, and the degree of any node at most∆∗ + α,
where α and β are positive constants. Lastly, we evaluate the
efficiency of our algorithms on different types of spanning trees,
and show that multi-channel scheduling, combined with optimal
routing topologies, can achieve the best of both worlds in terms of
maximizing the aggregated data collection rate and minimizing
the maximum packet delay.

Index Terms—Convergecast, TDMA scheduling, multiple chan-
nels, routing trees, approximation algorithms.

I. I NTRODUCTION

CONVERGECAST, namely themany-to-oneflow of data
from a set of sources to a common sink over a tree-based

routing topology, is a fundamental communication primitive
in sensor networks. Such data flows can be triggered either
by external events, such as user queries to periodically get
a snapshot view of the network, or can be automated over
long durations. For real-time, mission-critical, and highdata-
rate applications [1]–[3], it is often critical tosimultaneously
maximize the data collection rate and minimize packet delays.
In addition, when summarized information is required or the
measurements are correlated, it is beneficial to aggregate data
en route to the sink. This helps in reducing redundancy and
the number of transmissions. We refer to such a data collection
process under aggregation asaggregated convergecast.

Two primary factors that affect the data collection rate and
packet delays are: (i) efficiency of the link scheduling protocol,
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and (ii) structure of the routing tree. A typical sensor nodeis
equipped with a single half-duplex transceiver, using which it
can either transmit or receive only one packet at any time.
Moreover, nodes very close to each other cannot transmit
simultaneously due to interference in the wireless medium.
It is shown that for periodic traffic, multiple frequencies
under spatial-reusetime division multiple access(TDMA) can
eliminate interference and enable more concurrent transmis-
sions [8], thus, enhancing the rate and providing bounds on
the completion time of convergecast [12]. In addition, since
TDMA protocols assign a dedicated time slot for each node
to transmit and allow it to enter sleep modes during inactive
periods, they perform well even under heavy traffic conditions
and achieve low duty cycles. We note that, although multiple
frequencies have been used in the domain of ad hoc networks,
their use in sensor networks is new and challenging, especially
due to resource constraints on the nodes. However, since
current sensor network hardware, such as CC2420 radios,
already support multiple frequencies, it is imperative that we
take their advantage in designing provably-efficient, multi-
channel TDMA scheduling protocols.

In [8], the authors show that once interference is reduced
using multiple frequencies, the structure of the routing tree
plays an important role in scheduling. It is shown that degree-
constrained trees even with a single channel perform better
than shortest-path trees (which have high degrees) with mul-
tiple channels. While it is true that the overall scheduling
performance jointly depends on frequency-timeslot assignment
and the routing tree structure, once multiple frequencies are
used to eliminate interference, high node degree becomes the
next major bottleneck in achieving high throughput, because
the children of a common parent need to be scheduled at
different time slots due to half-duplex radios. On the other
hand, trees with low node degrees avoid bottlenecks and allow
for more concurrent transmissions in the presence of multiple
frequencies. For a given deployment of nodes, however, a
spanning tree with low node degrees has large hop distances
to the sink. Thus, if packet delays are measured purely in
terms of hop counts, a tree with low node degrees is likely to
incur high delays as opposed to one with high node degrees.
These two opposing factors -node degreeandhop distance-
therefore, underscore the importance of the routing topology
in maximizing the rate and minimizing packet delays.

Fig. 1(a) shows ashortest-path tree(SPT) on a network of
800 nodes randomly deployed in a region of size200× 200.
The sink is located at the center, and a link between any two
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Fig. 1. (a) Shortest Path Tree (SPT): high node degrees but minimum hop distances to the sink. (b) Minimum Interference Tree (MIT): low node degrees
but large hop distances to the sink. Dark lines represent tree edges, dotted lines represent interfering links on the same communication graph. (c) Cost of
edge(u, v) is 11.

nodes exists if they are within a distance of25 from each
other. We observe that the nodes in the SPT have high degrees
but minimum hop distances to the sink. Fig. 1(b) shows a
minimum spanning tree(MST) on the same deployment, where
the cost of an edge(u, v) is equal to the number of nodes
covered by the union of the two disks centered at nodes
u and v, each of radius equal to their Euclidean distance
d(u, v) (cf. Fig. 1(c)). This cost function gives a measure of
the interference by counting the number of nodes affected by
u and v communicating with just enough transmit power to
exactly reach each other. The MST thus constructed is known
as theminimum interference tree(MIT) [4], which clearly has
low node degrees but large hop distances to the sink. Thus,
if an SPT is best for achieving low delays, an MIT is more
suitable for high data collection rate. However, we note that
the designer of a scheduling algorithm might not always have
the flexibility to construct the best possible routing tree;some-
times, network designers/planners have specific constraints due
to socio-economic reasons (e.g., cost constraints), and can
allow data flow only along specific paths in the network. In
such cases, the routing tree is fixed and given a-priori, for
example, a minimum-cost spanning tree with the cost function
depending on edge lengths and link bit error rates (BER).
In addition, there might be topological constraints that force
data to follow specific paths. For instance, in structural health
monitoring, one can deploy nodes only at specific locations
due to geometric constraints, and accordingly can have access
to only fixed and pre-specified routing paths.

In this paper, we consider aggregated convergecast onarbi-
trarily deployed networks in 2-D, and design algorithms with
provably-good performance bounds forlink schedulingand
constructingrouting topologiesto simultaneously maximize
the data collection rate and minimize packet delays. More
specifically, our key contributions are twofold: (i) for a given
routing tree, we design a multi-channel link scheduling proto-
col that gives a constant factor approximation on the optimal
aggregated data collection rate, and (ii) we design a bicriteria

constant factor approximation algorithm to construct a routing
tree minimizing the maximum hop distance to the sink (i.e.,
minimizes the maximum delay) for a given maximum degree
constraint. To the best of our knowledge, this is one of the first
works to simultaneously consider both throughput and delay
under the same framework in wireless sensor networks.

The rest of the paper is organized as follows. Section II
describes related works. In Section III, we describe our mod-
els, assumptions, and problem formulation. Section IV focuses
on designing a multi-channel link scheduling algorithm for
aggregated convergecast, and Section V presents an algorithm
for constructing a bounded-degree, minimum-radius routing
tree. We present our numerical evaluations in Section VI, and
finally draw some conclusions in Section VII.

II. RELATED WORK

The scheduling problem with the objective to minimize
the number of time slots required to complete convergecast
(known as theschedule length) has been studied in [5]–[9] for
aggregated data, and in [10]–[12] for raw data. Most of the
existing algorithms aim to maximize the number of concurrent
transmissions and enable spatial reuse by devising strategies
to eliminate interference.

For aggregated convergecast, Annamalaiet al. [5], inves-
tigate the use of orthogonal codes to eliminate interference
where nodes are assigned time slots from the bottom of a
convergecast tree to the top. Similarly, in [6], the problem
is defined as aMinimum Data Aggregation Timeproblem
with the goal to find a collision-free schedule that routes data
from the subset of nodes to the sink in the minimum possible
time. These studies, however, consider one-shot data collection
rather than continuous and periodic convergecast over long
durations like in our case. In addition, they do not consider
the impact of routing trees and instead focus on thecausality
constraint by which a node is not eligible to be scheduled
before it receives all the packets from its children.

In [7], Moscibroda theoretically shows that non-linear power
control mechanisms (without discrete power levels) can sig-
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nificantly improve the scheduling complexity and capacity of
wireless networks. In his work, the aggregated data capacity as
well as the notion of worst-case capacity, which concerns the
question of how much information can each node transmit to
the sink regardless of the networks topology, are investigated
for typical worst-casestructures, such as chains. However, it
does not consider further generalizations for convergecast trees
and the trade-off between throughput and delay.

In case of raw data convergecast, Gandhamet al. [12]
consider the scheduling problem using a single channel TDMA
protocol. They describe an integer linear programming for-
mulation and propose a distributed scheduling algorithm that
requires at most3N time slots for general networks, whereN
is the number of nodes. A similar study [10] is presented by
Choi et al. in which an NP-completeness result is proved on
minimizing the schedule length for a single frequency.

The use of multiple channels has been well researched in the
domain of ad hoc networks. To improve network throughput,
So et al. propose a MAC protocol that switches channels
dynamically and avoids the hidden terminal problem using
temporal synchronization [13]. A link-layer protocol called
SSCH is proposed by Bahlet al. that increases the capacity of
IEEE 802.11 networks by utilizing frequency diversity [14].
In the domain of sensor networks, however, there exist fewer
works using multiple channels. The first multi-frequency MAC
protocol MMSN is proposed by Zhouet al. where the goal is
to increase the aggregated throughput [15].

Several optimization problems arising in the design of com-
munication networks can be modeled as constructing optimal
network topologies [21], in particular, spanning trees that
satisfy certain constraints on node degrees, diameter, or total
cost. TheMinimum Degree Spanning Treeproblem, where the
goal is to construct a spanning tree such that its maximum node
degree is minimized, is NP-hard on general graphs [20]. The
best known algorithm proposed Furer and Raghavachari [22]
computes a spanning tree with maximum node degree at most
∆∗+1, where∆∗ is the optimum node degree. In [23], Singh
and Lau consider theMinimum Bounded Degree Spanning
Tree problem where, given a degree bound on each vertex,
they find a spanning tree of optimal cost with each degree
exceeding its bound by at most one. TheMinimum Diameter
Spanning Treeproblem is to construct a spanning tree such that
the tree diameter, defined as the longest hop distance between
any pair of nodes, is minimized. On Euclidean graphs, this
problem is solved in polynomial timeΘ(N3), and the result
extends to any complete graph whose edge weights satisfy a
distance metric [24]. The most recent result on general graphs
is proposed in [25] that runs inO(mN + N2 logN) time,
wherem is the number of edges.

Most closely related to our work is theBounded-Degree
Minimum-Diameter Spanning Treeproblem, where the goal is
to minimize the tree diameter subject to a degree constraint.
The first bicriteria approximation algorithm on general graphs
is proposed by Raviet al. [26], which runs inO(mN logN)
time and finds a spanning tree of degreeO(∆∗ logN+log2 N)
and diameterO(D logN), where∆∗ is the minimum max-
imum degree of any spanning tree of diameter at mostD.
The authors use the notion ofpoise of a tree, defined as

the maximum degree of any node plus the diameter, and use
multi-commodity flowresults to prove the approximations. For
complete graphs, anO(

√

log∆∗ N)-approximation algorithm
is proposed by Konemannet al. [27] under the Euclidean
metric. It uses a combination of filtering and divide and
conquer techniques to find a spanning tree of maximum node
degree∆∗ and diameterO(

√

log∆∗ N ·D).
Our work differs from the above in that we consider

the routing tree construction problem onrandom geometric
graphs, where the goal is to minimize the radius of a spanning
tree subject to a predefined budget on the degree. In our
previous studies [8], [9], we had investigated the impact of
transmission power control and multiple frequency channels
on the schedule length. In this work, we further extend
those results by studying the impact of routing trees on both
maximizing the aggregated sink throughput and minimizing
the maximum delay.

III. PRELIMINARIES

A. Model and Assumptions

We model the network as an undirected graphG = (V,E),
whereV is the set of nodes andE is the set of edges rep-
resenting communication links. We assume that the network
is connected, and all the nodes have a uniform transmission
rangeR whose value depends on a signal-to-noise-ratio (SNR)
threshold. Thus, any two nodesu andv can communicate with
each other if their Euclidean distanced(u, v) is at mostR.
We denote the sink bys, and define theradius of a spanning
treeT on G rooted ats as the maximum hop distance from
any node to the sinks. Each node is equipped with a single
half-duplex transceiver, using which it can either transmit or
receive a single packet at any given time.

We consider theprotocol interference model(a.k.a. disk
graph model), in which concurrent transmissions on two
edges interfere with each other if and only if: (i) the edges
are adjacent, or (ii) both the transmissions are on the same
frequency, and at least one of the receivers is within the
interference range of the non-intended transmitter. Thesetwo
types of interferences are known asprimary and secondary
conflicts, as illustrated in Fig. 2(a) and 2(b), respectively. The
setting of the interference range is empirically determined and
is typically 2 to 3 times the transmission range [29]. In this
work, we assume that it isη timesR.

Under a TDMA setting, consecutive time slots are grouped
into equal size frames that are repeated for periodic schedul-
ing. We assume that every node generates a single packet
in the beginning of each frame, and it has the ability to
aggregate all the packets from its children as well as its
own into a single packet before transmitting to its parent.
The class of aggregation functions in this category include
distributiveandalgebraicfunctions [16], where the size of an
aggregated packet is constant regardless of the size of the raw
measurements. Typical examples of such aggregation functions
are MIN, MAX, MEDIAN, COUNT, SUM, AVERAGE, etc.

We assume that transmissions on different frequencies are
orthogonal and non-interfering with each other. Although this
assumption may sometimes fail in practice depending on
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Fig. 2. (a) Primary conflict on adjacent edgese1 and e2. (b) Secondary
conflict when transmissions are on the same frequency, sayf1, and at least one
of the receivers is within the interference range of the non-intended transmitter.

transceiver-specific adjacent channel rejection values, exper-
imental results [8] show that scheduling performance remains
similar for both CC2420 and Nordic nrf905 radios.

We consider areceiver-based frequency assignmentstrategy,
in which we statically assign a frequency to each of the
receivers (parents) in the tree, and have the children transmit
on the same frequency assigned to their parent. Due to
this static assignment, each node operates on at most two
frequencies, thus, incurring less overhead compared to other
dynamic assignments, such as pair-wise, per-packet negotia-
tion of frequencies. This receiver-based channel assignment is
a widely used approach in sensor networks as a convenient
way to organize multi-channel protocols, because it simplifies
synchronization issues as all receptions take place on the same
channel at each node. For instance, using such a receiver-based
strategy, a real-world implementation of a TDMA/FDMA so-
lution for bulk data collection in sensor networks is presented
in [32], while the maximum achievable rate for aggregated
data collection is studied in [8]. In a recent work [35], the
performance of receiver-based channel assignment is also
compared with two other strategies calledtree-based multi-
channel protocol(TMCP) [30] and joint frequency-timeslot
scheduling(JFTSS) [31], and is found to be superior than
both. While JFTSS does not easily lend itself to a distributed
solution (since interference relationships between all links
must be known), in TMCP, contention inside the branches
is not resolved because all the nodes on the same branch
communicate on the same channel.

B. Problem Formulation

We first explain the process of aggregated convergecast and
the notion ofschedule length. Fig. 3(a) shows a network of6
source nodes and a given routing tree whose edges are marked
by solid lines; dotted lines represent secondary conflicts.We
also show a possible frequency and time slot assignment.

The left-most column in Fig. 3(c) lists the receiver nodes
(s, 1, and2), and the entries in each row list the nodes from
which packets are received by their corresponding receivers
in each time slot. We note that at the end of frame1, the
sink has not yet received packets from nodes4, 5 and 6,
however, as the same schedule is repeated, aggregated packets
from nodes1 and 4, and nodes2, 5, and 6 reach the sink
starting from slot1 and slot2, respectively, of frame2. The
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Fig. 3. Aggregated convergecast: (a) Schedule length of 6 time slots with one
frequency. (b) Schedule length of 3 time slots with two frequencies. (c), (d):
Nodes from which aggregated data is received by their corresponding parents
in each time slot over 2 consecutive frames for (a) and (b), respectively.

entries(1, 4) and(2, 5, 6) represent single packets comprising
aggregated data. Thus, starting at frame2, the sink continues
to receive aggregated data fromall the nodes once in every
6 time slots, and apipeline is established. We measure the
data collectionrate by the number of time slots required to
schedule all the tree edges exactly once per frame, and call
it the schedule length. Maximizing the data collection rate is
thus equivalent to minimizing the schedule length. In Fig. 3(b),
we show the benefits of multiple frequencies by assigning
different frequencies to the receiver nodess, 1, and 2. This
eliminates all secondary conflicts and reduces the schedule
length to only3 time slots, as shown in Fig. 3(d). We note that
multiple frequencies cannot eliminate primary conflicts due to
the inherent property of the transceivers being half-duplex.

Multi-Channel Scheduling Problem: Given a spanning
treeT onG, andK orthogonal frequencies, we want to assign
a frequency to each of the receivers, and a time slot to each
of the edges inT such that the schedule length is minimized.

Since both node degree and tree radius affect the sched-
ule length and packet delay, we formulate the problem of
constructing routing trees as abicriteria optimization prob-
lem [28], in which, given an upper bound on the maximum
node degree, our goal is to minimize the tree radius. We call
such a tree aBounded-Degree-Minimum-Radius Spanning Tree
(BDMRST). The routing tree construction problem is formally
defined as follows.

Routing Tree Construction Problem: Given a graphG and
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a constant parameter∆∗ ≥ 2, we want to construct aBounded-
Degree-Minimum-Radius Spanning TreeT onG rooted at sink
s, such that the radius ofT is minimized while the degree of
any node inT is at most∆∗.

We define an(α, β)-bicriteria approximation of the routing
tree problem as one in which the maximum node degree is at
most∆∗ +α, and the radius is at mostβ times the minimum
possible radius subject to the degree constraint, whereα and
β are positive constants. We note that in our formulation,
α is an additive factor whereasβ is a multiplicative factor.
Such bicriteria formulations are quite generic and robust,as
the quality of approximation is independent of which of the
two criteria the budget is imposed on, and it subsumes the case
where one wishes to optimize a functional combination of the
two objectives, such as, maximizing the sum or product of the
maximum node degree and tree radius. Bicriteria optimization
problems on spanning trees are often NP-hard on general
graphs, and sometimes even on geometric graphs [28].

IV. M ULTI -CHANNEL SCHEDULING

We observed in Fig. 3(b), that multiple frequencies, when
assigned appropriately, can reduce the schedule length by
eliminating secondary conflicts. In this section, our goal is
to design a multi-channel link scheduling protocol that hasa
provably-good performance guarantee on the optimal schedule
length. Formally, we define the decision version of the Multi-
Channel Scheduling Problem on arbitrary graphs (where links
can exist between any pair of nodes) as follows.

Multi-Channel Scheduling Problem (decision version):
Given a routing treeT on an arbitrary graphG, and two
positive integersp andq, is there an assignment of time slots
to the edges ofT using at mostq frequencies to the receivers
such that the schedule length is no more thanp?

THEOREM 1: Multi-Channel Scheduling Problem is NP-
complete.

The proof follows from Theorem 3 in [9].

A. Scheduling With Unlimited Frequencies

The NP-hardness of the Multi-Channel Scheduling Problem
is due to the presence of interfering links that cause secondary
conflicts, making scheduling inherently difficult. This is be-
cause many subsets of non-conflicting nodes are candidates
for transmission in each time slot, and the subset chosen in
one slot affects the number of transmissions in the next slot.
A natural question to ask, therefore, is to find theminimum
number of frequencies that can eliminateall the secondary
conflicts, which will then reduce the problem from being on
a graph to being on a tree. This minimum, however, is again
NP-hard to compute for arbitrary graphs, as shown in [17]. In
the following, we give an upper bound, and show that when a
sufficientnumber (i.e., unlimited) of frequencies is available,
the scheduling problem can be solved optimally in polynomial
time.

Create aconstraint graphGC = (VC , EC) from the original
graphG as follows (cf. Fig. 4(a) and 4(b) for an illustration).
For each receiver (parent) inG, create a node inGC . Connect

Algorithm 1 BFS-TIMESLOT-ASSIGNMENT

1. Input: T = (V,ET )
2. while ET 6= φ do
3. e← next edge fromET in BFS order;
4. Assign the minimum time slot toe respecting adjacency

constraints;
5. ET ← ET \ {e};
6. end while

any two nodes inGC if their corresponding receivers inG are
incident on two edges that form secondary conflicts.

L EMMA 1: The numberKmax of frequencies that will be
sufficient to remove all the secondary conflicts in the original
graphG is at most∆(GC)+1, where∆(GC) is the maximum
node degree inGC . We note that this upper bound∆(GC)+1
is a result of greedy coloring by first ordering the vertices,and
it may not be tight.

Proof: Since we create an edge between every two nodes
in GC whenever their corresponding receivers inG form a
secondary conflict, assigning different frequencies to every
such receiver-pair inG is equivalent to assigning different
colors to the adjacent nodes inGC . Thus,Kmax is equal to
the minimum number of colors needed to vertex colorGC ,
called itschromatic number, χ(GC). Sinceχ(G) ≤ ∆(G)+1,
for any arbitrary graphG, the lemma follows.

As illustrated in Fig. 4(b), the frequencies assigned to the
receivers inGC are as follows: frequencyf1 to nodes1 and
2; f2 to nodes3, 4, and8; f3 to nodess, 5, and6; andf4 to
node7. This particular frequency assignment is according to
the heuristic calledLargest Degree First, in which we consider
the nodes inGC in non-increasing order of their degrees and
assign the first available frequency such that no two adjacent
nodes have the same frequency.

Once all the secondary conflicts are eliminated by an
appropriate frequency assignment to the receivers, the fol-
lowing time slot assignment scheme, called BFS-TIMESLOT-
ASSIGNMENT (running in O(|ET |

2) time), presented in Al-
gorithm 1 minimizes the schedule length. In each iteration
(lines 2-6) of the algorithm, an edgee is chosen in the Breadth-
First-Search order (starting from any node), and is assigned
the minimum time slot that is different from all its adjacent
edges. We prove in Theorem 2 that such an assignment gives a
minimum schedule length equal to the maximum degree∆(T )
of T . An illustration is shown in Fig. 4(c).

THEOREM 2: After all secondary conflicts are removed,
Algorithm BFS-TIMESLOT-ASSIGNMENT gives a minimum
schedule length equal to∆(T ).

Proof: The lower bound∆(T ) follows trivially, because
the edges incident on the vertex with the maximum degree
require at least∆(T ) distinct colors. For a BFS traversal on
a tree, since an edge can conflict with at most∆(T ) − 1
edges that come before it in the traversal, algorithm BFS-
TIMESLOT-ASSIGNMENT uses∆(T ) colors.

B. Scheduling with Limited Frequencies

We showed in the previous subsection that all the secondary
conflicts can be removed when sufficient frequencies are
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Fig. 4. (a) Original graphG; receiver nodes are shaded. (b) Constraint graphGC and a frequency assignment to the receivers according to Largest Degree
First. Here, 4 frequencies are sufficient to remove all the secondary conflicts, i.e., frequencies on adjacent nodes are different. (c) An optimal time slot
assignment with schedule length 3 after all the secondary conflicts have been removed.

available, allowing us to compute a minimum-length schedule
in polynomial time. However, typically there is a limitation
on the number of frequencies over which a transceiver can
operate, and, as shown in Theorem 1, the scheduling problem
is NP-hard for agiven (constant) number of frequencies. In
this subsection, we take into account this constraint on the
number of frequencies of current WSN hardware, and design
an algorithm for the Multi-Channel Scheduling Problem that
gives a constant factor approximation on the optimal schedule
length.

We divide the 2-D deployment region into a set of square
grid cells {ci}, each of side lengthα. We define two cells
to be adjacent to each other if they share a common edge
or a common grid point. Thus, a cell can have either 3, 5,
or 8 adjacent cells depending on whether it is a corner cell,
an edge cell, or an interior cell, respectively. In our approach
to design an algorithm for minimizing the schedule length,
we decouple the frequency and time slot assignment phases.
We first assign the frequencies to the receivers inT , such
that the maximum number of nodes transmitting on the same
frequency is minimized. Then, we employ a greedy time slot
assignment scheme. We describe the two phases in detail
below.

1) Frequency Assignment:Let Ri = {v1, . . . , vni
} denote

the set of receivers on a given routing treeT that lie in cell
ci, and letm : Ri → {f1, . . . , fK} be a mapping that assigns
a frequency to each of these receivers. Note that,m(vj) = fk
implies that all the children ofvj transmit on frequencyfk
due to the receiver-based frequency assignment strategy.

DEFINITION 1: We define aload-balanced frequency as-
signmentin cell ci as an assignment of theK frequencies to
the receivers inRi, such that the maximum number of nodes
transmitting on the same frequency is minimized.

To express this formally, we define theload on frequency
fk in cell ci under mappingm as the total number of children
of all the receivers inRi that are assigned frequencyfk, and
denote it by`mi (fk). We call the number of children of node
vj its in-degree, and denote it bydegin(vj). Thus,

`mi (fk) =
∑

vj∈Ri:m(vj)=fk

degin(vj) (1)

Then, a load-balanced frequency assignmentm∗ in ci is
defined as:

m∗ = argmin
m

max
k
{`mi (fk)} (2)

We denote the load on the maximally loaded frequency
under mappingm∗ in cell ci by `m

∗

i . In the following lemma,
we sketch a proof that load-balanced frequency assignment is
NP-complete by reducing it from the well known problem of
Minimum Makespan Scheduling(MMS) on identical parallel
machines [19].

L EMMA 2: Load-Balanced Frequency Assignment (LBFA)
is NP-complete.

Proof: Clearly, LBFA is in NP. Consider the following
instance of the MMS problem. Given processing times of
n jobs, t1, . . . , tn, and an integerm, find an assignment of
the jobs tom identical machines so that the completion time
(makespan) is minimized. It is known that MMS isstrongly
NP-complete [19], and also admits a PTAS, originally due to
Hochbaum and Shmoys [33].

Now consider the following reduction: For each jobj, create
one (receiver) nodevj , and place all of them within a single
cell. Without loss of generality, assume that the timestj ’s
are integral. Then, for each nodevj , createtj neighbors and
place them in adjacent cells. Lastly, create one frequency for
each machine. Clearly, the reduction runs in polynomial time
(because MMS is strongly NP-complete). Then, for each cell,
assigning the receivers to the frequencies in order to minimize
the maximum load is the same as scheduling the jobs on the
machines in order to minimize the makespan. It is easy to see
that a solution for MMS corresponds to a solution of LBFA.
Therefore, the lemma follows.

In Algorithm 2, we describe a frequency assignment
scheme, called FREQUENCY-GREEDY, which gives a constant
factor approximation on the optimal load. The basic idea of the
algorithm is as follows: For each cellci, we sort the receivers
in Ri in non-increasing order of their in-degrees; let this order
be: v1, . . . , vni

. Then, starting fromv1, we assign to each
subsequent nodevj a frequency that has the least load on it
so far, breaking ties arbitrarily. In Fig. 5(a), we illustrate this
scheme for two frequenciesf1 andf2, and three receiversv1,
v2, andv3, sorted in non-increasing order of in-degrees. First,
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Fig. 5. (a) Frequency assignment according to FREQUENCY-GREEDY. Load
on frequencies:̀ (f1) = 5, `(f2) = 5. White colored nodes transmit on
frequencyf1; gray colored nodes transmit on frequencyf2. (b) Four pair-
wise disjoint sets of time slotsγ1, γ2, γ3, andγ4 schedule the whole network.
Each setγi maps to a distinct color.

Algorithm 2 FREQUENCY-GREEDY

1. for all non-empty cellci do
2. Sort receivers inRi in non-increasing order of in-

degrees;
3. Suppose:degin(v1) ≥ degin(v2) ≥ . . . ≥ degin(vni

);
4. for j = 1 to ni do
5. Find frequencyfk that is least loaded (breaking ties

arbitrarily);
6. Assignfk to vj ;
7. end for
8. end for

nodev1 is assigned frequencyf1, incurring a load of 5, as it
has 5 children. Then nodev2 is assigned frequencyf2, giving
a load of 3. Finally, nodev3 is also assigned frequencyf2,
becausef2 is the least loaded so far. In this particular case, the
assignment achieves an optimal load of 5 on both frequencies.
In general, the following approximation holds.

L EMMA 3: Algorithm FREQUENCY-GREEDY in cell ci
gives a

(

4
3 −

1
3K

)

-approximation on the maximum load̀m
∗

i

achieved by an optimal load-balanced assignmentm∗.
Proof: We show that FREQUENCY-GREEDY is identical

to Graham’s list scheduling for MMS according tolongest
processing time first(LPT rule) [19]. Each receivervj ∈ Ri

corresponds to a jobj, and its in-degreedegin(vj) to time
tj (assume integral). Each frequencyfk corresponds to a
processormk. The load on frequencyfk is therefore equal
to the total time processormk takes. Since we first sort the
receivers in non-increasing order of their in-degrees before
assigning them to the least loaded frequency, it is identical to
first sorting the jobs in non-increasing order of their processing
times before assigning them to the least loaded machine.
Since LPT gives a

(

4
3 −

1
3K

)

-approximation, therefore, so
does FREQUENCY-GREEDY.

2) Time Slot Assignment:Once the receivers in each cellci
are assigned frequencies according to algorithm FREQUENCY-
GREEDY, we employ a greedy time slot assignment scheme
for the whole network.

L EMMA 4: Let γi denote theset of time slots needed to

schedule all the edges in cellci. Then, the minimum schedule
length, Γ, for the whole network is bounded by:Γ ≤ 4 ·
maxi |γi|, for anyα ≥ 2ηR.

Proof: Consider the grid cells shown in Fig. 5(b) for
η = 1. Under the protocol interference model, a secondary
conflict exists between any two nodes if they are within a
distanceηR away from each other. This implies that interfer-
ence is spatially restricted and time slots can be reused across
cells that are well separated. In particular, for anyα ≥ 2ηR,
two edgese = (u, v) and e′ = (u′, v′), whose receiversv
andv′ are in non-adjacent cells, must have their non-intended
transmittersu′ andu, respectively, more than distance aηR
away and, therefore, can be scheduled on the same time slot
regardless of the frequency assignment.

If the set of time slots,γi, represents a unique color, then
the whole network can be scheduled using at most four distinct
colors such that no two adjacent cells have the same color, i.e.,
four pair-wise disjoint sets of time slots, as shown in Fig. 5(b).
Thus, the total number of time slots required is 4 times the
maximum number of slots in any setγi.

L EMMA 5: If Lφ
i denote the load on the maximally loaded

frequency in cellci under mappingφ : Ri → {f1, . . . , fK}
achieved by algorithm FREQUENCY-GREEDY, then any greedy
time slot assignment scheme can schedule all the edges in cell
ci within 2Lφ

i time slots.
Proof: Consider a multi-graphH = ({f1, . . . , fK}, E

′),
where for each edgee = (vi, vi′), vi, vi′ ∈ Ri with
φ(vi) 6= φ(vi′ ), we have an edge(φ(vi), φ(vi′ )) ∈ E′. Note
that these will be multi-edges; letn(fk, fk′) denote the number
of edges betweenfk andfk′ in H . Then,deg(fk) ≤ lφi (fk),
where lφi (fk) is the load onfk underφ in cell ci. By Ore’s
theorem [18], which generalizes Vizing’s theorem for edge
coloring on multi-graphs, it follows that the edges inH can
be colored usingmaxk{l

φ
i (fk)} colors. Therefore, all edges of

the forme = (vi, vi′) between two nodes inRi with different
frequencies can be colored inmaxk{l

φ
i (fk)} = Lφ

i colors.
All the remaining edges either have only one end-point in
Ri, or have both end-points inRi, with the same frequency
on their receivers; letS(fk) denote the set of such edges with
their end-point inRi that are assigned frequencyfk. Note that
|S(fk)| ≤ lφi (fk), and edgese ∈ S(fk), e

′ ∈ S(fk′) can be
assigned the same time slot iffk 6= fk′ . So all the remaining
edges can be scheduled inmaxk |S(fk)| ≤ maxk{l

φ
i (fk)}

time slots. Therefore, all edges inci can be scheduled within
2 · maxk{l

φ
i (fk)} = 2Lφ

i time slots, and the lemma follows.

We now prove our key approximation result.
THEOREM 3: Given a routing treeT on an arbitrarily

deployed network in 2-D, andK orthogonal frequencies, there
exists a greedy algorithmA that achieves a constant factor
8µα ·

(

4
3 −

1
3K

)

-approximation on the optimal schedule length,
whereµα > 0 is a constant for anyα ≥ 2ηR.

Proof: Algorithm A consists of two phases. In Phase
1, we run algorithm FREQUENCY-GREEDY to assign theK
frequencies to the receivers in each cell. In Phase 2, we
greedily schedule amaximal number of edges in each time
slot. Let the schedule length of algorithmA beΓA, and that
of an optimal algorithm beOPT .
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Due to the presence of interfering links, there exists a
constantµα > 0 depending on cell sizeα, such that at
mostµα edges in any cell, whose receivers are on the same
frequency, can be scheduled in the same time slot by an
optimal algorithm.

Now, regardless of the assignment chosen by an optimal
strategy, it will take at leastmaxi{L

m∗

i /µα} time slots to
schedule all the edges. This is becauseLm∗

i is theminimumof
themaximumnumber of edges that are on the same frequency
in cell ci. Thus,

OPT ≥
1

µα

·max
i

{

Lm∗

i

}

(3)

By running FREQUENCYGREEDY in cell ci, Lemma 3
implies

Lφ
i ≤

(

4

3
−

1

3K

)

· Lm∗

i , (4)

and by scheduling a maximal number of edges in each time
slot, Lemma 5 implies|γi| ≤ 2Lφ

i . Then, from Lemma 4:

ΓA ≤ 4 ·max
i
{|γi|}

≤ 8 ·max
i

{

Lφ
i

}

≤ 8 ·max
i

{(

4

3
−

1

3K

)

· Lm∗

i

}

≤ 8µα ·

(

4

3
−

1

3K

)

·OPT

We now derive a bound forµα using a classical result
of circle packing due to Groemer [34]. Under the protocol
interference model, two edges can transmit simultaneouslyif
their receivers are at least a distanceηR away from the non-
intended transmitters. This implies that the maximum number
of edgesµα that can be scheduled simultaneously (on the
same frequency) within a single cell is upper bounded by the
maximum number of nodes that can be placed with mutual
distance at leastηR. From Groemer’s inequality, we know
that for a compact, convex setC, the number of points of
mutual distance at least 1 is bounded by2A(C)√

3
+ P (C)

2 + 1,
whereA(C) is the area andP (C) is the perimeter ofC. For
a square grid cell of sizeα, this equates to2α

2

√
3
+2α+1, and

thus is an upper bound forµα assumingηR ≥ 1.

V. ROUTING TREE CONSTRUCTION

We now turn our attention to the routing tree construction
problem, where our goal is to design an(α, β)-bicriteria ap-
proximation to compute aBounded-Degree-Minimum-Radius
Spanning Tree, such that the radius of the tree is at mostβ
times the minimum possible radius for a given degree bound
∆∗, and the degree of any node is at most∆∗ + α, whereα
andβ are positive constants.

A. A Bicriteria Approximation Algorithm

We tessellate the 2-D deployment region into a set of
hexagonal grid cells each of side lengthR/2, as shown in
Fig. 6. We associate each node to a unique cell whose center

is closest to the node, breaking ties arbitrarily. We define a
cell to benon-emptyif it has at least one node, and define two
cells to beneighborsof each other if they share at least one
common side. The basic idea of the spanning tree construction
algorithm is as follows.

The algorithm runs in two phases. In Phase 1, we construct
a backbone tree, TB = (VB ⊆ V,EB ⊆ E), from the original
graph G by choosing one representative node, calledlocal
root, arbitrarily from each non-empty cell and connecting them
in a BFS order starting from the sink. While constructingTB,
we also ensure that the hop distances along it are not too long
compared to a shortest-path tree onG. This backbone tree
determines the global structure of our solution.

In Phase 2, we construct alocal spanning treeof minimum
radius within each cell from the remaining nodes inV \ VB

lying in that cell, while respecting the degree bound∆∗. This
is always possible because the nodes within each cell form a
complete graph, as the diameter of the circumcircle for each
hexagonal cell isR. Finally, we construct the overall spanning
treeT by taking the union of the backbone tree and all the
local spanning trees. During the execution of the algorithm,
we mark a cell if its local root has been included inTB;
otherwise the cell is unmarked. A formal description of the
algorithm is given in Algorithm 3. We now describe the two
phases in detail below.

Phase 1 - Backbone Tree Construction:

1) In the beginning, all the cells are unmarked. We initialize
TB with the sinks and mark its cellcs.

2) Choose one local root arbitrarily from each non-empty
cell. Let this set of nodes beR = {r1, . . . , rn}.

3) Consider those unmarked adjacent cells{cj} of s which
intersect a circle of radiusR centered ats, and for which
one of the following conditions is met.

a) Local rootrj in cell cj is a direct neighbor ofs.
b) Local rootrj in cell cj is not a direct neighbor ofs,

but there exists some other nodewk, called ahelper
node, that is a common neighbor of boths andrj .

c) Local rootrj in cell cj is neither a direct neighbor of
s nor there is any helper node, but there exists ahelper
edge(wk, wk′ ) whose one end, saywk, is incident in
cell cj and the other endwk′ in cell cs.

In Fig. 6, these are the shaded cells.
4) For case a), connectrj directly to s and mark its cellcj .

UpdateTB by addingrj to VB, and the edge(rj , s) to
EB. Nodesr2 andr6 in Fig. 6 are such nodes.

5) For case b), connectrj to s via the helper node. Mark
cj and updateTB by addingrj andwk to VB, and the
two edges(rj , wk) and (wk, s) to EB. In Fig. 6, nodes
r3 andr5 are connected tos via w1, and noder4 via w2.

6) For case c), connectrj to s via the helper edge. Mark
cj and updateTB by addingrj , wk, andwk′ to VB , and
the three edges(rj , wk), (wk, wk′ ), and(wk′ , s) to EB.
In Fig. 6, noder1 is connected via(w1, w1′).

7) Consider, in BFS order, these marked cells{cj} and re-
peat steps 3-6 with nodes replaced by the corresponding
local root in cj .

8) Continue until all the local roots inR get connected.
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Fig. 6. Backbone tree construction: Filled black circles represent local roots
(chosen arbitrarily from each non-empty cell), and shaded cells are adjacent
cells of s that intersect the circle of radiusR centered ats, and satisfy one
of the conditions (a), (b), or (c) of Phase 1. Iteration 1: Local rootsr1, r2,
r3, r4, r5, andr6 are connected tos. Nodesr3 and r5 are connected tos
via helper nodew1, and noder4 via helper nodew2; noder1 is connected
via helper edge(w3, w3′ ).

We implement the BFS processing of the local roots in a
queue data structure.

Phase 2 - Local Spanning Tree Construction:
Consider the local rootrj in cell cj . Let the set of nodes

in cj that are not yet connected to the backbone tree beVj =
{v1, . . . , vnj

} ⊂ V \ VB . Connectv1 to rj treatingrj as its
parent. Then, connect at most∆∗ − 1 nodes (if those many
exist) fromVj to v1; these constitute the direct neighbors of
v1. Next, treating these direct neighbors as parents, connect
at most∆∗ − 1 nodes to each one of them, if those many
exist. Fig. 7(a) shows an illustration of this phase. Continue
this until there is no isolated node left inVj , and repeat the
procedure for each of the non-empty cells. At the end of this
phase, eachcj contains a local spanning treeTj rooted atrj ,
with each node (except the leaves and the last parent) having
degree∆∗. The overall spanning treeT is the union of the
backbone treeTB and all the local spanning treesTj .

B. Algorithm Analysis

THEOREM 4: Algorithm 3 gives an(α, β)-bicriteria ap-
proximation to the Bounded-Degree-Minimum-Radius Span-
ning Tree, whereα = 10 andβ = 7.
The proof unfolds in the following lemmas.

L EMMA 6: Let ri and rj be any two local roots on the
backbone treeTB. Let PG(ri, rj) be the shortest path on
the original graphG betweenri and rj consisting ofm
hops. Then, the length of the unique simple pathPTB

(ri, rj)
betweenri andrj on TB is at most6m.

Algorithm 3 Approximation algorithm forBounded-Degree
Minimum-Radius Spanning Tree

1. Input: G = (V,E); sink s; degree bound∆∗ ≥ 2
2. Output: BDMRST T of G
3. Tessellate the 2-D region into hexagonal grid cells, each

of side lengthR/2.
4. Associate each node to a unique cell whose center is

closest to the node.
5. Phase 1: Backbone Tree
6. All cells are unmarked.
7. Initialize TB: VB ← {s}, EB ← φ, mark cell ofs.
8. Choose one local root arbitrarily from each non-empty

cell; letR = {r1, . . . , rn} be the set of local roots.
9. Q ← φ;

10. ENQUEUE(Q, s);
11. while Q 6= φ do
12. u← DEQUEUE(Q);
13. for all unmarked cellscj adjacent tou do
14. rj ← local root incj ;
15. if Case (a)then
16. VB ← VB ∪ {rj};
17. EB ← EB ∪ {(u, rj)};
18. Mark cj ;
19. ENQUEUE(Q, rj );
20. else if Case (b)then
21. VB ← VB ∪ {rj, wk};
22. EB ← EB ∪ {(rj , wk), (wk, u)};
23. Mark cj ;
24. ENQUEUE(Q, rj );
25. else if Case (c)then
26. VB ← VB ∪ {rj, wk, wk′};
27. EB ← EB ∪ {(rj , wk), (wk, wk′ ), (wk′ , u)};
28. Mark cj ;
29. ENQUEUE(Q, rj );
30. end if
31. end for
32. end while
33. Phase 2: Local Spanning Tree
34. for all non-empty cellscj do
35. rj ← local root incj ;
36. Let Vj = {v1 . . . vnj

} be the set of not yet connected
nodes incj (Vj induces a complete graph).

37. Construct local spanning treeTj of minimum radius
with nodes inVj such that no node exceeds degree∆∗.

38. end for
39. return T = TB ∪ {Tj}.

Proof: We first show that all the local roots get connected
to the backbone treeTB. Since the original graphG is
connected and the side length of each hexagonal cell isR/2,
every non-empty cell must have at least one edge that crosses
the boundary of another non-empty cell. This means that the
local root of every non-empty cell will be able to connect to
the local root of at least another non-empty cell using a helper
node or at most one helper edge. Since the backbone tree is
constructed precisely in this manner, i.e., by connecting alocal
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Fig. 7. (a) Local tree construction on an induced complete graph within
each cell for maximum node degree∆∗ = 4; filled black circle represents
the local root. (b) Traversing the edge(uk, uk+1) along the shortest pathPG

in graphG. Local rootsrk and rk+1 are at most distance3R away from
each other.

root either directly, or using a helper node, or a helper edge,
all the local roots get connected toTB.

Let PG(ri, rj) = {ri = u0, u1, . . . , um−1, um = rj} be
the shortest path on graphG, and PTB

(ri, rj) = {ri =
v0, v1, . . . , vh−1, vh = rj} be the unique simple path on the
backbone treeTB. Note that eachvk is either a local root or
a helper node. We will show that for every edge(uk, uk+1)
in PG we add at most a constant number of(vk, vk+1) edges
in PTB

.
Consider the nodesu1, . . . , um−1, and traverse them in the

order as they appear inPG. In parallel, traverse the path inPTB

by tracking the progress inPG, i.e., for every edge traversed
in PG, we traverse a certain number of edges inPTB

. Both
traversals start from the same cell (and the same noderi).
Suppose at any give point, we are about to traverse the edge
(uk, uk+1). One of the two possibilities could occur: (i)uk and
uk+1 lie in the same cell, or (ii)uk anduk+1 lie in different
cells, sayck and ck+1, respectively, as shown in Fig. 7(b).
In the first case, we do not traverse any edge inPTB

. In the
second case, we make our traversal along the local roots and
helper nodes inPTB

, such that the end point of the last edge
traversed inPTB

is a local rootrk+1 that lies in the same cell
asuk+1. This is always possible because each non-empty cell
contains a local root.

Since the Euclidean length of the edge(uk, uk+1) is at most
R, uk+1 must lie in one of the adjacent cells ofuk. Also, since
the side length of each cell isR/2, the distance between the
local rootsrk andrk+1 lying in cellsck andck+1, respectively,
is at most3R. Now, during the backbone tree construction
phase in Algorithm 3, we first connect the local roots from
all the non-empty adjacent cells of an already connected local
root before exploring other cells. Since connecting a localroot
to the backbone tree takes at most 3 edges (when helper edges
are needed), the number of edges traversed onPTB

for case
(ii) is at most 6. Therefore, the length of the pathPTB

is at

most 6 times the length of the pathPG.
L EMMA 7: The degree of a local root, a helper node, or a

node on a helper edge in the backbone tree is at most 12.
Proof: Recall that during the backbone tree construction,

a new local root from each non-empty cell adjacent to an
already chosen local rootrj is connected either directly, via
a helper node, or via a helper edge torj . This increases the
degree ofrj by at most one. Since the side length of each
cell is R/2, the maximum number of cells that are adjacent
to rj is at most 11; this will happen whenrj lies near one
of the corners within its cellcj . There will be 6 cells that
are neighbors tocj (i.e., share exactly one side withcj) and 5
other cells that are not neighbors tocj . Also, recall that during
constructing the local spanning trees within each cell, at most
one node is connected to the local root of that cell. Therefore,
the degree of any local root in the backbone tree is at most
12 in the worst case. A similar argument also holds for the
degree of any helper node.

Proof: (Theorem 4) (Bound on the Radius): Let the radius
of an optimal spanning tree whose maximum node degree is
∆∗ on graphG beOPT , and let that produced by Algorithm 3
beR(T ). Supposev∗ is a node farthest from sinks, and letm
be the hop distance on a shortest path tree (no degree bound)
from s to v∗ on graphG. Then,OPT ≥ m, because a degree
constraint can only increase the radius of a tree.

Now the nodev∗ can either be a local root, or a helper
node, or a node in a local spanning tree.

• if v∗ is a local root, then by Lemma 6,R(T ) ≤ 6m ≤
6 ·OPT .

• if v∗ is a helper node or a node on a helper edge, then
the shortest path on the tree comprises a path froms to
the local root of the cell containingv∗, plus an additional
hop from the local root tov∗. Thus,R(T ) ≤ 6m+ 1 ≤
6 ·OPT + 1.

• if v∗ is a node in a local spanning treeTj , then the
shortest path on the tree comprises a path froms to the
local root of the cell containingv∗, plus at mostR(Tj)
hops from the local root tov∗. Thus,

R(T ) ≤ 6m+R(Tj)

≤ 6 ·OPT +OPT

= 7 ·OPT

The second inequality follows because the radius of each
local spanning treeTj constructed on the complete graph
within each cell is minimum, respecting degree constraint
∆∗, and soOPT ≥ R(Tj).

(Bound on the Degree): From Lemma 7, the maximum node
degree of any node in the backbone tree is at most 12. Also,
the degree of any node is a local spanning tree is at most∆∗.
Thus, the degree of any node in the overall spanning tree is
bounded bymax(∆∗, 12) ≤ ∆∗ + 10, for any∆∗ ≥ 2.

Therefore, the theorem follows withα = 10 andβ = 7.

VI. EVALUATION

In this section, we evaluate the performance of our schedul-
ing and routing tree construction algorithms using Matlab sim-
ulations on networks modeled asrandom geometric graphs.
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Fig. 8. Number of frequencies required to remove all the secondary conflicts
as a function of network density on shortest path trees.

We generate connected networks by uniformly and randomly
placing nodes in a square region of maximum size200× 200,
and connecting any two nodes that are at most distanceR = 25
apart.

A. Frequency Bounds

In Fig. 8, we compare the number of frequencies needed
as a function of network density to remove all the secondary
conflicts on shortest path trees, as calculated from the upper
bound∆(GC)+ 1, and that fromLargest Degree First(LDF)
assignment. Here, the number of nodesN is fixed at200, and
the lengthl of the square region is varied from200 to 20; so
the density,d = N/l2, varies from0.005 to 0.5.

The plot shows that the number of frequencies initially
increases with density, reaching a peak at around0.025, and
then steadily going down to one. This happens because of
two opposing factors. As the density goes up, the parents link
up with more and more new nodes, increasing the number of
secondary conflicts; however, at the same time, the number of
parents on the SPT gradually decreases because the deploy-
ment region gets smaller in size. As we keep on increasing the
density further, the latter effect starts dominating, and since
the number of frequencies required depends on the number of
parents in the constraint graphGC , this number goes down as
well, until the network finally turns into a single hop network
with the sink as the only parent. We also observe that for
sparser networks there is a significant gap between the upper
bound and the LDF scheme, as opposed to that in denser
networks. This is because in sparser settings there are many
parents, resulting in a higher∆(GC) value, and assigning a
distinct frequency to the largest degree parent according to the
LDF scheme removes more secondary conflicts at every step
than it does for denser settings when the parents are fewer and
have comparable degrees.

B. Schedule Length and Maximum Delay

We evaluate the performance of the multi-channel schedul-
ing algorithm A of Theorem 3 on three different kinds
of spanning trees – BDMRST, SPT, and MIT – with the
size deployment region fixed at200 × 200. Note that, the
constant approximation factor in our algorithm depends on

the parameterµα. Sinceµα decreases with decreasingα, and
the smallestα for which Lemma 4 holds is2R, we choose
α = 50. We first present the results for a single frequency,
and then discuss the case with multiple frequencies.

Fig. 9(a) and 9(b) show the schedule length and the
maximum packet delay, respectively, with increasing network
size on three different types of trees for a single frequency.
Each point in the plot is averaged over20 iterations. In
each iteration, we deploy the nodes uniformly and randomly,
construct the spanning trees, and then run the scheduling
algorithm. In other words, we keep the node deployment fixed
in a given iteration for all the three tree types in order to
preserve the underlying communication graph and minimize
any statistical variation. The maximum degree bound on the
BDMRST is taken as4. We observe that the schedule lengths
on a BDMRST and MIT are very close to each other, whereas
those on an SPT are much higher. This difference becomes
more predominant with increasing network size because the
maximum node degrees on an SPT go up rapidly, as shown
in Fig. 9(c). On the other hand, the maximum packet delays
on an SPT are minimum, and those on a BDMRST are very
close. However, the delays on an MIT are much higher due to
its very small and almost constant node degrees throughout,
as shown in Fig. 9(c), which give rise to longer hop distances.
Thus, scheduling on a BDMRST achieves the best of both
worlds in terms of having a small schedule length as well as
very close to smallest possible maximum delay.

C. Multiple Frequencies on Schedule Length

Since multiple frequencies can eliminate interfering links
and reduce the schedule length, we now evaluate their effects
on three different kinds of trees for our proposed multi-channel
scheduling algorithm. Fig. 10(a), 10(b), and 10(c) show the
schedule lengths with increasing network size for one, three,
and five frequencies on SPT, MIT, and BDMRST, respectively.
We observe that with SPT and MIT, the gains of utilizing
multiple frequencies increase as the network gets larger insize.
In the case of an SPT, the schedule lengths with three and five
frequencies are almost the same. This is due to very high node
degrees on an SPT resulting in many primary conflicts in the
network than secondary conflicts. Recall that primary conflicts
are not removable using multiple frequencies.

We also observe that an MIT benefits the most with multiple
frequencies. This is because an MIT has small node degrees
and very large hop distances to the sink (cf. Fig. 1(b)), which
gives rise to a lot of secondary conflicts but only a very few
primary conflicts. A typical path on an MIT from any node
to the sink looks almost like a linear network, where every
non-adjacent edge can be scheduled simultaneously with two
frequencies. Note that, with one frequency, onlydistance-2
edges, i.e., edges whose end points are not incident on a
common edge, can be scheduled simultaneously. Lastly, we
see that the schedule lengths on a BDMRST do not improve
at all with multiple frequencies. This is due to almost constant
maximum hop distances to the sink and nearly constant
maximum node degrees, as shown in Fig. 9(b) and 9(c).
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Fig. 9. (a) Schedule Length, (b) Maximum Delay (tree radius), and (c) Maximum Node Degree with increasing network size onthree different types of
trees (BDMRST, SPT, and MIT) for single frequency scheduling.
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Fig. 10. Effect of multiple frequencies: Schedule Lengths for (a) SPT, (b) MIT, and (c) BDMRST with network size forK = 1, 3, and5 frequencies.

D. Degree Distribution and SINR Model

We note that the maximum node degrees on an SPT are
very high compared to those on an MIT and BDMRST.
Furthermore, they are nearly constant throughout the network
size for both MIT and BDMRST. In order to gain more insights
on the effects of node degrees on the schedule length, we plot
the degree distribution of BDMRST, SPT, and MIT for three
different network sizes withN = 150, 500, and800 nodes in
Fig. 11(a), 11(b), and 11(c), respectively. The bar graphs show
the number of nodes that have degrees of particular values
averaged over20 iterations for each tree type.

For all network sizes, we observe that most of the nodes
on an SPT have degree one, whereas few have degrees very
high. This is because large groups of degree one nodes (leaf
nodes) are connected to common parents, giving rise to a
lot of primary conflicts, and thereby being more resistant to
improving the schedule length with multiple frequencies. In
MIT, we see that most of the nodes have degree two, and no
node has degree more than five. This is because most of the
paths from any node to the sink on an MIT look like a linear
topology. We also observe that an MIT has a lot of parent
nodes compared to an SPT, thus further explaining the reason
for much more improvement in the schedule length with
multiple frequencies. Lastly, the degrees on a BDMRST are
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Fig. 12. A BDMRST constructed on the same deployment of800 nodes of
Fig. 1(a) and 1(b). The node degrees are more uniform compared to those on
an SPT and MIT.

more evenly distributed for all network sizes, as illustrated in
Fig. 12 by a sample tree constructed on the same deployment
of 800 nodes of Fig. 1(a).

In our evaluation so far, we have considered the graph-
based protocol interference model and evaluated the proposed
scheduling algorithm. However, since the protocol model devi-
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Fig. 11. Node Degree Distribution of BDMRST, SPT, and MIT forthree different network sizes with (a)N = 150, (b) N = 500, and (c)N = 800 nodes.
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Fig. 13. Percentage of nodes whose schedules conflict in the SINR model
for different network sizes and three different number of frequencies (K = 1,
3, 5) on an SPT.

ates from the more realisticSignal-to-Interference-plus-Noise-
Ratio (SINR) model in capturing cumulative interference from
far-away transmitters, thus sometimes under/over estimating
interference, the schedules generated from the protocol model
might conflict under the SINR model. To measure the amount
of conflict, we plot in Fig. 13 the percentage of nodes on
an SPT whose schedules calculated according to the protocol
model conflict under the SINR model. The parameters for the
SINR model are chosen according to the CC2420 radio param-
eters with receiver sensitivity−95 dB, path-loss exponent3.5,
and transmit power−6 dB. We note that for a given number of
frequencies, as the network gets denser the amount of conflict
increases, reaching almost40% for the densest deployment;
however, with multiple frequencies, the amount of conflict is
much less. This indicates that although the protocol model
performs reasonably well under multiple frequencies, more
sophisticated SINR based scheduling algorithms are needed
when there is only one frequency.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we discussed the trade-off between aggregated
sink throughput and packet delays for fast data collection in
sensor networks. We showed that multiple frequencies and
bounded-degree minimum-radius spanning trees can help in
achieving the best of both worlds in terms of maximizing the

throughput as well as minimizing the maximum packet delay.
To this end, we proposed a multi-channel scheduling algorithm
that has a worst-case constant factor approximation guarantee
on the schedule length for arbitrarily deployed networks in2-
D. We also designed a spanning tree construction algorithm
that achieves a constant factor bicriteria approximation guar-
antee on minimizing the maximum hop distance in the tree
under a given node degree constraint. Our future work lies
in extending the multi-channel scheduling algorithm for the
more realistic SINR model in order to capture the cumulative
interference from concurrently transmitting distant nodes. We
also want to explore transmission power control mechanisms
on the nodes to save energy. To this end, considering general
disk graphs where nodes can have different transmission
ranges is also part of our future work.
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