
Power Allocation over Two Identical Gilbert-Elliott
Channels

Junhua Tang
School of Electronic Information

and Electrical Engineering
Shanghai Jiao Tong University, China

Email: junhuatang@sjtu.edu.cn

Parisa Mansourifard
Ming Hsieh Department
of Electrical Engineering

Viterbi School of Engineering
University of Southern California

Email: parisama@usc.edu

Bhaskar Krishnamachari
Ming Hsieh Department
of Electrical Engineering

Viterbi School of Engineering
University of Southern California

Email: bkrishna@usc.edu

Abstract—We study the problem of power allocation over two
identical Gilbert-Elliot communication channels. Our goal is to
maximize the expected discounted number of bits transmitted
over an infinite time horizon. This is achieved by choosing
among three possible strategies: (1) betting on channel 1 by
allocating all the power to this channel, which results in high
data rate if channel 1 happens to be in good state, and zero
bits transmitted if channel 1 is in bad state (even if channel
2 is in good state) (2) betting on channel 2 by allocating all
the power to the second channel, and (3) a balanced strategy
whereby each channel is allocated half the total power, with
the effect that each channel can transmit a low data rate if it
is in good state. We assume that each channel’s state is only
revealed upon transmission of data on that channel. We model
this problem as a partially observable Markov decision processes
(MDP), and derive key threshold properties of the optimal policy.
Further, we show that by formulating and solving a relevant
linear program the thresholds can be determined numerically
when system parameters are known.

I. INTRODUCTION

Adaptive power control is an important technique to se-
lect the transmission power of a wireless system according
to channel condition to achieve better network performance
in terms of higher data rate or spectrum efficiency. While
there has been some recent work on power allocation over
stochastic channels [1], [2], the problem of optimal adaptive
power allocation across multiple stochastic channels with
memory is challenging and poorly understood. In this paper,
we analyze a simple but fundamental problem. We consider
a wireless system operating on two stochastically identical
independent parallel transmission channels, each modeled as
a slotted Gilber-Elliott channel (i.e. described by two-state
Markov chains, with a bad state “0” and a good state “1”).
Our objective is to allocate the limited power budget to the
two channels dynamically so as to maximize the expected
discounted number of bits transmitted over time. Since the
channel state is unknown when power allocation decision is
made, this problem is more challenging than it looks like.

Recently, several works have explored different sequential
decision-making problems involving Gilbert-Elliott channels
[3], [4], [5], [6], [7]. In [3],[4], the authors consider selecting
one channel to sense/access at each time among several
identical channels, formulate it as a restless multi-armed

problem, and show that a simple myopic policy is optimal
whenever the channels are positively correlated over time. In
[5], the authors study the problem of dynamically choosing
one of three transmitting schemes for a single Gilbert-Elliott
channel in an attempt to maximize the expected discounted
number of bits transmitted. And in [6], the authors study
the problem of choosing a transmitting strategy from two
choices emphasizing the case when the channel transition
probabilities are unknown. While similar in spirit to these
two studies, our work addresses a more challenging setting
involving two independent channels. A more related two-
channel problem is studied in [7], which characterizes the
optimal policy to opportunistically access two non-identical
Gilber-Elliott channels (generalizing the prior work on sensing
policies for identical channels [3],[4]). While we address only
identical channels in this work, the strategy space explored
here is richer because in our formulation of power allocation,
it is possible to use both channels simultaneously whilst in
[3], [7] only one channel is accessed in each time slot.

In this paper, we formulate our power allocation problem as
a partially observable Markov decision process (POMDP). We
then treat the POMDP as a continuous state MDP and develop
the structure of the optimal policy (decision). Our main
contributions are the following: (1) we formulate the problem
of dynamic power allocation over parallel Markovian channels,
(2) using the MDP theory, we theoretically prove key threshold
properties of the optimal policy for this particular problem,
(3) through simulation based on linear programming, we
demonstrate the existence of the 0-threshold and 2-threshold
structures of the optimal policy, and (4) we demonstrate how to
numerically compute the thresholds and construct the optimal
policy when system parameters are known.

II. PROBLEM FORMULATION

A. Channel model and assumptions

We consider a wireless communication system operating on
two parallel channels. Each channel is described by a slotted
Gilbert-Elliott model which is a one dimensional Markov
chain Gi,t(i ∈ {1, 2}, t ∈ {1, 2, ...,∞}) with two states: a
good state denoted by 1 and a bad state denoted by 0 (i is the
channel number and t is the time slot). The channel transition



probabilities are given by Pr[Gi,t = 1|Gi,t−1 = 1] = λ1, i ∈
{1, 2} and Pr[Gi,t = 1|Gi,t−1 = 0] = λ0, i ∈ {1, 2}. We
assume the two channels are identical and independent of each
other, and channel transitions occur at the beginning of each
time slot. We also assume that λ0 ≤ λ1, which is the positive
correlation assumption commonly used in the literature.

The system has a total transmission power of P . At the
beginning of time slot t, the system allocates transmission
power P1(t) to channel 1 and P2(t) to channel 2, where
P1(t) + P2(t) = P . We assume the channel state is not
directly observable at the beginning of each time slot. That
is, the system needs to allocate the transmission power to
the two parallel channels without knowing the channel states.
If channel i(i ∈ {1, 2}) is used at time slot t by allocating
transmission power Pi(t) on it, the channel state of the elapsed
slot is revealed at the end of the time slot through channel
feedback. But if a channel is not used, that is, if transmission
power is 0 on that channel, the channel state of the elapsed
slot remains unknown at the end of that slot.

B. Power allocation strategies

To simplify the problem, we assume the system may allocate
one of the following three power levels to a channel: 0, P/2, or
P . That is, based on the belief in the channel state of channel
i for the current time slot t, the system may decide to give up
the channel (Pi(t) = 0), use it moderately (Pi(t) = P/2) or
use it fully(Pi(t) = P ). Since the channel state is not directly
observable when the power allocation is done, the following
circumstances may occur. If a channel is in bad state, no data
is transmitted at all no matter what the allocated power is. If
a channel is in good state, and power P/2 is allocated to it, it
can transmit Rl bits of data successfully during that slot. If a
channel is in good condition and power P is allocated to it, it
can transmit Rh bits of data successfully during that slot. We
assume Rl < Rh < 2Rl.

We define three power allocation strategies(actions): bal-
anced, betting on channel 1, and betting on channel 2. Each
strategy is explained in detail as follows.

Balanced: For this action (denoted by Bb), the system
allocates the transmission power evenly on both channels, that
is, P1(t) = P2(t) = P/2, for time slot t. This corresponds to
the situation when the system cannot determine which of the
channels is more likely to be in good state, so it decides to
“play safe” by using both of the channels.

Betting on channel 1: For this action (denoted by B1), the
system decides to “gamble” and allocate all the transmission
power to channel 1. That is, P1(t) = P, P2(t) = 0 for time slot
t. This corresponds to the situation when the system believes
that channel 1 is in a good state and channel 2 is in a bad
state.

Betting on channel 2: For this action (denoted by B2), the
system put all the transmission power in channel 2, that is,
P2(t) = P, P1(t) = 0 for time slot t.

Note that for strategies B1 and B2, if a channel is not used,
the system (transmitter) will not acquire any knowledge about
the state of that channel during the elapsed slot.

C. POMDP formulation

At the beginning of a time slot, the system is confronted
with a choice among three actions. It must judiciously select
actions so as to maximize the total expected discounted
number of bits transmitted over an infinite time span. Because
the state of the channels is not directly observable, the problem
in hand is a Partially Observable Markov Decision Process
(POMDP). In [8], it is shown that a sufficient statistic for deter-
mining the optimal policy is the conditional probability that the
channel is in the good state at the beginning of the current slot
given the past history (henceforth called belief) [5]. Denote the
belief of the system by a two dimension vector xt=(x1,t, x2,t),
where x1,t = Pr[G1,t = 1|~t], x2,t = Pr[G2,t = 1|~t], where
~t is all the history of actions and observations at the current
slot t. By using this belief as the decision variable, the POMDP
problem is converted into an MDP with the uncountable state
space ([0, 1], [0, 1]) [5].

Define a policy π as a rule that dictates the action to
choose, i.e., a map from the belief at a particular time to
an action in the action space. Let V π(p) be the expected
discounted reward with initial belief p = (p1, p2), that is,
x1,0 = Pr[G1,0 = 1|~0] = p1, x2,0 = Pr[G2,0 = 1|~0] = p2,
where the superscript π denotes the policy being followed. De-
fine β(∈ [0, 1)) as the discount factor, the expected discounted
reward has the following expression

V π(p) = Eπ[

∞∑
t=0

βtgat(xt)|x0 = p], (1)

where Eπ represents the expectation given that the policy π
is employed, t is the time slot index, at is the action chosen
at time t, at ∈ {Bb, B1, B2}. The term gat(xt) denotes the
expected reward acquired when the belief is xt and the action
at is chosen:

gat(xt) =

 x1,tRl + x2,tRl, if at = Bb
x1,tRh, if at = B1

x2,tRh, if at = B2

.

(2)

Now we define the value function V (p) as

V (p) = max
π

V π(p), for all p ∈ ([0, 1], [0, 1]). (3)

A policy is said to be stationary if it is a function mapping the
state space ([0, 1], [0, 1]) into the action space {Bb, B1, B2}.
Ross proved in [9] (Th.6.3) that there exists a stationary policy
π∗ such that V (p) = V π

∗
(p). The value function V (p)

satisfies the Bellman equation

V (p) = max
a∈{Bb,B1,B2}

{Va(p)}, (4)

where Va(p) is the value acquired by taking action a when
the initial belief is p. Va(p) is given by

Va(p) = ga(p) + βEy[V (y)|x0 = p, a0 = a], (5)

where y denotes the next belief when the action a is chosen
and the initial belief is p. The term Va(p) is explained next
for the three possible actions.



a) Balanced (action Bb): If this action is taken, and the
current belief is p = (p1, p2), the immediate reward is p1Rl+
p2Rl. Since both channels are used, the channel quality of
both channels during the current slot is then revealed to the
transmitter. With probability p1 the first channel will be in
good state and hence the belief of channel 1 at the beginning
of the next slot will be λ1. Likewise, with probability 1− p1
channel 1 will turn out to be in bad state and hence the updated
belief of channel 1 for the next slot is λ0. Since channel 2 and
channel 1 are identical, channel 2 has similar belief update.
Consequently if action Bb is taken, the value function evolves
as

VBb
(p1, p2)

= p1Rl + p2Rl + β[(1− p1)(1− p2)V (λ0, λ0)

+ p1(1− p2)V (λ1, λ0) + (1− p1)p2V (λ0, λ1)

+ p1p2V (λ1, λ1)]. (6)

b) Betting on channel 1( action B1): If this action is taken,
and the current belief is p = (p1, p2), the immediate reward
is p1Rh. But since channel 2 is not used, its channel state
remains unknown. Hence if the belief of channel 2 during the
elapsed time slot is p2, its belief at the beginning of the next
time slot is given by

T (p2) = p2λ1 + (1− p2)λ0 = αp2 + λ0, (7)

where α = λ1 − λ0. Consequently, if this action is taken, the
value function evolves as

VB1(p1, p2) = p1Rh +

β[(1− p1)V (λ0, T (p2)) + p1V (λ1, T (p2))]. (8)

c) Betting on channel 2(action B2): Similar to action B1, if
action B2 is taken, the value function evolves as

VB2
(p1, p2) = p2Rh +

β[(1− p2)V (T (p1), λ0) + p2V (T (p1), λ1)], (9)

where

T (p1) = p1λ1 + (1− p1)λ0 = αp1 + λ0. (10)

Finally the Bellman equation for our power allocation problem
reads as follows

V (p) = max{VBb
(p), VB1

(p), VB2
(p)}. (11)

III. STRUCTURE OF THE OPTIMAL POLICY

From the above discussion we understand that an optimal
policy exists for our power allocation problem. In this section,
we try to derive the optimal policy by first looking at the
features of its structure.

A: Properties of value function

Lemma 1. VBi
(p1, p2), i ∈ {1, 2, b} is affine with respect to

p1 and p2 and the following equalities hold:

VBi(cp+ (1− c)p′, p2) = cVBi(p, p2) + (1− c)VBi(p
′, p2),

VBi(p1, cp+ (1− c)p′) = cVBi(p1, p) + (1− c)VBi(p1, p
′), (12)

where 0 ≤ c ≤ 1 is a constant; and we say f(x) is affine with
respect to x if f(x) = a+ cx, with constant a and c.

Refer to [10] for proof.

Lemma 2. VBi
(p1, p2), i ∈ {1, 2, b} is convex in p1 and p2.

Proof: The convexity of VBi
, i ∈ {1, 2, b} in p1 and p2

follows from its affine linearity in Lemma 1.

Lemma 3. V (p1, p2) = V (p2, p1), that is, V (p1, p2) is
symmetric with respect to the line p1 = p2 in the belief space.

Refer to [10] for proof.

B: Properties of the decision regions of policy π∗
We use Φa to denote the set of beliefs for which it is optimal

to take the action a. That is,

Φa = {(p1, p2) ∈ ([0, 1], [0, 1]), V (p1, p2) = Va(p1, p2)},
a ∈ {Bb, B1, B2}. (13)

Definition 1. Φa is said to be contiguous along p1 dimen-
sion if we have (x1, p2) ∈ Φa and (x2, p2) ∈ Φa, then
∀x ∈ [x1, x2], we have (x, p2) ∈ Φa. Similarly, we say Φa
is contiguous along p2 dimension if we have (p1, y1) ∈ Φa
and (p1, y2) ∈ Φa, then ∀y ∈ [y1, y2], we have (p1, y) ∈ Φa.

Theorem 1. ΦBb
is contiguous in both p1 and p2 dimensions.

ΦB1 is contiguous in p1 dimension, and ΦB2 is contiguous in
p2 dimension.

Refer to [10] for proof.

Theorem 2. If belief (p1, p2) is in ΦB1
, then belief (p2, p1) is

in ΦB2 . In other words, the decision regions of B1 and B2 are
mirrors with respect to the line p1 = p2 in the belief space.

Refer to [10] for proof.

Theorem 3. If belief (p1, p2) is in ΦBb
, then belief (p2, p1) is

in ΦBb
. That is, the decision region of Bb is symmetric with

respect to the line p1 = p2 in the belief region.

Refer to [10] for proof.

Lemma 4. After each channel is used once, the belief state
is the four sides of a rectangle determined by four vertices at
(λ0, λ0), (λ0, λ1), (λ1, λ0), (λ1, λ1) (Figure 1 (a)).

Refer to [10] for proof.

Theorem 4. Let p1 ∈ [λ0, λ1], p2 = λ0, there exists a thresh-
old ρ1(λ0 ≤ ρ1 ≤ λ1) such that ∀p1 ∈ [λ0, ρ1], (p1, λ0) ∈
ΦBb

. (Figure 1(b))

Refer to [10] for proof.

Theorem 5. Let p1 ∈ [λ0, λ1], p2 = λ1, there exists a thresh-
old ρ2(λ0 ≤ ρ2 ≤ λ1) such that ∀p1 ∈ [ρ2, λ1], (p1, λ1) ∈
ΦBb

. (Figure 1(b))

Refer to [10] for proof.

Lemma 5. In case of p2 = λ0, it is not optimal to take action
B2. In case of p2 = λ1, it is not optimal to take action B1.



Fig. 1. (a) The feasible belief space. (b) The threshold on p1 ( p2 = λ0(λ1)).

Fig. 2. Structure of optimal policy.

Refer to [10] for proof.

C: The structure of the optimal policy

Theorem 6. The optimal policy has a simple threshold struc-
ture and can be described as follows (Figure 2):

π∗(p1, λ0) =

{
Bb, if λ0 ≤ p1 ≤ ρ1
B1, if ρ1 < p1 ≤ λ1

, (a)

π∗(p1, λ1) =

{
Bb, if ρ2 ≤ p1 ≤ λ1
B2, if λ0 ≤ p1 < ρ2

, (b)

π∗(λ0, p2) =

{
Bb, if λ0 ≤ p2 ≤ ρ1
B2, if ρ1 < p2 ≤ λ1

, (c)

π∗(λ1, p2) =

{
Bb, if ρ2 ≤ p2 ≤ λ1
B1, if λ0 ≥ p2 < ρ1

. (d)

(14)

Refer to [10] for proof.
From the above analysis we understand that the optimal

policy has a simple threshold structure. And it is critical to
find the two thresholds ρ1 and ρ2.

Theorem 7. Let δi,j(k1, k2) = VBi
(k1, k2)−VBj

(k1, k2), (i ∈
{1, 2, b}, j ∈ {1, 2, b}), ρ1 can be calculated as follows

1) if T (λ0) < ρ2, T (λ0) ≤ ρ1

ρ1 =
λ0Rl + βλ0δ2,b(λ0, λ1)

Rh −Rl + βλ0(δ1,b(λ1, λ1) + δ2,b(λ0, λ1))
, (15)

2) if T (λ0) < ρ2, T (λ0) > ρ1

ρ1 =
λ0Rl + β(1− λ0)δb,2(λ0, λ0)

Rh −Rl + βλ0δ1,b(λ1, λ1) + β(1− λ0)δb,2(λ0, λ0)
,

(16)

3) if T (λ0) ≥ ρ2, T (λ0) ≤ ρ1

ρ1 =
λ0Rl + βλ0δ2,b(λ0, λ1)

Rh −Rl + βλ0δ2,b(λ0, λ1) + β(1− λ0)δb,1(λ1, λ0)
,

(17)
4) if T (λ0) ≥ ρ2, T (λ0) > ρ1, ρ1 is calculated in (18).

Refer to [10] for proof.

Theorem 8. Let δi,j(k1, k2) = VBi
(k1, k2)−VBj

(k1, k2), (i ∈
{1, 2, b}, j ∈ {1, 2, b}), the threshold ρ2 is calculated as
follows

1) if T (ρ2) ≥ ρ2 and T (ρ2) > ρ1

ρ2 =
λ1(Rh −Rl)− βλ1δ2,b(λ0, λ1)− β(1− λ1)δb,1(λ0, λ0)

Rl − βλ1δ2,b(λ0, λ1)− β(1− λ1)δb,1(λ0, λ0)
,

(19)
2) if T (ρ2) ≥ ρ2 and T (ρ2) ≤ ρ1

ρ2 =
λ1(Rh −Rl)− βλ1δ2,b(λ0, λ1))

Rl − βλ1δ2,b(λ0, λ1)− β(1− λ1)δb,1(λ1, λ0)
, (20)

3) if T (ρ2) < ρ2, T (ρ2) > ρ1

ρ2 =
λ1(Rh −Rl)− β(1− λ1)δb,1(λ0, λ0))

Rl − βλ1δ2,b(λ1, λ1)− β(1− λ1)δb,1(λ0, λ0)
, (21)

4) if T (ρ2) < ρ2, T (ρ2) ≤ ρ1

ρ2 =
λ1(Rh −Rl)

Rl − βλ1δ2,b(λ1, λ1)− β(1− λ1)δb,1(λ1, λ0)
. (22)

The proof of this theorem is similar to that of theorem 7
and is omitted here.

IV. SIMULATION BASED ON LINEAR PROGRAMMING

Linear programming is one of the approaches to solve the
Bellman’s equation in (4). Based on [11], we model our
problem as the following linear program:

min
∑
p∈X

V (p),

s.t. ga(p) + β
∑
y∈X

fa(p,y)V (y) ≤ V (p),

∀p ∈ X,∀a ∈ Ap, (23)

where X is the space of belief state, Ap is the set of available
actions for state p. The state transition probabilities fa(p,y)
is the probability that the next state will be y given that the
current state is p and the current action is a ∈ Ap. The optimal
policy can be generated according to

π(p) = arg max
a∈Ap

(ga(p) + β
∑
y∈X

fa(p,y)V (y)). (24)

We used the LOQO solver on NEOS Server [12] with
AMPL input [13] to obtain the solution of equation (23).
Then we used MATLAB to construct the policy according
to equation (24).

Figure 3 shows the AMPL solution of value function for
the following set of parameters: λ0 = 0.1, λ1 = 0.9, β =
0.9, Rl = 2, Rh = 3. The corresponding optimal policy is



ρ1 =
λ0Rl + βλ0δ2,1(λ0, λ1) + β(1− λ0)δb,1(λ0, λ0)

Rh −Rl + βλ0δ2,1(λ0, λ1) + β(1− λ0)(δb,1(λ1, λ0) + δb,1(λ0, λ0))
. (18)

Fig. 3. Value function.
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Fig. 4. Optimal policy.

Fig. 5. Optimal policy with increasing λ0 (Rl = 2, Rh = 3) .

shown in Figure 4. The structure of the policy in Figure 4
clearly shows the properties we gave in Theorems 1 to 5.

In order to observe the effect of parameters λ0, λ1, Rl and
Rh on the structure of optimal policy, we have conducted
simulation experiments for varying parameters. Figure 5 shows
the policy structure when λ0 varies from 0.1 to 0.7, while
the rest of the parameters remain the same as in the above
experiment. We can observe in Figure 5 that when λ0 increases
from 0.1 to 0.3, the decision region of action Bb occupies
a bigger part of the belief space. Whilst when λ0 is 0.5 or
greater, the whole belief space falls in the decision region
of action Bb, meaning that it is optimal to always use both
channels in the set of this experiment when λ0 > 0.5. Due to
space limit, we cannot present more simulation results here,
but the structure types in Theorem 6 is clearly observed in
Figure 5.

V. CONCLUSION

In this paper we have shown the structure of the optimal
policy by theoretical analysis and simulation. Knowing that
this problem has a 0 or 2 threshold structure reduces the
problem of identifying optimal performance to finding the
(only up to 2) threshold parameters. In settings where the

underlying state transition matrices are unknown, this could
be exploited by using a multiarmed bandit (MAB) formulation
to find the best possible thresholds (similar to the ideas in the
papers [6] and [7]). Also, we would like to investigate the
case of non-identical channels, and derive useful results for
more than 2 channels, possibly in the form of computing the
Whittle index [14], if computing the optimal policy in general
turns out to be intractable.
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