
Trinity: A Byzantine Fault-Tolerant Distributed
Publish-Subscribe System with Immutable

Blockchain-based Persistence
Gowri Sankar Ramachandran, Kwame-Lante Wright, Licheng Zheng,

Pavas Navaney, Muhammad Naveed, and Bhaskar Krishnamachari
USC Viterbi School of Engineering

University of Southern California
Los Angeles, USA

{gsramach, kwamelaw, lichengz, navaney, mnaveed, bkrishna}@usc.edu

Jagjit Dhaliwal
Deputy CIO, Office of CIO

County of Los Angeles
Los Angeles, USA

jdhaliwal@cio.lacounty.gov

Abstract—Internet of Things (IoT), Supply Chain monitoring,
and other distributed applications rely on messaging protocols
for data exchange. Contemporary IoT and enterprise deploy-
ments widely use the publish-subscribe messaging model because
of its resource-efficiency. However, the systems with publish-
subscribe messaging model employ a centralized architecture,
wherein the data from all the publishers in the application
network flows via a central broker to the subscribers. Such a
centralized architecture makes the publish-subscribe messaging
model susceptible to Byzantine failures. For example, it provides
an opportunity for the organization that owns the broker to
tamper with the data. In this work, we contribute Trinity, a
novel distributed publish-subscribe broker with Byzantine fault-
tolerance and blockchain-based immutability. Trinity distributes
the data published to one of the brokers in the network to all
the brokers in the network, and stores the data in an immutable
ledger through the use of blockchain technology. Through the
use of consensus protocols and distributed ledger technology,
Trinity can guarantee ordering, fault-tolerance, persistence and
immutability across trust boundaries.

Our evaluation results show that Trinity consumes minimal
resources. To the best of our knowledge, Trinity is the first frame-
work that combines the components of the blockchain technology
with the publish-subscribe messaging model. Furthermore, we
plan to use Trinity in a real-world use case for increasing the
transparency of racial profiling.

Index Terms—IoT, Broker, Blockchain, Supply Chain Moni-
toring, Multi-stakeholder, Ledger, Smart Contract.

I. INTRODUCTION

Enterprises and industrial applications, e.g., Microsoft
Azure Service Bus [1] and IBM WebSphere [2] use the
publish-subscribe communication pattern to exchange data be-
tween various data producers and consumers. This messaging
pattern isolates the publishers and subscribers in time, space,
and synchrony [3]. Publish-subscribe communication pattern is
an alternative to synchronous and point-to-point request-reply
communication models. The key advantages of the publish-
subscribe protocol are its ability to support loosely-coupled
message exchanges between producers and consumers [3].

Fig. 1: Publish-Subscribe Communication Model.

Figure 1 shows the interaction model of the publish-
subscribe messaging model. In the publish-subscribe system,
publishers and subscribers interact via a central broker. A
broker is a centralized software that orchestrates the communi-
cation between the publishers and subscribers [3]. Enterprise
systems and IoT applications employ this messaging model
because of its resource-efficiency and scalability.

Although the publish-subscribe messaging model is
lightweight, scalable, and resource-efficient, it relies on a
central broker for data communication between publishers
and subscribers as shown in Figure 1. Such a centralized
architecture makes the publish-subscribe messaging model
vulnerable to central points of failure. Besides, publishers and
subscribers interact through a central server owned by a single
organization. Failure of a broker may impact the publishers
and subscribers. Furthermore, the traditional publish-subscribe
brokers do not provide strict guarantees regarding the ordered
delivery of messages to the subscribers, although some imple-
mentation supports provide ordered delivery in a single broker
setting [4].

In this work, we contribute Trinity, a novel distributed978-1-7281-1328-9/19/$31.00 ©2019 IEEE.

publish-subscribe broker with blockchain-based immutability
by integrating the broker system with a Byzantine Fault-
Tolerant (BFT) consensus protocol and distributed ledger
technology. Contemporary blockchain platforms consist of
a consensus layer for state replication and ordering and a
distributed tamper-proof ledger for persistent storage. Trin-
ity, therefore, uses a blockchain platform to provide fault-
tolerance, message ordering, and immutable storage. Trinity
is implemented using MQTT broker [5] and a modular choice
of “pluggable” blockchain platforms including Ethereum [6],
IOTA [7], HyperLedger Fabric [8], and the Tendermint [9]
blockchain framework. Our formal specification and analysis
assume the Blockchain provides BFT consensus; however, the
platforms such as IOTA and Ethereum or the consensus models
used under Hyperledger Fabric don’t provide a provable guar-
antee in this regard today. So this represents a gap between our
theory and the system implementation for all the evaluation
candidates except Tendermint. The evaluation results show
that the Trinity framework introduces reasonable timing and
performance overhead in exchange for providing assurances
when transacting in a multi-stakeholder environment.

Section II introduces the publish-subscribe broker and
discusses the related work. Section III presents the formal
definitions and the architecture of Trinity. System description
of Trinity is presented in Section V. The implementation and
evaluation of Trinity is presented in Section VI. Section VIII
concludes the paper with the future work.

II. STATE OF THE ART AND RELATED WORK

A. publish-subscribe Messaging Model

Over the past several years, the publish-subscribe messaging
has proven itself as a dominant messaging paradigm for
IoT and enterprise systems. By decoupling publishers (data
sources) from subscribers (data sinks), clients (i.e., publishers
and subscribers) can operate more freely with less prior
knowledge of the network they run in while having isolation
in time, space, and synchrony [3].

Distributed applications rely on a messaging model for
coordinating and collaborating with other systems in the
network. A wide-array of messaging models were proposed
for distributed interactions including RPC [10], CoAP [11],
and MQTT [12]. Remote Procedure Calls (RPC) [10] allows
a program or a function in one machine to interact with
a program or a function in other remote machines in the
network without knowing the details of the network protocols.
Although RPC offered a powerful approach for distributed
communication, it is not suitable for resource-constrained IoT
applications because of its high resource and communication
overhead. Protocols such as CoAP and MQTT were created
for resource-constrained IoT devices.

On the one hand, CoAP follows the request-reply commu-
nication model, wherein the interested party has to request the
data source for the new data periodically [11]. MQTT, on the
other hand, follows the publish-subscribe messaging model,
in which a broker is used to orchestrate the communication
between the data producers and consumers. Even though

both MQTT and CoAP are suitable for IoT and enterprise
applications, CoAP is not widely used because of its request
and reply communication model, whereas MQTT requires one
request to be submitted to a broker, after which the data from
the producers are forwarded to the subscribers by the broker.

The publish-subscribe communication model [4], [12] typ-
ically consists of three components; broker, publisher, and
subscriber. Publishers in the system send data to a broker
following the concept of the topic. Topic typically refers
to the metadata, which describes information about the data
in a string format. A topic can have multiple levels. For
example, the data generated by a temperature sensor deployed
at room 123 of building A can have its topic defined as
\buildingA\room123\Temperature. Consumers of the data can
receive data from the temperature sensor by subscribing to the
\buildingA\room123\Temperature topic. In the next section,
we discuss the related work addressing distributed publish-
subscribe broker.

B. Related Work

The idea of Byzantine fault-tolerant publish-subscribe bro-
ker is already discussed in the literature. Chang et al. [13]
motivate the need for a distributed publish-subscribe broker
with Byzantine fault-tolerance and examines the Byzantine
behaviors of publishers, subscribers, and brokers. Bhola et
al. [14] present a loss tolerant publish-subscribe with support
for exactly-once delivery and message ordering using a con-
cept knowledge graph, which relies on a network formation
protocol to establish links between brokers. Meling et al. [15]
propose Byzantine Proposer Fast Paxos, a novel consensus
algorithm based on the Paxos for Byzantine faulty clients.
P2S [16] is a fault-tolerant distributed publish-subscribe broker
based on Paxos consensus algorithm. P2S is developed to tol-
erate faults using the Paxos algorithm, and it is complementary
to Trinity, except Trinity is a Byzantine fault-tolerant publish-
subscribe broker capable of handling both Byzantine and crash
faults while providing immutable persistence storage.

Broker distribution using overlay networks is extensively
addressed in the literature. Kazemzadeh et al. [17] present a
partition tolerant publish-subscribe broker based on network
routing algorithm, which reacts to broker and link failures by
discovering new brokers and updating the routing table on
all the broker nodes. A few works [18]–[20] contribute ap-
proaches to managing the publish-subscribe broker on overlay
networks. Unlike these routing approaches, Trinity depends
on the underlying blockchain platform, which includes a
consensus algorithm and the distributed ledger, to distribute
brokers.

Kafka [21] is a more powerful publish-subscribe broker
developed for use in data centers, and it has a rich set of
features. Kafka uses a proprietary protocol for communication.
It is designed to run in a distributed fashion with built-
in support for partitioning and replication. Partitioning is a
method for load-balancing across different instances, while
replication involves copying the same data across multiple
instances. Although Kafka provides ordering guarantees and

configurable persistence of messages, it assumes that the
software is managed by a single organization, meaning that
no trust boundaries are traversed during the operation of the
system. There is nothing in place to prevent data tampering as
every instance of a Kafka deployment is expected to be owned
and operated by a single entity. In our design of Trinity, we do
not make this assumption regarding trust. Through the use of a
blockchain network, Trinity guarantees persistence, ordering,
and immutability across trust boundaries.

Implementations of publish-subscribe protocol can be found
in brokers such as Mosquitto [4], which is primarily designed
for use as a single instance, but it has support for bridging,
providing support for multiple connected brokers to operate
together through the bridging feature, which effectively du-
plicates all transmitted messages at every broker, allowing
publishers and subscribers to connect to any instance. How-
ever, this method of distribution does not guarantee the same
ordering of messages at every broker. There is also an implicit
assumption of the system being run by a single entity, so
there are no trust concerns, and the immutability of data is not
provided. We address the issues of ordering and immutability
with our blockchain-based broker system.

III. FORMAL DESCRIPTION OF TRINITY: ARCHITECTURE,
PRELIMINARIES, DEFINITION, ASSUMPTIONS

A. System Model and Architecture

We consider a system with domains. Each domain has a
consensus node. Consensus nodes maintain a distributed ledger
that results from an atomic broadcast [22] (ordered consensus)
process. Each domain also has a publish-subscribe broker and
a collection of clients that can host publishers and subscribers.
Publish-subscribe clients can interact with a local domain
broker.

For ease of exposition, we consider just one topic and
assume that all publishers and subscribers are communicating

Fig. 2: Architecture of Trinity: A Byzantine Fault-Tolerant
Publish-Subscribe Broker.

on that topic. We assume that all domains under consideration
are capable of hosting clients that can publish to or subscribe
from the given topic. The claims made hold true for multiple
topics, by considering only the relevant publishers/subscribers
and domains for each topic, one at a time.

B. Definitions

We define the key concepts of Trinity in this section.

Definition 1. A domain consists of one consensus node, one
broker node that communicates with the consensus node, and
a collection of publish and subscribe clients that communicate
with the broker within that domain.

Definition 2. A domain is said to be faulty if either the
Consensus node or the Broker node of that domain shows
Byzantine faults; else it is said to be correct. In particular
correct consensus and broker nodes must be always online.

Definition 3. A publish-subscribe client is said to be correct
if it is not faulty and if it is in a non-faulty domain.

C. Assumptions

The key assumptions and the specifications of Trinity are
described in this section.

Assumption 1. We assume that strictly fewer than one-third
of all the domains under consideration are faulty.

Assumption 2. Under the above assumption, the consensus
layer implements a Byzantine fault-tolerant atomic broadcast
(here received/delivered means in a confirmed manner):
• 2.1 All messages sent by correct consensus nodes are

delivered identically to all correct consensus nodes within
a bounded delay period.

• 2.2 If one correct consensus node receives a message, all
correct consensus nodes will receive that message within
a bounded delay period.

• 2.3 If one correct consensus node receives message m
before m

′
, so too will all correct consensus nodes.

Assumption 3. Other nodes in the system can not forge all
messages that are digitally signed by any publisher unless the
publisher loses or gives away its private key.

Assumption 4. We assume that brokers in correct domains
deliver all messages from its publishers to its consensus node
in order and deliver all messages from its consensus node to
all its subscribers in order.

Assumption 5. We assume that brokers in correct domains
deliver any message received from a publisher to the consensus
node or from the consensus node to a subscriber within a
bounded delay.

Assumption 6. Consensus nodes forward any message from
the broker to the consensus layer and vice versa also within
a bounded delay.

Assumption 7. We don’t assume any buffering, so subscribers
that go offline are not guaranteed delivery of messages. Hence,

for simplicity, we assume that all correct subscribers are
always online.

Assumption 8. Correct publishers are online whenever they
send messages.

In the next section, we prove the safety and liveness
properties of Trinity.

IV. SAFETY AND LIVENESS PROPERTIES: FORMAL
STATEMENT AND PROOF SKETCHES

The safety property proves that ”something bad will never
happen” [23], whereas the liveness property informally guar-
antees that the system will make progress and ”something
good will always happen” [23]. In this section, we prove the
safety and liveness properties of Trinity.

A. Safety Properties

Safety Property 1. Publisher Safety: All correct publishers
can guarantee that all their messages are delivered to all
correct subscribers.

Proof of Publisher Safety: A correct publisher by definition
is in a correct domain (Definition 3). Hence its messages are
delivered to the consensus layer correctly without omission.
The consensus layer can guarantee delivery to all correct-
domain consensus nodes (by Assumption 1, Assumption 2.1).
The correct subscriber will hear this delivered message.

Safety Property 2. Subscriber Consensus: All correct sub-
scribers receive same messages.

Proof of Subscriber Consensus: All correct-domain consen-
sus nodes receive the same message (Assumption 2.2), and in
these correct-domains, all correct subscribers will receive that
message (Definition 3). Hence all correct subscribers receive
the same message.

Safety Property 3. In-order Delivery: If one correct sub-
scriber sees message m before m′, all correct subscribers will
see it in the same order.

Proof of In-order Delivery: This follows from Assumption
2.3 and the fact that all brokers in correct nodes order
published and subscribed messages correctly.

Safety Property 4. Non-Forgery: If publishers use digital
signatures and A3 holds, correct subscribers will not receive
any forged messages from any publisher.

Proof of Non-Forgery: Follows from Assumption 3.

B. Liveness

Liveness Property 1. Messages from any correct publishers
are delivered to correct subscribers within a bounded delay.

Proof: Correct publishers are online to send their messages
(Assumption 8). The broker forwards these messages to its
consensus node within a finite delay (Assumption 5). The con-
sensus layer will receive it within a finite delay (Assumption
6), and confirmed delivery at all correct consensus nodes will

Fig. 3: Interface overview of Trinity.

occur within a further finite delay (Assumption 2.1). Finally,
these correct consensus nodes will forward to their correct
broker within a finite delay (Assumption 6), and those, in turn,
will deliver to the correct subscriber that are assumed to be
online (Assumption 7) within a finite delay (Assumption 5).

The safety and liveness properties of Trinity and their proofs
show that Trinity is capable of handling Byzantine faults. We
describe the system details of Trinity in Section V.

V. SYSTEM DESCRIPTION OF TRINITY

Figure 2 shows the three main components of a domain:
the blockchain network, broker, and publish-subscribe clients.
A single organization or a stakeholder own each domain.
The Trinity deployment enables each stakeholder to publish
information not only to their brokers but also to other brokers
via the underlying blockchain platform. The rest of the section
discusses the building blocks of Trinity.

A. Publish-Subscribe Broker

The broker coordinates the communication between clients
(publishers and subscribers) and the blockchain platform. To
realize Trinity, a publish-subscribe broker with support for
topic-based communication model is desired. As shown in
Figure 3, each broker instance connects to a consensus node
maintained by the domain via the blockchain client library
provided by the underlying blockchain platform.

B. Trinity Blockchain Integration

The blockchain network is responsible for the consensus
and persistent storage. Trinity exposes a set of APIs to interact
with a blockchain platform using the APIs listed in Figure 4
following the interface architecture shown in Figure 3.

The DeliverTransaction API initiates the consensus and
the block creation process by delivering the message to the
underlying platform. Trinity instance sends the published
messages using the DeliverTransaction API along with the
necessary metadata such as node identifiers to the underlying
blockchain framework. The blockchain network replicates the
data among the Trinity consensus nodes following the BFT
consensus protocol. We will discuss the role of the blockchain
frameworks below.

The blockchain frameworks typically consist of a consensus
protocol, block creation logic, distributed ledger, and public-
key cryptography. Trinity does not depend on a particular
blockchain framework since the broker interfaces with a

Fig. 4: Trinity APIs to Interact with a Blockchain Network.

blockchain framework via a set of APIs for managing the
blockchain-related functionalities. Each Trinity instance has
APIs for querying the blockchain network. The GetCurrent-
BlockHeight() API allows the Trinity instance to get the
current block height from the blockchain network. Similarly,
the GetBlock(BlockHeight) API returns the entire block at the
height denoted by the BlockHeight argument. The implemen-
tation of these functionalities should be carried out using the
APIs and client libraries provided by the underlying platform.
Note that the interface model for Hyperledger Fabric has to
follow its ledger model, which is different from contemporary
blockchain platforms such as Ethereum and Tendermint. Al-
though the Trinity implementation is platform agnostic, the
underlying blockchain framework must have the following
components to guarantee immutability and fault-tolerance:

Consensus Algorithm: The Trinity framework operates in
a distributed network owned by multiple domains or organi-
zations. All the authorized consensus nodes must verify the
messages received by Trinity. This verification process relies
on a consensus protocol. A system state perceived by one
broker in the network must be replicated to other consensus
nodes owned by other domains, and the transaction (message)
should be approved by the majority (two-thirds) of the nodes
in the network. Our system can work with Byzantine fault-
tolerance (BFT) protocols such as Tendermint [9], but it is
not strictly limited to BFT (though then the formal properties
shown earlier do not hold strictly). Note that the resource-
consumption and the ability to tolerate Byzantine failures
depend on the consensus protocol.

Public Key Cryptography: Blockchain framework use
the public key cryptography to secure the transactions. Each
consensus node in the network create a pair of keys and share
their public key to the network to participate in the consensus
and block creation process.

Validators: Validators are a special type of nodes in the
network that are authorized to participate in the consensus pro-
cess and create blocks. In case of the permissioned blockchain,
only a designated set of nodes can act as the validators,
while any capable node can perform validation (and mining)
in public blockchains such as BitCoin and Ethereum. We
believe that Trinity framework is better-suited for permissioned
blockchains as the parties involved in the transactions are
known to the system, and each subscriber will have to register
their interest before receiving the data.

In summary, the blockchain-specific tasks of Trinity are
loosely coupled with the broker-specific activities, wherein the
interaction between the broker and the blockchain network

Blockchain
Platform

Public or
Permissioned

Consensus
Algorithm

Transaction
Fee

Tendermint Permissioned BFT No
HyperLedger

Fabric Permissioned Ordering
(Solo, Kafka) No

IOTA Public PoW No
Ethereum Public PoW Yes

TABLE I: Blockchain Platforms Used in the Evaluation

happens via a set of APIs. We believe that this architecture
would inspire application developers to replace the publish-
subscribe communication model with other messaging proto-
cols to create novel blockchain-based frameworks.

VI. IMPLEMENTATION AND EVALUATION

Section VI-A discusses the implementation details and the
evaluation setup of Trinity. The timing overhead of Trinity is
presented in Section VI-D. Section VI-E discusses the network
overhead of Trinity. CPU and Memory overhead are presented
in Section VI-F.

A. Implementation of Trinity

We implemented Trinity using Mosquitto (MQTT) Bro-
ker [5]. The broker-specific functionalities are implemented
on top of MQTT using the APIs presented in Figure 4 For
the blockchain part, we used Tendermint [9], HyperLedger
Fabric [24], IOTA [7], and Ethereum [6]. Table I and Sec-
tion VI-B provides an overview of the platforms used in the
evaluation. Except Tendermint BFT, all the other blockchain
platforms uses a different form of consensus mechanism.
However, we implemented and evaluated Trinity on other
blockchain platforms to show the blockchain-agnostic nature
of Trinity and make the code available as open source software
(https://github.com/ANRGUSC/Trinity).

B. Overview and the Setup of the Evaluation Platforms

Tendermint [9] blockchain platform consists of a set of
tools for achieving consensus on a distributed network and the
creation of blocks. The platform isolates the blockchain-related
functionalities from the application-specific features, which
means any application can be developed atop Tendermint
framework, ranging from cryptocurrencies to a distributed chat
server. The consensus engine of Tendermint allows the appli-
cation developers to replicate the state of an application across
all the Tendermint consensus nodes in the network using a
variant of BFT consensus [9]. The state information is fed into
the consensus engine using Application Blockchain Interface
(ABCI). For the implementation of Trinity, we integrated
MQTT [5] with Tendermint blockchain platform using the
ABCI. Tendermint platform uses the Byzantine Fault-tolerant
(BFT) consensus protocol, which means the two-thirds of the
consensus nodes in the network must approve the transactions.
When the majority of the consensus nodes (two-thirds) in the
network approve the transaction, Tendermint platform adds the
transaction into a block.

HyperLedger Fabric: HyperLedger Fabric is a permis-
sioned blockchain maintained by the HyperLedger Founda-
tion [8]. In permissioned blockchain platforms, the network is
formed by authorized members with a known identity, who
is responsible for the validation of transactions and ledger
maintenance. HyperLedger Fabric uses an ordering service to
order and validate the transactions before writing the verified
information to the distributed ledger. Although HyperLedger
Fabric does not provide Byzantine fault-tolerance, we im-
plemented Trinity using it to show the blockchain-agnostic
architecture of Trinity.

Ethereum: Ethereum [6] is one of the widely used pub-
lic blockchain platforms after BitCoin. The PoW consensus
algorithm and the ledger technology provide persistence, or-
dering, and fault-tolerance guarantees. We developed a Web3
NodeJS client application along with a smart contract in
Solidity to evaluate Trinity on Ethereum. Unlike Tendermint
and HyperLedger, the implementation of Trinity on public
blockchain platforms such as Ethereum and IOTA does not
require dedicated consensus nodes.

IOTA: IOTA [7] is a public distributed ledger technology
that uses a directed acyclic graph (DAG) storage structure,
Tangle, for storing transactions. IOTA uses a special type of
PoW consensus, wherein each node that posts a transaction
to the IOTA ledger has to verify two other transactions. Such
a verification model enables IOTA to provide free transac-
tions unlike other PoW-based platforms such as BitCoin and
Ethereum.

C. Evaluation Setup

Tendermint: Trinity was evaluated using 20-node Rasp-
berry Pi3 (RPi) test network. Raspberry Pi (Version 3) has
ARM Cortex-A53 Quad Core CPU with 1 GB of RAM. All
the RPi devices were connected through a LAN. Each data
point in the evaluation results is collected by publishing 1000
messages to an MQTT broker in the network. Upon receiving
the message, the broker may choose to relay the message to
the subscribers as in contemporary publish-subscribe systems
(referred as loopback) or deliver the message to the blockchain
platform (validated), which runs the BFT consensus for order-
ing and a distributed ledger for persistence. The former is
denoted as loopback in Figure 5a and Figure 5b, while the
later is referred to as committed (validated). Our evaluation
was carried out on 5, 10, 15, and 20 nodes to compare the
network performance and end-to-end delay with the scale. We
used the default configuration of the Tendermint platform for
the evaluation [9].

HyperLedger Fabric Setup: The HyperLedger Fabric ver-
sion of Trinity was evaluated using 20 Docker containers
comprised of full nodes including an orderer.

Ethereum: Ethereum version of Trinity was evaluated using
Ropsten test network due to the transaction fees in the main
network. The smart contract was realized using the Solidity
language, and it was deployed using Remix IDE.

IOTA: The IOTA version of Trinity was evaluated on the
test net. We considered IOTA for the evaluation as it was
targeted for resource-constrained IoT devices [7].

D. End-to-End Delay

Trinity verifies and orders the published messages using
a blockchain platform and records the transactions in a dis-
tributed immutable ledger, which allows the subscribers of
Trinity to receive the recorded and ordered messages while
providing Byzantine fault-tolerant guarantee. The consensus
and ledger storage processes add a delay since the Trinity
consensus nodes must execute the consensus algorithm and the
block creation protocol, which means the subscriber receives
the published data after a slight delay.

1) Tendermint: Figure 5a and Figure 5b shows the timing
overhead of Trinity when publishing to and subscribing from
a broker within a domain and publishing to one broker and
subscribing for a same verified and ordered topic from a
different broker (from a different domain) respectively. We
measured the end-to-end delay with a publisher sending data
every 0.2s, 0.5s, and 1s, which translates to 5 transactions per
seconds (TPS), 2 TPS, and 1 TPS respectively. The end-to-
end delay increases with the number of consensus nodes in
the network due to the increase in the number of validators
participating in the consensus process.

Figure 5a shows the timing overhead when publishing to
and subscribing from the same broker within a domain. The
maximum delay is roughly 3.5s for 20 nodes with 5 TPS, and
the delay for loopback transaction is negligible (approximately
90 milliseconds). When subscribing to the verified data from
a different broker from another domain, the maximum delay
increases from 3.5s to 3.7s. From Figure 5a and Figure 5b, it
is clear that the blockchain-based immutability and ordering
through BFT consensus increases the end-to-end delay, but
we believe that this cost outweighs the Fault-tolerance and
persistence guarantees of Trinity.

2) HyperLedger Fabric: The HyperLedger Fabric [24] ver-
sion of Trinity uses the Solo consensus, which is a centralized
orderer for ordering the transaction before writing it into a dis-
tributed ledger. We evaluated the end-to-end delay for various
buffer sizes since the transactions get dropped when the buffer
is full. Our evaluation for HyperLedger Fabric presents only
the results for the broker in a single domain since the differ-
ence is negligible for brokers in different domains as indicated
by Section VI-D1. As shown in Figure 6a, the maximum
end-to-end delay for HyperLedger Fabric is 142 milliseconds
when the buffer size is 10 and the number of transactions
per second is 30. The lower end-to-end delay of HyperLedger
Fabric makes it ideally suitable for a permissioned setup,
which is typically encountered in applications such as the
racial profiling application presented in Section VII.

3) Ethereum: The Ethereum version of Trinity was evalu-
ated using Ropsten test network, which is functionally similar
to the Ethereum main net. The average end-to-end delay for
Ethereum is 14 Seconds on Ropsten testnet, whereas the
average block creation time on Ethereum mainnet is 15.8

(a) Delay with Same Broker. (b) Delay with Different Broker. (c) Network Overhead

Fig. 5: Tendermint-version of Trinity: End-to-end delay when publishing and subscribing from same broker in Figure 5a and
Figure 5b presents the delay when publishing from one broker and subscribing from a different broker. Network usage results
are presented in Figure 5c.

Seconds according to https://ethstats.net/. Besides, the user has
to pay a transaction fee in Ethereum, which at the time of
writing, fell between 0.0021 USD (1 gwei) and 51.71 USD
(12500 gwei) according to https://ethgasstation.info/.

4) IOTA: The IOTA version of Trinity was evaluated using
the test net. The transactions gets added in the mempool in 10
Seconds on average, but it takes approximately 36 seconds to
be confirmed. On the mainnet, the average confirmation time
is 5.2 minuteshttps://tanglemonitor.com/. Note that there is no
transaction fees in IOTA although it uses a lightweight PoW
consensus since each full node in IOTA is expected to verify
two other transactions whenever it submits a transaction [7].
Note that the network uses a centralized coordinator at the
time of writing.

E. Network Overhead

The Trinity framework uses a blockchain framework to
perform consensus and block creation. All these functionalities
are achieved through the coordination and collaboration of all
the consensus nodes in the network. This process generates
network traffic. Figure 5c shows the network overhead of
Trinity framework for the Tendermint version. The networking
overhead of the Trinity framework increase as the number of
consensus nodes in the network increases for the Tendermint
BFT.

Interestingly, the lower the amount of transaction per sec-
ond, the higher the networking overhead, which is due to
the creation of a large number of blocks. The higher TPS
typically result in multiple transactions being recorded in a
single block, whereas the lower TPS would lead to a single
block per transaction. We believe that the average network
overhead of approximately 300 KiloBytes/ Second for 20-
device with one TPS is insignificant compared to the benefits
offered by Trinity.

HyperLedger Fabric’s network overhead depends on the
buffer size and the number of transactions per second as shown
in Figure 6b. The networking overhead cannot be measured for
Ethereum and IOTA since the full nodes run by the community
members in a public network.

F. CPU and RAM Usage

Figure 7b shows the CPU usage of Trinity for the Ten-
dermint version. On RPi platform, Trinity uses approximately
85% of the CPU when publishing 1000 transactions at a rate
of 1 TPS in 20-node network, since the framework executes
a consensus algorithm, and block creation protocol every
second. Similarly, the maximum RAM usage (see Figure 7c)
is measured in a 20-node network when publishing 1000
transactions at a rate of 1 TPS over 15 minutes time interval.
The resource overhead of Trinity increases with the number
of blocks. By adding multiple transactions in a single block,
the CPU and memory overhead can be minimized.

The CPU overhead of HyperLedger Fabric on a Docker
container is approximately 51% as depicted in Figure 7a.
HyperLedger’s memory overhead is approximately 932 MB,
and it increases with the buffer size as shown in Figure 6c. The
CPU and memory overhead cannot be measured for Ethereum
and IOTA since we don’t maintain a full node to run the PoW
consensus algorithm.

VII. REAL-WORLD APPLICATION OF TRINITY

The Racial and Identity Profiling Act of 2015 (AB 953) [25]
aims to curb the harmful and unjust practice of racial and
identity profiling and increase transparency and accountability
with law enforcement agencies. Racial and identity profiling
occurs when law enforcement officers stop, search, property
seize, or interrogate a person without evidence of criminal
activity. One of the requirements of AB 953 focuses on cre-
ating a system for collecting and reporting basic information
on police-community interactions. The Department of Justice
(DOJ) has developed a web application for collecting and
reporting stop data. As an alternate option, some agencies
have also started developing local applications which provide
easier integration with their local systems including their RMS.
These agencies are planning to collect data locally and then
submit it to DOJ as per defined timelines. There was a concern
raised by RIPA Board in a June 2018 board meeting regarding
the integrity of the data collection. The Board asked DOJ to
assure that the data is not manipulated by any intermediaries

(a) Delay for HyperLedger. (b) Network Overhead. (c) Memory Overhead

Fig. 6: HyperLedger Fabric-version of Trinity: End-to-end delay is presented in Figure 6a. Network and memory usage results
are presented in Figure 6b and Figure 6c respectively. HyperLedger Fabric consists of a buffer which influences the performance.
X-axis shows the different sizes used in the evaluation.

(a) CPU Overhead
(b) CPU Usage for Tendermint version of
Trinity.

(c) Memory Overhead

Fig. 7: CPU usage of HyperLedger Fabric-version of Trinity is presented in Figure 7a. CPU and memory usage of Tendermint-
version of Trinity is presented in Figure 7b and Figure 7c respectively.

when agencies are using locally developed applications to
collect data.

The HyperLedger Fabric-version of Trinity is considered
for this application due to the involvement of multiple stake-
holders. We plan to deploy a permissioned Trinity set up
with five peers including an orderer at field offices and the
office of DOJ. Whenever a field officer enters the profiled
information, it will get replicated to all the Trinity instances
via the blockchain network. When DOJ wants to track the
profiled information, they can subscribe to the verified data
stream of Trinity. Although local agencies all run Trinity
instances, they cannot manipulate once the data is entered onto
the blockchain, as the data is signed, ordered and stored in the
immutable ledger by the consensus node deployed on the DoJs
office.

VIII. CONCLUSION

Blockchain technology has made a significant impact in
the world of cryptocurrencies. However, the building blocks
of blockchain technology such as consensus protocols and
distributed ledgers are promising for applications beyond cryp-
tocurrencies. In this work, we have presented Trinity, which

is a distributed fault-tolerant publish-subscribe broker with
blockchain-based immutability. Trinity’s fault-tolerance capa-
bilities come from the consensus nodes that run a Byzantine
Fault-tolerance consensus algorithm. The implementation of
Trinity showed how the blockchain-specific tasks are decou-
pled from the broker-specific functionalities. Our implemen-
tation and evaluation showed that Trinity can be practically
implemented using a contemporary publish-subscribe broker
and blockchain platforms as demonstrated by its implemen-
tation and assessment using MQTT and multiple blockchain
platforms including Tendermint, HyperLedger, Ethereum, and
IOTA. We believe that the fault-tolerance and trust benefits
of Trinity outweigh the computational and communication
overhead introduced by Trinity and the underlying blockchain
platform. Nevertheless, our future work will focus on optimiz-
ing computation and networking resources.

ACKNOWLEDGMENT

This work is supported by the USC Viterbi Center for
Cyber-Physical Systems and the Internet of Things (CCI).

REFERENCES

[1] “Service Bus queues, topics, and subscriptions,” Microsoft,
September 2018. [Online]. Available: https://docs.microsoft.com/en-
us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions

[2] F. Budinsky, G. DeCandio, R. Earle, T. Francis, J. Jones, J. Li,
M. Nally, C. Nelin, V. Popescu, S. Rich, A. Ryman, and T. Wilson,
“Websphere studio overview,” IBM Syst. J., vol. 43, no. 2, pp. 384–419,
Apr. 2004. [Online]. Available: http://dx.doi.org/10.1147/sj.432.0384

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, no. 2, pp. 114–131, Jun. 2003. [Online]. Available:
http://doi.acm.org/10.1145/857076.857078

[4] “Eclipse Mosquitto,” Eclipse Foundation, May 2018. [Online].
Available: https://mosquitto.org/

[5] A. Banks and R. Gupta, “MQTT version 3.1.1,” OASIS Standard, vol. 29,
2014.

[6] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[7] S. Popov, “The tangle, iota whitepaper,” 2018.
[8] P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance

benchmarking and optimizing hyperledger fabric blockchain
platform,” CoRR, vol. abs/1805.11390, 2018. [Online]. Available:
http://arxiv.org/abs/1805.11390

[9] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, 2016.

[10] B. J. Nelson, “Remote procedure call,” 1981.
[11] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application

protocol (coap),” Tech. Rep., 2014.
[12] A. Banks and R. Gupta, “Mqtt version 3.1. 1,” OASIS standard, vol. 29,

2014.
[13] T. Chang and H. Meling, “Byzantine fault-tolerant publish/subscribe:

A cloud computing infrastructure,” in 2012 IEEE 31st Symposium on
Reliable Distributed Systems, Oct 2012, pp. 454–456.

[14] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach, “Exactly-once
delivery in a content-based publish-subscribe system,” in Proceedings
International Conference on Dependable Systems and Networks, June
2002, pp. 7–16.

[15] H. Meling, K. Marzullo, and A. Mei, “When you don’t trust clients:
Byzantine proposer fast paxos,” in 2012 IEEE 32nd International
Conference on Distributed Computing Systems, June 2012, pp. 193–202.

[16] T. Chang, S. Duan, H. Meling, S. Peisert, and H. Zhang, “P2s: a fault-
tolerant publish/subscribe infrastructure,” in Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. ACM,
2014, pp. 189–197.

[17] R. S. Kazemzadeh and H. Jacobsen, “Partition-tolerant distributed pub-
lish/subscribe systems,” in 2011 IEEE 30th International Symposium on
Reliable Distributed Systems, Oct 2011, pp. 101–110.

[18] C. Chen, H. Jacobsen, and R. Vitenberg, “Divide and conquer algorithms
for publish/subscribe overlay design,” in 2010 IEEE 30th International
Conference on Distributed Computing Systems, June 2010, pp. 622–633.

[19] M. Onus and A. W. Richa, “Minimum maximum-degree publish-
subscribe overlay network design,” IEEE/ACM Trans. Netw.,
vol. 19, no. 5, pp. 1331–1343, Oct. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2011.2144999

[20] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito, “Efficient
publish/subscribe through a self-organizing broker overlay and its
application to siena,” The Computer Journal, vol. 50, no. 4, pp. 444–459,
2007. [Online]. Available: http://dx.doi.org/10.1093/comjnl/bxm002

[21] “Apache Kafka,” The Apache Software Foundation, April 2018.
[Online]. Available: https://kafka.apache.org/

[22] F. Cristian, H. Aghili, R. Strong, and D. Dolev, Atomic broadcast:
From simple message diffusion to Byzantine agreement. International
Business Machines Incorporated, Thomas J. Watson Research Center,
1986.

[23] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,”
Distributed computing, vol. 2, no. 3, pp. 117–126, 1987.

[24] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol.
310, 2016.

[25] “AB 953: The Racial and Identity Profiling Act of 2015,” State
of California Department of Justice, 2015. [Online]. Available:
https://oag.ca.gov/ab953

