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Abstract—We consider the problem of power allocation over
a time-varying channel with an unknown distribution in energy
harvesting communication systems. In this problem, the trans-
mitter needs to choose its transmit power based on the amount
of stored energy in its battery with the goal of maximizing the
average rate obtained over time. We model this problem as
a Markov decision process (MDP) with the transmitter as the
agent, the battery status as the state, the transmit power as the
action and the rate obtained as the reward. The average reward
maximization problem over the MDP can be solved by a linear
program (LP) that uses the transition probabilities for the state-
action pairs and their mean rewards to choose a power allocation
policy. Since the rewards associated the state-action pairs are
unknown, we propose an online learning algorithm called UCLP
that learns these rewards and adapts its policy with time. The
UCLP algorithm solves the LP at each time-step to choose its
policy using the upper confidence bounds on the rewards. We
prove that the reward loss or regret incurred by UCLP is upper
bounded by a constant.

Index Terms—Energy harvesting communications, Markov
decision process (MDP), online learning, contextual bandits.

I. INTRODUCTION

Communication systems where the transmissions are pow-
ered by the harvested energy have rapidly emerged as a
viable option for the next-generation wireless networks with
prolonged lifetime [1]. The performance of such systems is
dependent on the efficient utilization of energy that is currently
stored in the battery, as well as that is to be harvested
over time. In [2l], power allocation policies over a finite
time horizon with known channel gain and harvested energy
distributions are studied. In [3]], a similar problem is analyzed,
but the energy arrivals are assumed to be deterministic and
known in advance. The algorithms presented in [4] assume the
knowledge of energy arrivals and tries to minimize the overall
scheduling time for data packets. In our problem, however, the
channel gain distribution is unknown and the harvest energy is
assumed be stochastically varying with a known distribution.
The transmitter has to decide the transmit power level based on
the current battery status with the goal maximizing the average
expected transmission rate obtained over time. We model the
system as an MDP with the battery status as the state, the
transmit power as the action, the rate as the reward. The power
allocation problem, therefore, reduces to the average reward
maximization problem for an MDP.

Our problem can also be seen from the lens of contextual
bandits. In the standard contextual bandit problems [S], [6],
7], the contexts are assumed to be drawn from an unknown
distribution independently over time. In this paper, we model
the context transitions by MDPs. The action the agent takes at
time ¢, therefore, affects not only the instantaneous reward but
also the context in slot ¢ + 1. Thus the agent needs to decide
the actions with the global objective in mind, i.e. maximizing
the average reward over time. It must be noted that the MDP
formulation generalizes the standard contextual bandits [§] for
the case where the mapping between the context and random
instance to reward is a known monotonic function, since the
i.i.d. context case can be viewed as a single state MDP.

Our problem is also closely related to the reinforcement
learning problem over MDPs from [9], [10], [11]. The ob-
jective for these problems is to maximize the average undis-
counted reward over time. In [9]], [10], the agent is unaware of
the transition probabilities and the rewards corresponding to
the state-action pairs. In [[11]], the agent knows the rewards, but
the transition probabilities are still unknown. In our problem,
however, the transition probabilities of the MDP can be
inferred from the knowledge of the arrival distribution and
the action taken from each state. The goal of our problem is
to maximize the average reward by learning the rewards for
the state-action pairs over time. One additional feature of our
problem is that the function mapping the state-action pair and
the channel gain to the rate is known to the agent. The reward
information revealed after every action can, therefore, be used
to infer the rewards for other state-action pairs.

Our contributions in this paper are as follows:

o We formulate the power allocation problem as an online
learning problem over an MDP with the goal of maxi-
mizing the average reward over time. We prove that the
MDP is ergodic and therefore use its corresponding LP
formulation to characterize the optimal policy.

e« We propose an online learning algorithm UCLP that
learns the rewards for the state-action pairs and adapts its
policy over time. We characterize the regret contribution
from following a non-optimal policy and from not being
at stationarity while following an optimal policy, and
prove a constant regret upper bound for UCLP.
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Fig. 1.  Power allocation over a wireless channel in energy harvesting
communications

This paper is organized as follows. First, we describe
the model for the energy harvesting communication system
studied in this paper, formulate this problem as an MDP
and discuss the structure of the optimal policy in section
We then propose our online learning algorithm UCLP and
prove its regret bounds in section Section [[V]| presents the
results of numerical simulations for this problem and section
concludes the paper. We also include appendices [B] and [C]
to discuss and prove some of the technical lemmas at the end
of the paper.

II. SYSTEM MODEL

Consider a time-slotted energy harvesting communication
system where the transmitter uses the harvested power for
transmission over a channel with stochastically varying chan-
nel gains with unknown distribution as shown in figure
Let p; denotes the harvested power in the ¢-th slot which
is assumed to be i.i.d. over time. Let (); denote the stored
energy in the transmitter’s battery that has a capacity of Q) ax.-
Assume that the transmitter decides to use ¢:(< @) amount
of power for transmission in ¢-th slot. We assume discrete and
finite number of power levels for the harvested and transmit
powers. The rate obtained during the ¢-th slot is assumed to
follow a relationship

ry = Blogy (1 + q: Xy), (1

where X, denotes the instantaneous channel gain-to-noise ratio
of the channel which is assumed to be i.i.d. over time and B
is the channel bandwidth. The battery state gets updated in the
next slot as

Qt+1 = maX{Qt —qt +pt7 Qmax}' (2)

The goal is to utilize the harvested power and choose a
transmit power ¢; in each slot sequentially to maximize the

expected average rate Tlim %E [Zthl rt} obtained over time.
— 00

A. Problem Formulation

Consider an MDP M with a finite state space S and a finite
action space A. Let A, C A denote the set of allowed actions
from state s. When the agent chooses an action a; € A, in
state s; € S, it receives a random reward (s, a;). Based on
the agent’s decision the system undergoes a random transition

to a state s;41 according to the transition probability P(s¢11 |
st,at). In the energy harvesting problem, the battery status
Q: represents the system state s; and the transmit power ¢
represents the action taken a, at any slot ¢.

In this paper, we consider systems where the random
rewards of various state action pairs can be modelled as

Tt(St,at) = f(3t7at7Xt)u 3)

where f is a reward function known to the agent and X,
is a random variable internal to the system that is i.i.d.
over time. Note that in the energy harvesting communications
problem, the reward is the rate obtained at each slot and the
reward function is defined in equation (I). In this problem,
the channel gain-to-noise ratio X; corresponds to the system’s
internal random variable. We assume that the distribution of
the harvested energy p; is known to the agent. This implies that
the state transition probabilities P(s:+1 | St,a:) are inferred
by the agent based on the update equation (2).

A policy is defined as any rule for choosing the actions
in successive time slots. The action chosen at time ¢ may,
therefore, depend on the history of previous states, actions
and rewards. It may even be randomized such that the action
a € A, is chosen from some distribution over the actions. A
policy is said to be stationary, if the action chosen at time ¢
is only a function of the system state at ¢. This means that a
deterministic stationary policy (3 is a mapping from the state
s € S to its corresponding action a € A,. When a stationary
policy is played, the sequence of states {s; | t = 1,2,---}
follows a Markov chain. An MDP is said to be ergodic, if
every deterministic stationary policy leads to an irreducible
and aperiodic Markov chain. According to section V.3 from
[12], the average reward can be maximized by an appropriate
deterministic stationary policy 5* for an ergodic MDP with
finite state space. In order to arrive at an ergodic MDP for
the energy harvesting communications problem, we make the
following assumptions: 1. when the battery state Q); > 0, the
transmit power ¢; > 0; 2. the distribution of the harvested
energy is such that Pr{p, = p} > 0 for all 0 < p < Qmax-
Under these assumptions, we prove the ergodicity of the MDP
as follows.

Proposition 1. The MDP corresponding to the power allo-
cation application in energy harvesting communications is
ergodic.

Proof: Consider any policy 3 and let P(")(s, s") be the n-
step transition probabilities associated with the Markov chain
resulting from the policy.

First, we prove that P()(s,s') > 0 for any s’ > s as
follows. According to the state update equations,

Si41 = 8¢ — B(st) + py- €]
The transition probabilities can, therefore, be expressed as

PO (s, sy =Pr{p=s"—s+p(s)} >0, (5)



since s’ > s and fS(s) > 0 for all states. This implies that
any state s’ € S is accessible from any other state s in the
resultant Markov chain, if s < s’.

Now, we prove that P(V)(s,s — 1) > 0 for all s > 1 as
follows. From equation , we observe that

PW(s,5—1)=Pr{p=p(s) — 1} >0, (6)

since (s) > 1 for all s > 1. This implies that every state
s € § is accessible from the state s+1 in the resultant Markov
chain.

Equations (5 and (6) imply that all the state pairs (s,s+1)
communicate with each other. Since communication is an
equivalence relationship, all the states communicate with each
other and the resultant Markov chain is irreducible. Also,
equation (5) implies that P(*) (s, s) > 0 for all the states and
the Markov chain is, therefore, aperiodic. [ |

Since the MDP under consideration is ergodic, we restrict
ourselves to the set of deterministic stationary policies which
we interchangeably refer to as policies henceforth. Let u(s, a)
denote the expected reward associated with the state-actions
pair (s,a) which can be expressed as

u(s,a) =E[r(s,a)] =Ex [f(s,a,X)]. @)

For ergodic MDPs, the optimal mean reward p* is independent
of the initial state (see [[13]], section 8.3.3). It is specified as

Pt = max p(B, M), (8)

where B is the set of all policies, M is the matrix whose (s, a)-
th entry is p(s, a), and p(8, M) is the average expected reward
per slot using policy 3. We use the optimal mean reward as
the benchmark and define the cumulative regret of a learning
algorithm after 7' time-slots as

T—1
R(T) :=Tp" —E lz rtl . )
t=0

B. Optimal Stationary Policy

When the expected rewards for all state-action pairs p(s, a)
and the transition probabilities P(s’ | s,a) are known, the
problem of determining the optimal policy to maximize the
average expected reward over time can be formulated as a
linear program (LP) (see e.g. [12], section V.3) shown below.

maximize Z Z (s, a)u(s,a)

seES ac A,

subject to  m(s,a) >0, Vs € S,a € A,
>3 w1
seSacA,

vs'eS: Z m(s'ya) = Z Z n(s,a)P(s' | s,a),
(IE.AS/ s€S ac A,

(10)
where 7(s,a) denotes the stationary distribution of the MDP.
The objective function of the LP from equation (I0) gives
the average rate corresponding to the stationary distribution
7(s,a), while the constraints make sure that this stationary

distribution corresponds to a valid policy on the MDP. Such
LPs can be solved by using standard solvers like CVXPY [14].

If 7*(s,a) is the solution to the LP from (10), then for
every s € S, m(s,a) > 0 for only one action a € A,. This
is due to the fact the the optimal policy B* is deterministic
for ergodic MDPs in average reward maximization problems
(see [13], section 8.3.3). Thus for this problem, 8*(s) =
argmax,c 4 7*(s,a). Note that we, henceforth, drop the
action index from the stationary distribution, since the policies
under consideration are deterministic and the corresponding
action is, therefore, deterministically known. In general, we
use mg(s) to denote the stationary distribution corresponding
to the policy 3. It must be noted that the stationary distribution
of any policy is independent of the reward values and only
depends on the transition probability for every state-action
pair. The expected average reward depends on the stationary
distribution as

p(B,M) = ma(s)us, B(s))-
sES
In terms of this notation, the LP from equivalent to
maxgeg p(8, M). Since the matrix M is unknown, we de-
velop an online learning framework to learn the optimal policy
in the next section.

(1)

III. ONLINE LEARNING ALGORITHMS

For the power allocation problem under consideration, al-
though the agent knows the state transition probabilities, the
mean rewards for the state-action pairs x(s, a) values are still
unknown. Hence, the agent cannot solve the LP from @]) to
figure out the optimal policy. Any online learning algorithm
needs to learn the reward values over time and update its policy
adaptively. One interesting aspect of the problem, however,
is that the reward function from equation (3) is known to
the agent. Since the reward functions under consideration (1)
is bijective, once the reward is revealed to the agent, it can
invert them to infer the instantaneous realization of the random
variable X . This inference can be used to predict the rewards
that would have been obtained for other state-action pairs using
the function knowledge.

In our online learning framework, we store the average
values of these inferred rewards 6(s,a) for all state-action
pairs. Also, we define confidence bounds at time ¢:

ur (s, @) = 0(s, a) + B(S,a)ﬁ

12)
lia(s.0) = 0(s.0) — Bls, )y 00, (13)

which are referred to as UCB and LCB, respectively, and
B(s,a) > max, f(s,a,x)—min, f(s,a,z) denotes any upper
bound on the maximum possible range of the reward for the
state-action pair (s,a). The idea behind our algorithms is to
use the UCB values for the maximization problems instead
of the unknown pu(s,a) values in the objective function of
the LP from (10). Since the 6(s,a) values get updated after
each reward revelation, the agent needs to solve the LP again



and again. We propose our online learning algorithm UCLP
where the agent solves the LP at each slot. Although the agent
is unaware of the actual u(s,a) values, it learns the statistics
0(s,a) over time and eventually figures out the optimal policy.

We use following notations in the analysis of our algorithms:

By = r(na))( B(s,a), Apin == p* — g;éaﬁx p(6,M). The
total number of states and actions are specified as S := [S],
A := |A|, respectively. Also, U, and L; ) denote the

matrices containing the entries u; x(s,a) and I; A (s, a) at time
t, respectively.

The UCLP algorithm presented in algorithm[I] solves the LP
at each time-step and updates it policy based on the solution
obtained. It stores only one # value per state-action pair, its
required storage is, therefore, O(SA). In theorem we derive
an upper bound on the expected number of slots where the
LP fails to find the optimal solution using UCLP. We use this
result to bound the total expected regret of UCLP in theorem 2]
These results guarantee that the regret is always upper bounded
by a constant. Note that, for the ease of exposition, we assume
that the time starts at ¢ = 0. This simplifies the analysis, but
has no significant impact on the regret bounds.

Algorithm 1 UCLP

1: Parameters: \ > 1/2.
2: Initialization: For all (s, a) pairs, 6(s,a) = 0.
3: for n =0 do
4:  Given the state sg and choose any valid action;
Update all (s,a) pairs: 0(s,a) = f(s,a,20);
end for
: // MAIN LOOP
while 1 do
n=n+1;
Confidence bounds:

Un,a(8,a) = 0(s,a) + B(s,a)4/ )\lnn;
n

11:  Solve the LP from (10) with u, x(s,a) instead of
unknown (s, a);

122 In terms of the LP solution (), define (,(s) =
argmax,e 4 T(n)(s,a), Vs € S;

13:  Given the state s,,, select the action 5, (s,);

14:  Update for all (s,a) pairs:

nd(s,a)+ f(s,a,z,)
n+1 '

R A

._
4

0(s,a) +

15: end while

Theorem 1. The expected number of slots where non-optimal
policies are played by UCLP is upper bounded by

no + (1 + A4) Soy, (14)

oo
where o) = > t=2X and ng denotes the minimum value of
t=1

n e NfOV which Amin 2 2BO M%

The proof of theorem [I] is provided in appendix [A] UCLP
requires A > 1/2 in order to have a constant regret upper
bound from equation (14), since o) < oo for A > 1/2. It is
important to note that even if the optimal policy is found by the
LP and played during certain slots, it does not mean that regret
contribution of those slots is zero. According to the definition
of regret from equation (9, regret contribution of a certain
slot is zero if and only if the optimal policy is played and the
corresponding Markov chain is at its stationary distribution.
In appendix |C| we introduce tools to analyze the mixing of
Markov chains and characterize this regret contribution in
theorem [3] These results are used to upper bound the UCLP
regret in the next theorem.

Theorem 2. The total expected regret of the UCLP is upper
bounded by

(no+(1 + A) Sa,\)Amax+ <1+(1 +A) SU}\) flijv
where 7y = es | Pi(s",-)=Pi(s,-)||Tv, P« denotes the tran-
s,8'€

15)

sition probability matrix corresponding to the optimal policy,

max  p(s,a) and Apax = p* — min  p(s,a).

Hmax =
x s€S,ac A, SES,acA;

Proof: The regret of UCLP arises when either non-
optimal actions are taken or optimal actions are taken, but
the corresponding Markov chain is not at stationarity. For the
first source of regret, it is sufficient to analyze the number of
instances where the LP fails to find the optimal policy. For the
second source, however, we need to analyze the total number
of phases where the optimal policy is found in succession.

Since only the optimal policy is played in consecutive
slots in a phase, it corresponds to transitions on the Markov
chain associated with the optimal policy and the tools from
appendix [C] can be applied. According to theorem [3] the
regret contribution of any phase is bounded from above by
(1- 'y)_lﬂmax. As proved in theorem m for ¢ > ng, the
expected number of instances of non-optimal policies is upper
bounded by (1 + A) Sox. Even if none of the these instances
appear in successive slots, the expected number of optimal
phases is upper bounded by 1 + (14 A)So,. Hence, for
t > ng, the expected regret contribution from the slots
following the optimal policy is upper bounded by

Mmax

(1+(1+A)Sa,\)17’y.

Note that maximum regret possible during one slot is A, ..

Hence for the first ng slots, the regret is bounded by ngA ax.

Since there are at most (1 + A) Soy slots with non-optimal

policy for ¢t > ng in expectation, their expected regret is upper
bounded by (1 + A) SoxAmnax-

Overall expected regret for the UCLP algorithm is, there-

fore, bounded from above by equation (I3). [ ]

(16)

Remark 1. It must be noted that we call two policies as same
if and only if they recommend identical actions for every state.
It is, therefore, possible for a non-optimal policy to recommend
optimal actions for some of the states. In the analysis of UCLP,
however, we assumed that any occurrence of a non-optimal
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policy contributes to the regret. Although this is not necessary,
it leads us to a valid upper bound in the proof.

IV. NUMERICAL SIMULATIONS

We perform simulations for the power allocation problem
with § = {0,1,2,3,4} and A = {0, 1,2, 3,4}. Note that each
state s; corresponds to Q; from equation (Z) with Qax = 4
and a; corresponds to the transmit power ¢; from equation
(1I). The valid actions for each state are shown in table
The reward function is the rate function from equation ()
and the channel gain is a scaled Bernoulli random variable
with Pr{X = 10} = 0.2 and Pr{X = 0} = 0.8. We use
CVXPY [14]] for solving the LPs in our algorithm. For the
simulations in figure [2| we use A = 2 and plot the average
regret performance over 103 independent runs of different
algorithms. Here, the naive policy never uses the battery, i.e.
it uses all the arriving power for the current transmission.
Note that the optimal policy also incurs a regret because of
the corresponding Markov chain not being at stationarity. We
observe that UCLP follows the performance of the optimal
policy with the difference in regret stemming from the first
few time-slots when the channel statistics are not properly
learnt and thus UCLP fails to find the optimal policy. As the
time progresses, UCLP finds the optimal policy and the regret
follows the regret pattern of the optimal policy.

TABLE I
VALID ACTIONS PER STATE

State (s) | Actions (As)
0 {0}
1 {1}
2 {1,2}
3 {1,2,3}
4 {1,2,3,4}

V. CONCLUSION

We have considered the problem of power allocation over
a stochastically varying channel with unknown distribution in
an energy harvesting communication system. We have cast

this problem as an online learning problem over an MDP. If
the transition probabilities and the mean rewards associated
with the MDP are known, the optimal policy maximizing the
average expected reward over time can be found by solving
an LP specified in the paper. Since the agent is only assumed
to know the distribution of the harvested energy, she needs to
learn the rewards of the state-action pairs over time and make
her decisions based on the learnt behaviour. For this problem,
we have proposed our online learning algorithm UCLP which
solves the LP at each time-slot using the updated upper
confidence bounds of the rewards instead of the unknown
mean rewards. We have shown that the regret incurred by
UCLP is bounded from above by a constant. Through the
numerical simulations, we have shown that the regret of UCLP
is very close to that of the optimal policy.

The UCLP algorithm presented in this paper solves an LP
and therefore requires a lot of computations at each time-
step. Reducing the computational needs of UCLP is a potential
direction for future works in this area.
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APPENDIX A
PROOF OF THEOREMI]

Let 3, denote the policy obtained by UCLP at time ¢
and I(z) be the indicator function defined to be 1 when the
predicate z is true, and 0 otherwise. Now the number of slots
where non-optimal policies are played can be expressed as

Ny :1+ZH{5t # B}

t=1

<no+ Y T{B # 8"}
t=no

=ng + Zﬂ{p U <p(B,Un)}y. (A7)
t=no

We observe that p(8*,U; ) < p(B:, Uyg,n) implies that at

least one of the following inequalities must be true:

p(67,Ura) < p(B, M) (18)
p(/Bta Lt,)\) Z p(ﬁhM) (19)
p(6*7M) < p(/BtvM) +p(6taUt,)\) _p(ﬁtth,)\)- (20)

Hence we upper bound the probabilities of each of these
events. For the first event from condition (I8), we get

Pr {p(ﬁ*aUt,A) < p(6*7M)}

Pr{ZW 8))ur (s, B*(s))

s€S
<Y T (s. B ()m
s€ES
< Pr {For at least one state s € S :

(7o, 8°(5) < s ()
< ST Pr{n* (s, 57 (5))ur (s, 5°(s)

seS

(s, ﬂ*(S))}

2L

where (a) holds due to concentration of confidence bounds
from lemma [2] (see appendix [B].
Similarly for the second event from condition (I9), we get

Pr{p(B:,Lix) > p(Bi, M)}

= Pr {Z Z T3, (S, a)lt,\(s,a)

seS ac A,

> Z Z Wﬂt(sva)/”'(&a')}

seS ac A,

< Pr {For at least one state-action pair (s, a) :
T8y (57 a)lt)\(‘g? CL)) Ey (Sa CL),U(S, a)}

< Z Z Pr {ﬂ.Bt(S’ a)lt,)\(sv CL) 2> g, (57 a’):u(sv CL)}
sESacA;

= Z Z Pr{l;x(s,a) > u(s,a)}
seESacA;

(b)

gy y e

seES acA;

< SAtH, (22)

where (b) holds due to concentration bounds from lemma

(see appendix [B)).
Now let us analyze the third event from condition (20).

(ﬁhUt )\) - (/Btth )\)
—ZZWﬁtsau“\sa Zngrsalt,\sa)
sES ac A, sES acA,

- Z Z 73, (s, a) (urA(s,a) — I a(s, a))

s€ES acA;
Alnt
= Z Z 73, (s, a) <2B(s,a)\/ tn >
s€ES acA;

=24/ /\ltnt Z Z 7, (s,a)B(s,a)

SES a€A;

/)\lntz Z 7'(',& s, a

SES a€A;

Y
< 2By tn

(23)

Since Apin < p(6*, M) — p(8:, M), for all t > ng we get
p(ﬂ*a M) - p(ﬂh M) - (p(ﬂfn Ut,)\) - p(ﬁta Lt,)\))
Z Amin - 2BO /\ltnt
Z Amin - 2BO Aln 1o
no
> 0. (24)

This implies that condition (20) is always false for ¢ > ng.
The expected number of incorrect policies from equation
(17), therefore, can be expressed as

E[Ni] <ng+ Y _ Pr{p(B

t:no

<no+ »_ (Pr{p(8

t:no

S Uia) < p(Bt; Uga)}

*7Ut,>\) < p(ﬂ*aM)}

+Pr{p(Bt,Li.»n) = p(Br, M)})

St 4+ SAL)

Sno+§:(

t=ng

§n0+(l+A)SZt72)‘

t=ng



§n0+(1+A) SO’A, (25)

where o) < co as A > 1/2. |
APPENDIX B
TECHNICAL LEMMAS & PROOFS

Lemma 1 (Hoeffding’s Concentration Inequality from [15]).
Let Y1,....,Y, be iid random variables with mean p and

range [0,1]. Let S, = Y, Then for all o >0
=1

Pr{S, > nu+a} < e—20%/n

Pr{S, <nu—a} < e=20%/n,
Lemma 2 (Concentration of Confidence Bounds). At any time
t, for any valid state-action pair (s, a), following inequalities
hold:

1) Pr{uga(s,a) < p(s,a)} <t=24,
2) Pr{l;a(s,a) > p(s,a)} <=2\

Proof: For the first inequality,

Pr{utx(s,a) < p(s,a)}
Ant

<Pr {ft(s, a) + B(s,a) < (s, a)}

_p D), msa),
B(s,a) B(s,a)

(2 020\t In )/t
=t (26)
where (a) is obtained using the left-sided Hoeffding’s inequal-
ity (see lemma |1) with o = vV AtInt.

Similarly using the right-sided version of the concentration
inequality, we get the second inequality. ]

APPENDIX C
ANALYSIS OF MARKOV CHAIN MIXING

We briefly introduce the tools required for the analysis
of Markov chain mixing (see [L6], chapter 4 for a detailed
discussion). The total variation (TV) distance between two
probability distributions ¢ and v on sample space (2 is defined
by

— = — . 27

6= wllrv = max|o(€) — (€) @7)

Intuitively, it means the TV distance between ¢ and v is

the maximum difference between the probabilities of a single

event by the two distributions. The TV distance is related to
the L; distance as follows

16— vlirv = 5 3 16() — bl

weN

(28)

We wish to bound the maximal distance between the station-
ary distribution 7 and the distribution over states after ¢ steps
of a Markov chain. Let P(*) be the ¢-step transition matrix
with P(*)(s,s') being the transition probability from state s
to s’ of the Markov chain in ¢ steps and P be the collection of

all probability distributions on 2. Also let P()(s, -) be the row
or distribution corresponding to the initial state of s. Based on
these notations, we define a couple of useful ¢-step distances
as follows:

— —_ p®(s..
d(t) := max || (ss)llrv

= sup |7 — PV 1v, (29)
PeP
d(t) = max [[PO(,) = PO (s, ) v
s,s'€
= sup [[YPY — ¢PW||1y. (30)
b, P

For irredupible and aperiodic Markov chains, the distances
d(t) and d(t) have following special properties:

Lemma 3 ([16], lemma 4.11). For all t > 0, d(t) < d(t) <
2d(t).

Lemma 4 ([16], lemma 4.12). The function d is sub-
multiplicative: d(t1 + t2) < d(t1)d(t2).

These lemmas lead to following useful corollary:
Corollary 1. For all t > 0, d(t) < d(1)".

Consider an MDP with optimal stationary policy 5*. Since
the MDP might not start at the stationary distribution 7*
corresponding to the optimal policy, even the optimal policy
incurs some regret as defined in equation (9). We characterize
this regret in the following theorem.

Theorem 3 (Regret of Optimal Policy). For an ergodic MDP,

the total expected regret of the optimal stationary policy

with transition probability matrix P, is upper bounded by

(1=9) " i where 7 = max | Po(s',7) = Pu(s, )av and
s,8

max u(s,a).

Hmax = s€S,acA

Proof: Let ¢y be the initial distribution over states and
o1 = o Pft) be such distribution at time ¢ represented as a row
vectors. Also, let ©* be a row vector with entry corresponding
to state s being (s, *(s)). We use d*(t) and d*(t) to denote
the t¢-step distances from equations and for the
optimal policy. Ergodicity of the MDP ensures that the Markov
chain corresponding to the optimal policy is irreducible and
aperiodic, and thus lemmas [3] and [4] hold. The regret of the
optimal policy, therefore, gets simplified as:

R*(¢o, T)
T—1
=Tp* = ¢ p*
t=0
T—1
=T(r"-p*)— ) ¢r
t=0
T—1
=) (7" =) p*
t=0
T—1

(Negative entries ignored)



< Hmax Z (az*(l))t (From corollary [T)

Note that this regret bound is independent of the initial
distribution over the states. ]
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