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Abstract—We investigate the benefits of distributed storage
using erasure codes for file sharing in vehicular networks through
realistic trace-based simulations. We find that coding offers
substantial benefits over simple replication when the file sizes
are large compared to the average download bandwidth available
per encounter. Our simulations, based on a large real vehicle
trace from Beijing combined with a realistic radio link quality
model for a IEEE 802.11p dedicated short range communication
(DSRC) radio, demonstrate that coding provides significant cost
reduction in vehicular networks.

I. INTRODUCTION

The recent development of the IEEE 802.11p WAVE (Wire-

less Access in Vehicular Environment) protocol [1] and the

allocation of Dedicated Short Range Communications (DSRC)

spectrum have increased interest in vehicular networking. This

protocol enables vehicle-to-vehicle (V2V) as well as vehicle-

to-infrastructure (V2I) communication (and vice versa), and

capabilities like these open up a number of possibilities.

Most applications focus on safety, such as avoiding rear-

end collisions; extended braking [1], [2]; and detecting and

disseminating information about potholes, bumps and other

anomalous road conditions [3]. Recently, applications that

concern entertainment and file sharing are also receiving

attention and involve different challenges (e.g., AdTorrent [4],

CarTorrent [5], FleaNet [6], C2P2 [7]).

Content access and vehicle file sharing would enable users

to access movies, music, videos, and other relevant content.

In this paper, using realistic trace based simulations, we

investigate the possibility of exploiting inter-vehicular commu-

nication to enable P2P file sharing without the use of access

points (APs). One possibility for content access is to use the

cellular infrastructure, but recent reports suggest that with the

increasing use of smart phones, cellular data bandwidth is

likely to remain limited and expensive [8]. Another option is

to use APs, but they may be hard to deploy in high densities.

In addition, due to the latency of content access from the

Internet, a vehicle quickly passing by an AP might not have

sufficient time to download its desired data. In contrast, the

WAVE/WAVE BSS modes of IEEE 802.11p allow for rapid
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V2V file transfers [1] over potentially longer contact durations

(e.g., if the vehicles are traveling in the same direction).

Nevertheless, we note that the coded storage techniques we

explore in this paper could also be used in a heterogeneous

network architecture which integrates V2V communication

with V2I communication.

We identify two basic dissemination schemes that can be

employed for data transfers in vehicular networks - one is

the well studied ( [4], [5], [9]–[13]) push-based mechanism

and the other is a pull-based retrieval scheme which we study

in this paper. It may be noted that push-based mechanisms

work well for small sized data transfers such as traffic updates,

pothole monitoring and other content that might be of interest

to all users, but would fail to perform well for large file

transfers of interest to only a few users (e.g., movies, long

videos). This can be seen easily because traditional push-

based schemes involve replicating the same file over multiple

relays (e.g., epidemic routing [9], spray and wait [10], file

swarming [4], [5]), which can be quite inefficient for large

files. Other methods have been proposed such as the use of

erasure coding [11], [12] and network coding [13], and even

though they help reduce the delay and enhance the reliability,

they fundamentally work by pushing more data than the file

size into the network.

Hence in this work, we consider a P2P file sharing appli-

cation where the files are stored in the nodes as a distributed

repository and interested users retrieve these files on-demand.

The amount of data downloaded by a node is no more than the

file size (excluding control data), and thus such a pull-based

scheme is not only efficient but will also scale well with the

number of nodes, file size etc. But in order to improve the

latency and reliability of content access, intuitively the files

should be stored with some redundancy. Thus, in order to

reduce the latency of file access, we shift the burden from

the expensive bandwidth to the relatively inexpensive storage,

thereby enabling additional applications to run. Previously

Kapadia et al. [7] have suggested a similar scheme, where

the content is stored using simple uncoded replication. The

novel contribution of our work is that we recommend the use

of erasure codes, especially for large files, and we run a series

of simulations to show the performance improvement of coded

storage compared to uncoded replication.



We consider out of scope of this paper the orthogonal

problem of the process by which the file repository is initially

created and maintained. For this purpose other previously

proposed schemes such as coded dissemination [14] or direct

infrastructure download could be used.

In this work, we present a comprehensive performance

analysis using a real vehicle trace consisting of 1,000 taxis

in Beijing, combined with a realistic 802.11p DSRC Packet

Delivery Ratio (PDR) model. These simulations demonstrate

that coded storage substantially improves the timeliness of

file downloads particularly when the bandwidth is limited as

compared to the file size.

A. Related Work

The fundamental goal of this paper is to simulate a pull-

based P2P vehicular content storage system and study the

effect of coding on file download latencies.

In contrast to prior work such as [7] which assumes that the

content in such a system is stored using uncoded replication,

we advocate the use of erasure codes for storing content.

Erasure coding consists of separating each file into k chunks

of size M/k each and from these generating n > k chunks of

the same M/k size each. If a Maximum Distance Separable

(MDS) erasure code [15] is used, any k out of the n encoded

chunks suffice to reconstruct the original file. One specific

family of codes that are almost-MDS and are suitable for

our application are digital fountain codes. Initially proposed

by Byers et al. [16] and later developed by Luby [17] and

Shokrollahi [18], digital fountain codes are binary near-MDS

(almost all sets of k(1 + ǫ) chunks suffice to reconstruct the

file with high probability, but we neglect ǫ for simplicity) and

have very fast and simple encoding and decoding algorithms.

Erasure coding and uncoded replication have previously

been compared in other contexts. For instance, [19] compares

coding and uncoded replication for distributed storage in a

wired system, and argues that coding is a clear winner as it

provides mean times to failure that are magnitudes higher than

that provided by replication. Our work on vehicular networks

has a different focus, not on ensuring availability in the face of

failures, but rather on reducing latency in the face of sparse

and short-duration vehicular encounters. In this setting, we

argue that coding is indispensable, particularly for large files.

Because they involve intermittent encounters, sparse vehic-

ular networks can be considered examples of Delay/Disruption

Tolerant Networks (DTNs). Closest in spirit to our work are

two previous studies with an overlapping set of authors, who

have examined the use of erasure codes in DTNs for reliably

routing information between a particular source-destination

pair [11], [12]. These studies provide a comparative analysis

showing that the use of erasure coding can provide significant

robustness to en-route path/node failures (the focus of [11]),

as well as reduced latency (the focus of [12]), for push-

based networks. In contrast, our emphasis in this work is on

evaluating the latency and reliability of erasure coding for a

pull-based network, specifically suitable for large files.

Also, seemingly related to our work are those that adopt

network coding to handle content distribution in vehicu-

lar networks, e.g., CodeTorrent [13], VANETCODE [20],

CodeOn [21], and VCD [14]. Again, an essential distinction is

that these works focus primarily on pushing files and messages

to other nodes, whereas our focus is on pull-based retrieval for

large files.

II. MODEL AND PROBLEM SETUP

We assume there are N identical participating vehicles (or

nodes) in a closed system of a vehicular network, each with

a storage capacity of C bits allocated for the file sharing

application. The total number of different files stored in the

system is denoted by m; for simplicity, we assume that all the

files have the same size of M bits (assume C ≥ M) and are

equally likely to be requested.

It is desired to distribute these m files among the nodes. It is

assumed that the total available storage exceeds the total size

of all files: i.e., that NC ≥ mM. Denote α = NC

mM
and note

that we can store each file α ≥ 1 times throughout the system

and saturate the available capacity in the system. We refer to

α as the system redundancy, since it is the number of times

each bit is stored in the system. In this paper, we consider and

analyze the expected delay in downloading files when uncoded

replication scheme and the coded storage scheme are used. For

the uncoded replication scheme (also called uncoded storage),

we simply store each file α times in the nodes ensuring that

a node doesn’t store the same file multiple times (maximal

spreading). On the other hand, for the coded storage scheme,

an (n, k) MDS code is used and each file is split into k chunks

and encoded into n chunks of the same size. We set n/k =
α, equal to the total system redundancy. This is because, as

the effective size of each file after coding is nM/k, in order

to saturate the system capacity, we need NC = m(nM/k),
yielding α = n/k.
We focus on the latency experienced by a given sink vehicle

that is trying to download one of the m files. The amount of

data that a node can download from another upon an encounter

is called the download bandwidth. Note that it is not a constant

but is rather a random variable that depends on the contact

duration and the link quality model used. We refer to d as the

average bandwidth constraint.

Given all other parameters, we would like to determine the

optimal values of n and k for coding. In order to do so, we

note that each chunk has size M/k and so we want to choose

k such that the chunk is downloadable within the average

bandwidth constraint (d). Thus we want k ≥ ⌈M/d⌉, while
prefering lower values of k for lower coding complexity. Note

that k = 1 in fact corresponds to not using any coding at all.

Now, once k is fixed, choose n = αk.

III. TRACE BASED EXPERIMENTS

We now turn to an empirical evaluation of the benefits of

coded storage, using a real vehicular trace. We use GPS traces

of 1,000 (randomly chosen out of the available 2,927) taxis

in Beijing collected from 00:00hrs to 23:59hrs on Jan 5, 2009



local time, recorded every minute. We assume that the nodes

continue to run their application throughout the day. For inter-

vehicular communication, we used a realistic model of IEEE

802.11p from [22], the details of which are given in section

III-B below.

In order to characterize the performance of the system,

we cannot simply use the average delay in downloading a

file as a figure of merit. This is because, since the traces

are time limited, there could be files that may not get fully

reconstructed by the end of the duration of the trace, and so it

is hard to quantify the delay of such incompletely downloaded

files. Thus, we rely primarily on two metrics: one is the full-

recovery probability, which measures the probability that a file

can be fully recovered by a sink by a given time and the other

is the average file download percentage, which measures, on

average, how much of a file is downloaded by a given time.

Thus, for example, a file-recovery probability of 0.9 means

that the nodes were able to successfully download full files

90% of the time and an average file download percentage of,

say, 95 means that the nodes were able to download 95% of

the file on the average.

A. Simulation Setup

Both in the uncoded and the coded storage schemes, the

chunks and files are stored by ensuring maximal spreading, so

that, in the case of uncoded storage, a file is not stored in the

same node twice and in the case of coded storage, multiple

chunks of the same file are not stored in the same node, unless

all other nodes have been used. In fact, we found that by

randomly storing files/chunks, coding still performed virtually

the same whereas the performance of uncoded storage scheme

decreased slightly. Thus, we decided to use maximal spreading

so as not to worry about the performance degradation intro-

duced by randomization, even though random storage may be

more realistic.

Next, the day-long trace is divided into intervals of length

one minute each and thus at each time step, all we need to do

is to determine the distance between the given sink and every

other node, and apply the radio model (described below) to

find out the number of packets transferred, if any.

Since the end goal is to deploy a file sharing system in

a vehicular network, we try to make reasonable choices of

various parameters involved. A capacity of 100GB per node

is assumed as a default, unless specified otherwise. Similarly,

by default, files are assumed to be of size 1GB, typical of

movie clips and we consider a default of 2,500 files in the

system, so that each file can be replicated α = 40 times when

there are 1,000 nodes.

B. Realistic Radio Link Model

The IEEE 802.11p standard specifies the data rate to range

from 1.5Mbps to 27Mbps with the default being 3Mbps, which

we use in our simulations. For inter-vehicular communication,

we use an empirical model of packet delivery characteris-

tics obtained from [22]. The authors characterize the packet

delivery ratio (PDR) against various parameters such as the
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(b) Average file download percentage

Fig. 1. Evaluating the performance of distributed storage codes in the default
setting consisting of 2,500 files each of size 1GB stored in nodes each having
100GB storage and there are 1,000 nodes in total.

separation between two nodes, their relative velocity etc., in a

number of different environments and the overall experiments

lasted for about 30 hours. Of the various environments in

which their experiments were conducted, the closest match

to our dataset is the Suburban Road (SR) environment. Thus

we use their PDR vs separation distance data (Fig 3(a) in

[22]) to carry out our simulations. It may also be emphasized

that the authors found that the relative velocity between two

nodes does not significantly affect the PDR, the way inter-

vehicular distance does. We choose packet sizes of 380 bytes

with payload 300 bytes. Additionally a protocol set up time

of about 1ms is considered.

C. Experimental Methodology

As explained before, the two primary metrics of perfor-

mance are the full-recovery probability and the average file

download percentage, both characterized as functions of time.

Once the files or the chunks (depending on the scheme to

evaluate) are stored in all the nodes, in order to simulate the

file sharing application, a random node is selected to be the

sink and it tries to collect a random file. For each sink-file

pair, we keep track of the percentage of the file downloaded

and whether the file download is complete or not at each time

step. When presenting the results, we average over 50 random

sinks, and for each sink, we run the entire simulation 100

times choosing a different file each time.

D. Choice of the coding parameter k

From the dataset, we observed an average contact duration

of 55.6s (assuming a radio range of 500m) leading to an aver-

age data transfer of 21MB (at 3Mbps under ideal conditions).

Since its desirable to be able to transfer multiple chunks per

encounter, we choose a safe chunk size of 1MB.

E. Discussion of the Results

Our most important results are shown in Fig 1, in which we

consider a typical file sharing scenario with 2,500 files each of

size 1GB; and each node having about 100GB storage. Such

a system is implemented atop the dataset, and both the full-

recovery probability and the average file download percentage

are measured for each time step. We note that coding offers

significant benefits compared to uncoded replication. For ex-

ample, at the end of 24 hours, files are reconstructed fully
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Fig. 2. Plots showing how various parameters affect the full-recovery probability. In each of the cases, one parameter is varied while keeping the others
constant. Typical values used are a storage capacity of 100GB, 2,500 files and file size 1GB.
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Fig. 3. Plots showing the impact of different parameters on the average file download percentage. The parameters are same as in Fig 2.

98% of the time by using coding, whereas without coding,

only 19% of the files are reconstructed fully (see Fig 1(a)). The

corresponding values for average file download percentage are

99% and 61% respectively. If we were to consider the instant

when 80% of nodes are able to complete their downloads,

this corresponds to about 600 minutes in the trace when

coding is used, but only 4.4% of nodes are successful in full

downloads by 600 minutes if coding is not used. An interesting

observation to make is that since the Beijing trace begins in

the middle of the night with relatively little traffic, one can

see from Fig 1 that the rate at which files are completed starts

to slow down around 60 minutes (1 a.m.) and then picks up

again at 400 minute (7 a.m.). Another factor affecting the rate

towards the end is the scarcity of new chunks (similar to the

coupon collector problem).

Further, we performed a number of experiments to thor-

oughly understand the effect of various parameters on the

performance of the system, by systematically varying the

parameters M, C and m. In our evaluations, we keep two

parameters constant and vary the third.

1) Effect of file size: As file size increases, since system

storage remains constant, we are effectively decreasing the

system redundancy, which should adversely impact latency.

This is observed for both coded and uncoded storage, but there

are clear differences in relative performance. We notice from

Fig 2(a) and Fig 3(a) that when the file size is very small

(100MB in the figures), coding offers no benefit at all. But

as the file size is increased to 1GB, coding offers tremendous

improvements by being able to fully download full files most

of the time (98% of the time in Fig 2(a)), whereas only about

a fifth of the time (Fig 2(a)) without coding. When the file

size is increased further to 5GB, the performance of coding

suffers, but not drastically, whereas in the absence of coding,

the probability of full recovery drops almost to zero (from Fig

3(a), and we note that many sinks have been able to download

about a tenth of the file on the average, but not a complete

file).

2) Effect of the number of files and the capacity: Figs 2(b)

and 3(b) show the impact of the number of files on the system

performance. As the number of files increases, the system

redundancy decreases and hence the full-recovery probabilities

and the file download percentages both start to decrease. And,

as the capacity increases from 10GB to 100GB to 500GB,

files can be replicated many more times and hence the full-

recovery probabilities and the file download percentages both

start to get better (Fig 2(c) and Fig 3(c)). An interesting

observation to make is that the curve corresponding to the

case when there are 25,000 files with 100GB storage per car



in Fig 2(b) and the curve corresponding to 2,500 files with

10GB storage per car in Fig 2(c) (or Fig 3(b) and Fig 3(c))

are both identical (if we choose the same set of sink file pairs).

This is because having 25,000 files on nodes with 100GB has

the same system redundancy as having 2,500 in 10GB nodes.

Also note that some of the probabilities or percentages for the

uncoded replication start non-zero, since some of the sinks

already contain the files they are interested in, whereas when

coding is used, no node can contain a full file by itself and so

all the probabilities and percentages are 0 to begin with.

F. Absolute File Download Latency

A cautionary note is in order in interpreting our results in

this section in terms of the absolute numbers, which suggest

that downloading a large 1GB-sized file in a vehicular network

is likely to take six to ten hours even with coding. We

note that our trace, though it involves 1,000 nodes, is still

relatively quite sparse in terms of encounters as it involves

a large area in Beijing. Further, it is important to note that

the simulations start around midnight, which also skews the

latencies observed, as there is not much encounter activity till

many hours later. Thus the latency values presented in our

study in terms of absolute numbers may not be representative

of what might be possible with much denser vehicular network

deployments (say 100,000+ vehicles in a large city) during

high-traffic hours. But the dramatic gaps observed between

the performance of coded and uncoded storage in these simu-

lations indicate strongly that the use of coding is essential for

speeding up large file downloads in encounter-based vehicular

networks, regardless of vehicular density.

IV. CONCLUSION

We have demonstrated the benefits of coded storage on

the latency of on-demand, pull-based content access in an

intermittently connected vehicular network via realistic sim-

ulations based on a large-scale vehicular trace involving taxis

in Beijing. There are still many unanswered questions. Open

questions include how to re-distribute content when there is

node churn, and the possibility of learning patterns in vehicular

encounters to further optimize the content storage. Another

interesting problem is to determine the optimal storage strategy

if the popularities of various files are known beforehand. We

are currently working on developing an analytical model for

this problem, which we hope will give us further insigts into

vehicular content dissemination problem. We also note that our

traces, albeit involving 1,000 cars, are still relatively sparse

given that they involve city-scale mobility. It is important

to investigate content access latency in larger deployments,

to understand the performance of file sharing in large-scale

vehicular networks.
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