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Abstract —We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through both
analysis and realistic trace-based simulations. We show that the key parameter affecting the on-demand file download latency is
the ratio of file size to download bandwidth. When this ratio is small so that a file can be communicated in a single encounter, we
find that coding techniques offer very little benefit over simple file replication. However, we analytically show that for large ratios, for a
memoryless contact model, distributed erasure coding yields a latency benefit of N/« over uncoded replication, where N is the number
of vehicles and « the redundancy factor. Effectively, in this regime, coding yields the same performance as replicating all the files at
all other vehicles, but using much less storage. We also evaluate the benefits of coded storage using large real vehicle traces of taxis
in Beijing and buses in Chicago. These simulations, which include a realistic radio link quality model for a IEEE 802.11p dedicated
short range communication (DSRC) radio, validate the observations from the analysis, demonstrating that coded storage dramatically
speeds up the download of large files in vehicular networks.

Index Terms —Vehicular networks, erasure coding.

1 INTRODUCTION suggest that with the increasing use of smart phones, aellul

HE recent development of the IEEE 802.11p WAV ata bandw_idth_ is likely to remain limited and expensive [8]
T(Wireless Access in Vehicular Environment) protocol [1f\nother option is to use APs, but they may be hard to deploy
and the allocation of Dedicated Short Range Communicatiofishigh densities. In addition, due to the latency of content
(DSRC) spectrum, have increased interest in vehicular n@gcess from the Internet, a vehicle quickly passing by an AP
working. In the United States, the FCC has allocatahHz might not have sufficient time to download its desired data. |
of spectrum in the5.9GHz band exclusively for vehicular contrast, the WAVE/WAVE BSS modes of IEEE 802.11p allow
networks and in Europe, the ETSI has allocate@omHz for rapid vehicle-to-vehicle file transfers [1] over potefly
range in the same band. These bands enable vehicle-tdeveHRNger contact durations (e.g., if the vehicles are trageli
communication as well as vehicle-to-infrastructure (aigkv in the same direction). Nevertheless, we note that the coded
versa) communication, and capabilities like these open ups@rage techniques we explore and analyze in this paped coul
number of possibilities. Most applications focus on safetfSC be used in a heterogeneous network architecture which
such as avoiding rear-end collisions; extended braking2]] ntegrates vehicle-to-vehicle communication with veditd-
and detecting and disseminating information about potholdnfrastructure communication.
bumps and other anomalous road conditions [3]. Recently, Ve identify two basic dissemination schemes that can be
applications that concern entertainment and file sharimg &Mmployed for data transfers in vehicular networks - one is
also receiving attention and involve different challengeg., the well studied ( [4], [5], [9]-[13])push-basednechanism
AdTorrent [4], CarTorrent [5], FleaNet [6], C2P2 [7]). and the other is pull-basedretrieval scheme which we study

Content access and vehicle file sharing would enable usktghis paper. As the names indicate, in push-based schemes,
to access movies, music, videos, and other relevant cont&@ntent is pushed into the networks, whereas in pull-based
In this paper we investigate the possibility of exploitimger- Schemes, content is pulled from the network. It may be noted
vehicular communication to enable P2P file sharing withotftat push-based mechanisms work well for small sized data
the use of access points (APs). One possibility for contelfi@nsfers such as traffic updates, pothole monitoring ahelrot
access is to use the cellular infrastructure, but recergrtep content that might be of interest to all users, but would fail
to perform well for large file transfers of interest to only a
o Maheswaran Sathiamoorthy, Alexandros G. Dimakis and Birakkish- feW users (e.g., movies, long videos). This can be seeryeasil
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The application considered here is close in spirit to eehicle storage capacity per fil/m (hereC is the storage per
vehicular network based movie-rental application, simita node andn is the number of files, and the setup is described
Netflix for mail. The application is not real-time, similao t in detail below). Our most surprising result is in thendwidth
how it may take a few days before a Netflix movie arrives ilimited regime whend < C/m. For this case we show that
the mail. For such an application, there is no strict latendjstributed erasure coding yields a latency .bf/d, which
requirement, however, it is still desirable to minimize thés equivalent to replicating all the files in all the vehicles
average latency. The movies are stored in set of vehicles, siVhile coding uses much less storage, the equivalent set up of
as taxis or buses in a city, to which the rental company haacoded replication perform¥/« times worse, wheréV is
access. We call these as the seed vehicles. Other vehidles,number of vehicles and is redundancy factor.
which may have subscribed to the movie-rental applicationBeyond our analytical model, we present a comprehensive
will be able to opportunistically download movies from thesperformance analysis using a real vehicle trace consisting
seed vehicles as they drive around. We call these as the sirik600 taxis in Beijing and 1,608 buses in Chicago, combined

One can consider the entire storage of all the seed vehickeith a realistic 802.11p DSRC Packet Delivery Ratio (PDR)
as a distributed repository. Given a set of files, we try tonams model. These simulations validate the key insights from the
in this work the specific question of how to store the files ianalysis, demonstrating that coded storage substantraly
the repository. proves the timeliness of file downloads particularly in the

Hence in this work, we consider a P2P file sharing afpandwidth limited regime for large files. For instance, when
plication where the files are stored in the seed nodes asising the Beijing dataset, we show that for downloading 1GB
distributed repository and sinks retrieve these files amated. files, by the time 80% of the nodes are able to completely
The amount of data downloaded by a sink is no more than tHewnload the file under coded storage, only 4.4% of the nodes
file size (excluding control data), and thus such a pull basedcceed if uncoded replication is used.
scheme is not only efficient but will also scale well with the
number of nodes, file size etc. But in order to improve thé BACKGROUND AND RELATED WORK
latency and reliability of content access, intuitively tfiles The fundamental goal of this paper is to analyze and minimize
should be stored with some redundancy. Thus, in order ttee delay in downloading files in a pull-based P2P vehicular
reduce the latency of file access, we shift the burden frotontent storage system. In contrast to prior work such as [7]
the expensive bandwidth to the relatively inexpensiveagfer which assumes that the content in such a system is storegl usin
thereby enabling additional applications to run. Previpusuncoded replication, we advocate and analyze the perfarenan
Kapadiaet al. [7] have suggested a similar scheme, whenghen the content is stored using erasure codes. Erasumgcodi
the content is stored using simple uncoded replication. Thensists of separating each file intochunks and from these
novel contribution of our work is that we recommend the usgeneratingn > k& chunks of the sameév /k size. If a Max-
of erasure codes, especially for large files, and we quantifjum Distance Separable (MDS) erasure code [15] is used,
the performance improvement of coded storage comparedatwy k& out of then encoded chunks suffice to reconstruct the
uncoded replication. original file. One specific family of codes that are almost-MDS

We consider out of scope of this paper the orthogonahd are suitable for our application are digital fountaides
problem of the process by which the file repository is inlgial Initially proposed by Byerset al [16] and later developed
created and maintained. For this purpose other previously Luby [17] and Shokrollahi [18], digital fountain codesear
proposed schemes such as coded dissemination [14] or ditgotry near-MDS (almost all sets @1 + ¢) chunks suffice
infrastructure download could be used. When the interalehi to reconstruct the file with high probability, but we neglect
communication data rates are high, or when the communicatefbr simplicity) and have very fast and simple encoding and
files are sufficiently small, we find that simply storing mpld  decoding algorithms. Using ideas related to this papenttnin
copies of each file has almost identical performance to ande designs were introduced for sensor network problems by
optimized erasure coded representation. However, we shDimakis et al. [19] and Kamraet al. [20].
that in other cases, when the file sizes are large compared t&rasure coding and uncoded replication have previously
the download bandwidth, a distributed coded represemtatioeen compared in other contexts. For instance, [21] corspare
offers very substantial benefits and decreases the averagding and uncoded replication for distributed storage in a
download time by orders of magnitude. wired system, and argues that coding is a clear winner as it

Our analytical contribution is a novel probabilistic arg$y provides mean times to failure that are magnitudes higteer th
of the latency for replicated and encoded distributed g®rathat provided by replication. Another work [22] analyzesian
for vehicular networks. We analyze the expected delay forcampares these two approaches from the perspective of their
vehicle trying to collect pieces to reconstruct a desireel fibbility to provide content availability in a P2P distribdthash
by meeting other vehicles according to a memoryless procesdle. They indicate that, given its complexity, erasurdicg
We show how both replicated and encoded storage correspandseful only when the servers are extremely unreliable. Ou
to different balls and bins processes and using stochastiork on vehicular networks has a different focus, not on
dominance and coupling arguments on these processes,ensuring availability in the face of server failures, buthex
bound the expected download time. We identify three regiona reducing latency in the face of sparse and short-duration
of interest depending on how the communication bandwidttehicular encounters. In this setting, we argue that coding
per vehicle interaction, compares to the file siz&1 and the indispensable, particularly for large files.



Because they involve intermittent encounters, sparsecvetlater when we consider numerical simulations over realisti
ular networks can be considered examples of Delay/Digsnptivehicular traces. We assume there Ar@entical participating
Tolerant Networks (DTNs). Closest in spirit to our work areseed vehicles (or nodes), each with a storage capacitybib
two previous studies with an overlapping set of authors, whadlocated for the file sharing application. The total number
have examined the use of erasure codes in DTNs for relialgy different files stored in the system is denoted /oy for
routing information between a particular source-desiimat simplicity, we assume that all the files have the same size
pair [11], [12]. These studies provide a comparative amgalyof M bits (assumeC > M) and are equally likely to be
showing that the use of erasure coding can provide significanquested.
robustness to en-route path/node failures (the focus dJ,[11 It is desired to distribute these files to as many nodes as
as well as reduced latency (the focus of [12]), for puslpossible. It is assumed that the total available storageesis
based networks. In contrast, our emphasis in this work is tie total size of all files: i.e NC > mM. Denotea = %
evaluating the latency and reliability of erasure codingdo and note that we can store each file> 1 times throughout
pull-based network, specifically suitable for large files. the system and saturate the available capacity in the system

Also seemingly related to our work are papers that adypically, we will havea < N, which means that each file
vocate the use of network coding for content disseminatiavill not be stored in all the nodes.
or distribution. The use of network coding in the form of We refer toa as thesystem redundancy, since it is the
mixing of packets in intermediate nodes for content distrirumber of times each bit is stored in the system. In this paper
bution was first proposed in the context of a content delivetye consider and analyze the expected delay in downloading
system called Avalanche [23], [24]. Several researcheve hdiles when uncoded replication scheme and the coded storage
extended this idea to adopt network coding to handle contetheme are used. For the uncoded replication scheme (also
distribution in vehicular networks, e.g., CodeTorrent J[13called uncoded storage), we simply store each diléimes
VANETCODE [25], CodeOn [26], and VCD [14]. Again, in the nodes ensuring that a node doesn't store the same file
an essential distinction is that these works focus primarimultiple times (maximal spreading). On the other hand, for
on pushing files and messages to other nodes, whereas thercoded storage scheme, @nk) MDS code is used and
focus is on pull-based retrieval for large files. The simplarach file is split intok chunks and encoded inte chunks
pre-coded storage approach for file retrieval that we adeocaf the same size. We set/k = «, equal to the total system
is not network codingper se because it does not involveredundancy. This is because, as the effective size of each fil
any in-network recombination of packets. Network codingfter coding is:M /k, in order to saturate the system capacity,
while intuitively appealing, is in fact not readily appllde we needNC = m(nM/k), yielding a = n/k.
to the setting we consider where individual nodes are sgekin We focus on the latency experienced by a given sink vehicle
some particular content that is already stored in the nétwahat is trying to download one of the files. For the analysis,
(not in the dynamic process of being disseminated). Dynami@ assume an i.i.d. encounter model in which the sink is an
network coding could still be (somewhat artificially, pepsa external node that encounters any of fiieodes uniformly at
introduced in our setting by forcing the continual transfarandom at each encounter. We impose a key communication
and re-coding of stored codewords whenever cars encourdenstraint: whenever the sink meets any other vehicle, it
each other; but this would give rise to a layer of additionalan download at mosi bits of data. We refer tal as the
complexity. This is because one would now have to decide thandwidth constraint. Note that this parameter implicitly
non-trivial question of which particular file's coded comit® incorporates both the duration of the contact as well asitike |
should be transferred and coded together when two caase. In our numerical simulations, we relax these simliy
encounter each other, and since storage is limited, onedwoaksumptions, as we use encounters based on real vehicular
also need to determine what other content should be evicteatces and the download bandwidth is not a constant butrrathe
when new coded content is created. Network coding across theandom variable that depends on the contact duration &nd th
files might eliminate this issue, but will work only if the nesl link quality model used.
were interested in all the files [27]. Our use of erasure apdin Given all other parameters, we would like to determine the
avoids these problems entirely. For these reasons, we do aptimal values of» and k for coding. In order to do so, we
consider or evaluate dynamic network coding approachesriote that each chunk has sizd/k and so we want to choose
this work. k such that the chunk is downloadable within the bandwidth

Finally, we note that our theoretical analysis relies onsbalconstraint {). Thus we wantk > M/d, but since highek
and bins processes (see e.g., [28]) and stochastic donginaaguates to higher coding complexity, we use: [M/d]. The
arguments [29], [30] that are used to obtain bounds on tbRunk size is therefore eithe¥! or d, whichever is lower (in

expected delay for coded storage. practice we will havel < M for large files). Note thak = 1
in fact corresponds to not using any coding at all. Now, once
3 MODEL AND PROBLEM SETUP k is fixed, choosen = ak. Since there aréV nodes, each

In this section, we present a simplified model of a basic firode will containg = n/N chunks of a file.3 > 1 implies
sharing system and present a set of assumptions govermingttiere is at least one node which contains two different chunk
model, making it amenable to analysis, but more importantfpr the same file.

giving us crucial insights into the system. Some of the sim- We define thedelay or latency D as the number of
plifying assumptions (e.g., regarding mobility) will bdared encounters needed before being able to fully reconstrutd,a fi



Variable | Brief Description of nodes to be seen before encountering a good node is a
N Number of nodes tri d iabl ith Dl — N Butif d
m Number of files geometric random variable witt me_m | =4 Butifd<
C Storage capacity of each node (bytes) M, only a fractiond/ M of the file will be downloaded every
M File size (bytes) time the sink meets a node. &D] = & (&),
d Bandwidth limitation (bytes) @
(n, k) Coding parameters
«a Redundancy factor I:l I:l e o o I:l e o o o I:l
B Number of chunks from a file in the same node 1 |
D Random variable denoting the delay in downloading a 1 2 « N
file

Fig. 1: A vehicular network withN nodes and redundancy

« represented in the balls and bins framework. Each node is
represented as a square, with the shaded squares containing
copies of the file the sink is interested in.

TABLE 1: List of common variables used.

and in the next section we quantify the expected latei{dy]
for both the storage schemes. This can be multiplied by th
expected inter-encounter time to give the latency in units 8
time.

We have listed the commonly used variables along wi
brief descriptions in Table 1.

eAlternatively, in the balls and bins framework of Fig 1, this
orresponds to throwing balls inty bins where each ball
gan land into any one bin with equal probability. If there is
no bandwidth restriction, we are interested in counting the
average number of balls to be thrown before a ball lands
into one of the shaded bins (which i/« as above). But

4 THEORETICAL ANALYSIS when there is bandwidth restriction, we want to determine
Given the number of node®/, the storage per nodé, the the number of balls in expectation that must be thrown until
file size M, and the number of files, we can compute ththe firsta bins containM /d balls total. In this case, once a
redundancy of each filex = % The files are stored ball lands in any of the shaded bins, we repeat the experiment
according to coded or uncoded storage as described abale,agein. Note that a ball can fall into the same bin multiplesim
the goal here is to analyze the expected delay in downloadingich is equivalent to meeting the same node multiple times;
a file from such a system. Since all files are equally populdat at each time the sink can download a different portion of

it is sufficient to consider any one file. the file. SOE[D] = & (%) which is the same as that obtained
We make extensive use of balls and bins processes [2®jove. Thus we have,

in our analysis. The basic idea is to represent nodes as N/a if d> M or M/d<1

bins, and the throwing of a ball randomly into any of bins E[D] = { % (%) else ifd < M or M/d > 1.

with equal probability models the sink meeting each node
uniformly at random. The configuration of balls in bins tha€ombining,
corresponds to a complete file download is defined diffeyentl E[D] = N max(1, M/d). 1)
in each case, as discussed below, but the common goal is @

to determine the expected time to reach this configuratidignce, the expected delay is increased by a factattfd
which corresponds to the expected delay. If instead of usimdien there is a bandwidth constraint.

uniform contact probabilities, even if we assume that the

encounter probabilities of the sink with the nodes are non-2 Coded File Storage

uniform, the problem is equivalent to a balls and bins prece
with non-uniform bin selection probabilities and this plexi
is extremely hard with no known solutions.

f this section, we analyze the expected delay in recortgtgic
a file under a coded storage scheme. As explained before,
when using a(n, k) coding, each file is split intd chunks
and then coded inta chunks and distributed to the nodes.
4.1 Uncoded File Storage In order to reconstruct the file, the sink has to download any
We first analyze the latency of accessing a file in a vehicularout of then chunks. Whereas each file is storedtimes
network utilizing uncoded replication. Specifically, weosh in uncoded replication, it is expanded= n/k times when
that the latency is inversely proportional to the redungidnc using coding. Thus, analyzing the delays of both cases or th
the system and the bandwidth constraint. samea makes a fair comparison.

In this scheme, all the files are stored ‘as such’ in various
nodes. We assume the system redundanty be an integer Balls and Bins model
(recall thata is the number of times each file is stored in th®ecall thats is the number of chunks per file that a node gets
system). Since the capacify> file size M, each file can be to store ¢ = n/N). As before, each node can be represented
stored completely in a node. When the sink meets a nodea# a bin and thus we hav® bins. Balls thrown into the
can download a maximum af bits or M bits (entire file) bins are equivalent to the sink meeting a node at each time
whichever is lower. So depending on the valuegi@nd M, step. Whenever a sink meets a node, it can only download a
we can have two cases.df> M, then there is no bandwidth single chunk since the chunk size is equal to the bandwidth
constraint at all. SdP[a node isgood = «/N, where a good constraint, and so the sink can meet the same rbtines
node is one which contains the required file. Thus the numbsafore running out of new data. Thus we can set the capacity



B Casell: 1< <k

To recall, 3 is the capacity per bin, or the number of times

e o o the same node can be seen before the sink runs out of useful
chunks. Let us assume théatis an integer. We are interested

2 in finding out the expected number of throws to geballs
1 into the system. Deriving an exact expression®oD] seems
1 2 3 N-1 N hard and so we upper bound the expected delay. Also note
. . . thatE[D] > k.
Fig. 2: The balls and bins model for the coded case for integer ot s define the state of the systefnat any time as the
p=1 arrangement of the balls in the bins a# to be the number

of balls in the system. For example whig| = 2, valid states
, . __include § = {2,0,0,...,0},{1,1,0,...,0} etc., where the
of each bin to bej balls (assumé to be an integer). See F'gjth element in the set corresponds to the number of balls in

2. In cr)lrder to relax thﬁ condition ofn t?e |nbt_egral|ty /ﬁéjfwhe the j™ bin. For a general, there are an exponential number
note that we can set the capacity of a few bin$# and the ¢ arecs such thats| — 1.

rest to| 3], making the bins non-identical and thus difficult to | T, .+.1 be the number of balls required to add one more

analyze. Also note.that the final .expression obtained does Bl to the system, given that there are alreadalls in the
requireS to be an integer. We will note below what happen§ystem. The expected delay is then
wheng < 1.

Now, in order to get a file, we need to download any Al
different chunks out of the: chunks.In the balls and bins E[D] = ZE[THZ'H]' 3)
process, we are interested in finding out the number of balls =0
to be thrown in expectation, so that there dretotal balls ~ We first note that the distribution df;,;, can be deter-
in all of the bins We make a note that since the bins hav@lined if the current state is given, otherwise it is extrgmel
limited capacity, they could overflow and hence the requirdlifficult. For example, given thats = {0,0,...,0} (i.e.
expectation is not alwayg. Let us analyze the delay by? = 0 and there are no balls in the systenfl},_,; is 1
considering three different cases based on whether 1, With probability 1 (or geometric with failure probability);

l<B<korg>k. and given that the state § = {3,0,0,...,0} (i.e. the first
bin is full with g balls), thenTs_,511 iS geometric with

Casel: <1 failure probability 1/N. Thus once we know the state, we
can determine the distribution &f;_,; ;. But what can we

I|:| [ e ¢« e[ eeee[] say aboutT;_,;+1 without conditioning on the state? As an

T 3 — ! N example, suppose there are= 3 balls in the system, then
there is a finite probabilityy with which one of the bins
Fig. 3: The balls and bins set up when< 1 may be full, in which case, the distribution is geometrichwit

failure probability 1/N and with the remaining probability

In order to understand the capacitybeing less thar, we (1—gq), the distribution is geometric with failure probability
note that this in fact corresponds #o< N, since = n/N. 1hus we can expresB[Tj_,s.1) = 2] = ¢P[Geom1/N) =
Thus onlyn out of theN nodes store the chunks. Without losg] * (1 — @)P[Geom(0) = =], where Georfi) is a geometric
of generality, consider the first nodes to contain the chunks 'andom variable with failure probability. We make a note
In the balls and bins process, we are interested in countifigt Zs—(s+1) 1S @ probabilistic mixture of two geometric
the number of balls in expectation to be thrown until there afandom variables with mixing probabilitiesand 1 — ¢. For
k balls in any of the first: bins (see Fig 3). The expected® generali, Ti;.y is a probabilistic mixture of at most
number of balls to be thrown before the first ball lands int§ 9€0metric random variables. Even though it is difficult

any of then bins is N/n; the second ball taked’/(n — 1) in to determine the mixing probabilities for eveiy we can
expectation and so on. Thus effectively eliminate them, for which we use the concept of

Stochastic dominance (see [29], [30] for more details):

N N N
E[D] = P R R Defn: Stochastic Dominance Consider two random vari-
= N(H, — Hp_i) ~ Nlog[n/(n — k)], ables X and Y, _possibly d_efined on different probability
. _ spaces. WhenX is stochastically smaller thal’, then for
since H,, ~ logn. Usinga = n/k, we get, everyz € R, the probability inequalit(X < z) > P(Y < z)

@) must hold or in terms of the cumulative distribution funatio
Fx(z) > Fy(z). This is denoted asX < Y, i.e. X is
Even though this equation does not depend on parametsieschastically dominated by .
like M, C etc., there is an implicit dependence, since for
example,a depends onV, C, M, m and we need to have
the chunk sizeM /k to be equal to the bandwidth constrainDefn: Coupling For a given set of random variables
d. X1, X5,...,X,, acoupling is defined as a new set of random

E[D] = Nlog[a/(a —1)].

Another concept we need below is that of Coupling.



variables(X1, Xs, ..., X,,) over the same probability spaceprobability 0 for i = 0,1,...,3 — 2,3 — 1. We choose
such that the marginal distribution of; is same as that of p; = 0 in these cases. Once there d@dalls in the system,
X, fori=1,2,...,n. Thus for all measurable subsdisof as explained aboveT;_.;,; is a probabilistic mixture of
R, ]P’(X €eE)=PX €E). geometric random variables with the biggest failure prdtgb

Remark If X <Y, thenE[X] < E[Y]. This is noted by L/N. From the insight above, we S% = /N, S0 that
seeing tha[X] = 3. (1 — Fx(2)) < 3°.(1 — Fy(z)) = Ti_n-ﬂ =< Geon(1/N). Also, vv_henﬁ <i< Qﬁ_ — 1, its not
E[Y] ? - = possible to have two or more bins full, and so in all thesesase
' the biggest failure probability i$/N; thus we sep, = 1/N
We list three useful lemmas below. for 8 < i < 28 — 1. Further, its not difficult to see that we
Lemma 4.1:A random variableX is stochastically domi- should sefp; = 2/N.
nated by another random variatfeif and only if there exists ~ Using similar arguments, we sgf = j/N for j§ < i <
a coupling(X,Y) of X andY such thatP(X <Y) = 1. (j+1)8, for j=0,1,...,(k/8 — 1) (assumingk/S = = to
Refer to Lemma 2.11 in [30] for proof. be an integer, otherwise use= |k/3| above). For the last
Lemma 4.2:Let X ~ Geon{p) andY ~ Geon{q), where case when =k — 1, sincex or more bins cannot be full, set
p andq are the failure probabilities. If < ¢, thenX <Y.  p)_; = (z —1)/N. We note thatr = % =iN=10
Proof: At each step (starting from), a real number is  For eachi, since we have chosesj to be at least as big
selected at random frorj), 1] and X andY are defined to as the biggest failure probability in the probabilistic toive
denote the step at which the number chosen belongs outgiigeometric random variables that constitiiie,;;, we can
[0,p] or [0, q] respectively. We note that ik succeeds at step note thatl;_,; 1 < Geor(p}) using Lemmas 4.2 and 4.3. This
x, so that the number chosen at that step is for the first tirvepliesE[T;_,;11] < E[Geon{(p})] and thusE[D ] E[D’] by
higher thanp, thenY could not have succeeded before or @umming over alk. Noting thatE[Geon(p)| = Tp,
xle]P’(Y>x|X—x)—1]P’(X<Y) S PY >
x|X—:C)]P’(X—x) ST (HP(X :)_1Thus no y _ ,
P(X <Y) =1 giving X < Y0 Hence a geometric random E[D = ZE[TH“A] B E[T;

variable is always dominated by another geometric random =0 =0 =ip

variable with higher failure probability. O Rl , =B
Lemma 4.3:Let us have [ random variables T 2 E[Geon{y/N)]:Zl i/N

X1, Xs,..., Xy, with X; < X, for all j = 2,3,...,1 =0 i=ip i=

If X is a probability mixture ole,XQ,.. , X, such :NB(HN_HN—E):”(HN_HfN(lfl/aﬂ)-

that px(z) = Yi_, a;px,(2) with constantsa; > 0  sipcek < E[D] < E[D'], we get
G=1,2,...,0) andZi.:1 a; =1, thenX < X;.
Proof of Lemma 4.3: Fx(z) = Zézl ajFx,(z) >
Sy ajFx, (2) = Fx, (z). Thus we haveFx (z) > Fy, (z) O
for all z, which impliesX < X;. (1 Note that when using this expression, it does not matter
In other words, this lemma states that a probabilistic rmxtuwhetherz or 3 is an integer or not. Also, for high values of
of geometric random variables is stochastically domindted 7(Hn — Hin(1-1/a)]) = BN log [a/(a — 1)] since3 = nN.
the constituent geometric random variable with the biggestThe above analysis is not restricted to keepihg k. We
failure probability. can note that whe@ > k, « = n/k > N and thus for large
Back to the case when= £, since the biggest failure prob-values ofa, the average delay expression can be approximated
ability is 1/N, the corresponding geometric random variablesk < E[D] < k[1 +1/2a + o(1/a?)], thus confirming with
stochastically dominates other geometric random varsablée result below.
(Lemma 4.2), and so from Lemma 4.3, we can see that
Ts541 = Geon(1/N), conveniently removing the depen-Case lll: 5>k
dence ony. Thus we note that wheh; ;. is a probabilistic Since the capacity is sufficiently large, no bin can get fall i
mixture of geometric random variables with biggest failuré throws and sd&[D] = k.
probability p, thenT;_,; .1 < Geon{p). We are now all setto  To summatrize,

k <E[D] <n(Hy — Hin(-1/a))-

get the upper bound on the latency. ,
Theorem 4.4:The expected delay due to coded storage in E[D] Nlog( ) if <1
the case whenl < g < k is upper bounded by.(Hy — < BN log (ﬁ) elseifg > 1

Hin(i-1/a)1), WhereHy is the N™ harmonic number.

Proof: Consider a random variable’; = Zf;ol T i iv1
whereT’;_,;11 is a geometric random variable with failure o N M«
probability p/. By suitably choosing;,, we will first prove E[D] < max(1 5)N10g< — 1) ~ . max (17 jﬁ) ;
that T;_,; 1 is stochastically dominated H¥’; ;. for each (4)
i. where the approximation holds for high valuescof

When the firstg balls are thrown, none of the bins could A note on the choice ok: in order to derive all the above
have overflowed and s@;_,;;1 iS geometric with failure expressions, we have chosén= M/d. But what would

Combining, we obtain our final bound,



happen if thek is chosen any higher? First, consider the cas

whenn is a multiple of N. By choosingk twice its actual

value, for instance, each node will have only half the chun

size as before, but twice the number of chunks, so the amot

of data per node is the same, thus the average delay will |

the same. Now ifn < N, by increasingk, we also increase ¢
n, i.e. more nodes contain desired data but less of it. Overa

we did not observe any improvement in the average delay t

increasingk.

4.3 The Benefits of Coding: Summary _ ls - A}

By comparing eqn (1) and egn (4), it is clear that the expecte
delay with coding is at least as good or better than uncode
replication. The interesting cases éfare whenM/d = 1
and < — 1; the former givingd = M and the latter giving

N
d= % = C/m. Thus we have the following three regimes:

« (High Bandwidth regime) d > M: The expressions )
for the latencies in both the coded and uncoded storage (a) Beijing dataset
schemes become almost equal VIRftD yncoged = N/ &
E[Dcoged, @and so coding performs same as uncode
replication (note that sinck = 1, coding is equivalent to
uncoded file replication). |

« (Intermediate Bandwidth regime)C/m < d < M: ‘ i
From the expressions, we hal®Dncoded = %% and |

E[Dcoded < % Thus the improvement of using coding is
M /d. Each node cannot store chunks from all the file:
due toC/m < d and so the sink has to wait to meet good
nodes, which is the only factor contributing to the delay

« (Bandwidth limited regimeWhend < C/m, we obtain
E[Dcoded < 21 (and sinceE[Deoged > k = 2, we
have thaff[Deoded = 21). BecauseE[Duncoded = X 21,
the improvement here i&/a. Thus under such a severe
bandwidth constraint, coding performs as if complete file:
were available in all the nodes, only to be limited by the
bandwidth.

= 4

(b) Chicago dataset

5 TRACE BASED EXPERIMENTS

We now turn to an empirical evaluation of the benefits of
coded storage, using real vehicular traces. We use GPtraeig. 4: Maps of the routes traced by a few randomly selected
of 1,000 taxis in Beijing and 1,608 buses in Chicago. nodes in the Beijing and the Chicago datasets. We limited the

We assume that the nodes continue to run their applicatinomber of nodes so as to not clutter the image. Colors are
throughout the day. Note that we do not assume the nodgmsen randomly for each node by the tool we used to plot
to be moving throughout the day, only that on-board radibe routes.
and the computer may continue to work even if the node is
stopped.

For inter-vehicular communication, we used a realistior our simulations. In Fig 4a, we shévthe routes taken by
model of IEEE 802.11p from [31], the details of which ar@ randomly chosen subset of these thousand taxis. Note that
given in section 5.4 below. We next present the descriptfon we used about 8 taxis to display to avoid clutter.
the datasets used. For the Chicago dataset, we collected data starting from
Nov 1, 2010 at 11:06hrs (Chicago local time) for every 30
5.1 Dataset Description secqnds and us_ed data worth the first 24hrs. The latitudes and

, longitudes of this dataset range frath.6440 to 42.0651 and
The Beijing dataset consists of GPS traces collected fromk- gqs6 to —87.5256 respectively. The routes taken by a
00:00hrs to 23:59hrs on Jan 5, 2009 local time, recorded/ever . 4o subset of these nodes (7 buses) are shown in Fig 4b.

minute for a total O_f 2'9_27 taxis. The GPS co-ordinate; SPhce the routes are carefully planned ahead, one can see the
32.1223 to 42.7413 in latitude and111.6586 to 126.1551 in

longitude. Of these 2,927 taxis, we chose a thousand rarydomli. We used gpsvisualizer.com and google.com to obtain thiese.



5.2 Performance Metrics

@
o
o

In order to characterize the performance of the system, we
cannot simply use the average delay in downloading a file
as a figure of merit. This is because, since the traces are
time limited, there could be files that may not get fully
reconstructed by the end of the duration of the trace, antl so i
400 is hard to quantify the delay of such incompletely downlahade
files. Thus, we rely primarily on two metrics: one is thal-
recovery probabilitywhich measures the probability that a file
can be fully recovered by a sink by a given time and the other
is the average file download percentagehich measures, on
‘ , ‘ average, how much of a file is downloaded by a given time.
500 1000 1500 Thus, for example, a file-recovery probability 6f9 means
Time (in minutes) that the nodes were able to successfully download full files
90% of the time and an average file download percentage of,
say, 95 means that the nodes were able to download 95% of
the file on the average.

(=]
o
(=]

200

Number of moving vehicles

OO

(a) Beijing dataset

1500

5.3 Experiment Methodology

The nodes are indexed from 1 6, where N is the number
of nodes (V = 1000 for the Beijing dataset, and/ = 1608
for the Chicago dataset). The files are indexedhrough
m. Since the end goal is to deploy a file sharing system in
a vehicular network, we try to make reasonable choices of
various parameters involved. A capacity of 100GB per node
is assumed as a default, unless specified otherwise. Siynilar
by default, files are assumed to be of size 1GB, typical of
. . ‘ movie clips and we consider a default of 2,500 files in the
0 500 . 1000 1500  system.
Time (in minutes) As explained before, the two primary metrics of perfor-
(b) Chicago dataset mance are the full-recovery probability and the average file
download percentage, both characterized as functionsnef. ti
Therefore, our experimental methodology is to carry out a
number of experiments, and in each there is a sink trying to
download a file. We record these metrics of interest along tim
difference between the routes in Fig 4a and Fig 4b. We alaad average across experiments.
note that many routes overlap with each other (spatiallptf N Each experiment consists of the following three steps; first
temporally) and so not all can be seen clearly from the maghe files are allocated to the nodes; then, a sink-file pair
In Fig 5, the density of the nodes is shown for each datasit,determined; and this is followed by a simulation of the
for which we plot the number of moving nodes versus timencounter between the sink and the rest of the nodes using
In Fig 5a and Fig 5b, the 0 minute corresponds to the tinkee trace. We will describe in detail these aspects next.
the dataset begins, and hence for the Beijing dataset it iSThe first step is that of storing the files onto the nodes. If
00:00 hrs, whereas for the Chicago dataset it is 11:06 hgsding is not used, files are not transformed; but if coding is
(both local time). We determine whether a node is not movingsed, files are encoded to get chunks. Both in the uncoded
if its coordinates do not change for a continued duraticand the coded storage schemes, the files and the chunks are
(about two minutes). We note that the average duration thadred by ensuring maximal spreading. That is, in the case
a taxi is moving is 9.4 hours in the Beijing dataset and quitsf uncoded storage, we make sure to not store the same file
remarkably, this value is 9.6 hours for the Chicago datasettwice or more in the same node; and in the case of coded
It can be seen in Fig 5a that as the data set starts at 12atorage, multiple chunks of the same file are not stored in
the density drops to the lowest at around 4am and startsthe same node, unless all other nodes have been used. In
pick up and reaches a peak between 8am and 10am. It drégag, we found that by randomly storing files/chunks, coding
after that but again reaches a peak between 4pm and 6pm, atiélrperformed virtually the same whereas the performasfce
which it starts decreasing rapidly. Correspondingly in 5l uncoded storage scheme decreased slightly. Thus, we decide
which starts at about 11am, the density peaks between 4fmmuse maximal spreading so as not to worry about the
and 6pm, then drops to very low at around 4am and then pighksrformance degradation introduced by randomizationn eve
up again to reach a peak at 8am. though random storage may be more realistic.

1000

500

Number of moving vehicles

Fig. 5: Density of moving taxis vs time
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Fig. 6: Evaluating the performance of distributed storapges in the default setting consisting of 2,500 files eactizef §GB
stored in nodes each having 100GB storage for both the Bedjimd Chicago datasets. There are 1,000 nodes in total in the
Beijing dataset and 1,608 nodes in the Chicago dataset.

Next, a random node is selected to be a sink by selectingoaan average data transfer of 21MB (at 3Mbps under ideal
random index from{1,2,..., N}, and it tries to download a conditions). Since it is desirable to be able to transfertiplel
random file (by choosing a random index frdm 2,...,m}). chunks per encounter, we choose a safe chunk size of 1MB.

The third step involves the simulation of the contactd/e use this same chunk size for the Chicago dataset too.
between the sink and the other nodes, so that the sink can )
download the chosen file opportunistically. Note that thg-da2-6  Discussion of the Results
long trace is divided into intervals of length one minutefeadOur most important results are shown in Fig 6, in which we
for the Beijing dataset and 30 seconds each for the Chicagmnsider a typical file sharing scenario with 2,500 files each
dataset, resulting in a total of 1440 and 2880 slots for tlué size 1GB; and each node having about 100GB storage.
Beijing and the Chicago dataset respectively. The choice $fich a system is implemented atop both the datasets, and both
the granularity is dictated by the dataset. At each slot, vilee full-recovery probability and the average file download
determine the distance between the given sink and every othercentage are measured for each time step. While we pri-
node, and apply the radio model (described below) to find omarily discuss the results with respect to the Beijing dzttas
the number of packets transferred, if any. similar discussions follow for the Chicago dataset. We note

For each experiment, we keep track of the percentage of that coding offers significant benefits compared to uncoded
file downloaded and whether the file download is complete ceplication. For example, at the end of 24 hours, files are
not at each time step. When presenting the results, we avereggonstructed fully 98% of the time by using coding, whereas
over 50 random sinks, and for each sink, we run the entingthout coding, only 19% of the files are reconstructed fully
simulation 100 times choosing a different file each time. (see Fig 6a). The corresponding values for average file down-

load percentage are 99% and 61% respectively. If we were to
5.4 Realistic Radio Link Model consider the instant when 80% of nodes are able to complete

The IEEE 802.11p standard specifies the data rate to rafgg downloads, this corresponds to about 0600 minutes in
from 1.5Mbps to 27Mbps with the default being 3Mbps, whicf'€ trace when coding is used, but only 4.4% of nodes are
we use in our simulations. For inter-vehicular communaragi Successful in full downloads by 600 minutes if coding is not
we use an empirical model of packet delivery characterigSed- An interesting observation to make is that since the
tics obtained from [31]. The authors characterize the packg€liing trace begins in the middie of the night with relatyve
delivery ratio (PDR) against various parameters such as ffe traffic, one can see from Fig 6 that the rate at whictsfile
separation between two nodes, their relative velocity, #tca  2r€ completed starts to slow down around 60 minutes (1 a.m.)

number of different environments and the overall experimerNd then picks up again at 400 minute (7 a.m.). No such trend

lasted for about30 hours. Of the various environments inc@n be seen in the Chicago dataset because the dataset starts
around 11am Chicago local time. Another factor affecting

which their experiments were conducted, the closest matth g ) ~
to our dataset is the Suburban Road (SR) environment. THUE rate towards the end is the scarcity of new chunks (simila
we use their PDR vs separation distance data (Fig 3(a) {fhthe coupon collector problem). _

[31]) to carry out our simulations. It may also be emphasized Further, we performed a number ,Of experiments to thor-
that the authors found that the relative velocity betweea nPU9Nly understand the effect of various parameters on the
nodes does not significantly affect the PDR, the way intgp€rformance of the system, by systematically varying the

vehicular distance does. We choose packet sizes of 380 bﬁ@gametersA/l, C andm. In our eval_uations, we keep two
with payload 300 bytes. Additionally a protocol set up tim@arameters constant and vary the third. The results arershow
of about 1ms is considered (based on [31]). for the Beijing dataset and those of the Chicago dataset are

omitted for brevity since they display similar trends.
5.5 Choice of the coding parameter 5.6.1 Effect of file size

From the Beijing dataset, we observed an average contAstfile size increases, since system storage remains constan
duration of 55.6s (assuming a radio range of 500m) leadimge are effectively decreasing the system redundancy, which
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Fig. 8: Plots showing the impact of different parameterstendverage file download percentage. The parameters areasame
in Fig 7.

should adversely impact latency. This is observed for botith 10GB storage per car in Fig 7c (or Fig 8b and Fig 8c) are
coded and uncoded storage, but there are clear differencebath identical (if we choose the same set of sink file pairs).
relative performance. We notice from Fig 7a and Fig 8a thahis is because having 25,000 files on nodes with 100GB has
when the file size is very small (L0OMB in the figures), codinthe same system redundancy as having 2,500 in 10GB nodes.
offers no benefit at all. But as the file size is increased to,1GRBIso note that some of the probabilities or percentageshfer t
coding offers tremendous improvements by being able ty fulincoded replication start non-zero, since some of the sinks
download full files most of the time (98% of the time in Figalready contain the files they are interested in, whereasiwhe
7a), whereas only about a fifth of the time (Fig 7a) withoutoding is used, no node can contain a full file by itself and so
coding. When the file size is increased further to 5GB, thadl the probabilities and percentages are 0 to begin with.
performance of coding suffers, but not drastically, whenea .

the absence of coding, the probability of full recovery dsrop5'7 Absolute File Download Latency
almost to zero (from Fig 8a, and we note that many sinks haflecautionary note is in order in interpreting our resultshrst
been able to download about a tenth of the file on the avera§g¢tion in terms of the absolute numbers, which suggest that

but not a complete file). downloading a large 1GB-sized file in a vehicular network is
_ _ likely to take six to ten hours even with coding. We note that
5.6.2 Effect of the number of files and the capacity our traces, though they involve in the order of 1,000 nodes,

Figs 7b and 8b show the impact of the number of files care still relatively quite sparse in terms of encountershay t
the system performance. As the number of files increasesjolve large areas in Beijing and Chicago. Thus the latency
the system redundancy decreases and hence the full-rgcowatues presented in our study in terms of absolute numbers
probabilities and the file download percentages both stanfy not be representative of what might be possible with much
to decrease. And, as the capacity increases from 10GBd@nser vehicular network deployments (say 100,000+ veshicl
100GB to 500GB, files can be replicated many more timés a large city) during high-traffic hours. But the dramatic
and hence the full-recovery probabilities and the file d@madl gaps observed between the performance of coded and uncoded
percentages both start to get better (Fig 7c and Fig 8c). Atorage in these simulations indicate strongly that theafse
interesting observation to make is that the curve corredipgn coding is essential for speeding up large file downloads in
to the case when there are 25,000 files with 100GB storagiecounter-based vehicular networks, regardless of vinicu
per car in Fig 7b and the curve corresponding to 2,500 fileensity.



6 CONCLUSION [15]

We have studied the effect of coded storage on the latengy,
of on-demand, pull-based content access in an intermiftent
connected vehicular network. We developed a mathematifal]
. : 7
model to study the relative benefits, and proved that opénhiz
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