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Abstract —We investigate the benefits of distributed storage using erasure codes for file sharing in vehicular networks through both
analysis and realistic trace-based simulations. We show that the key parameter affecting the on-demand file download latency is
the ratio of file size to download bandwidth. When this ratio is small so that a file can be communicated in a single encounter, we
find that coding techniques offer very little benefit over simple file replication. However, we analytically show that for large ratios, for a
memoryless contact model, distributed erasure coding yields a latency benefit of N/α over uncoded replication, where N is the number
of vehicles and α the redundancy factor. Effectively, in this regime, coding yields the same performance as replicating all the files at
all other vehicles, but using much less storage. We also evaluate the benefits of coded storage using large real vehicle traces of taxis
in Beijing and buses in Chicago. These simulations, which include a realistic radio link quality model for a IEEE 802.11p dedicated
short range communication (DSRC) radio, validate the observations from the analysis, demonstrating that coded storage dramatically
speeds up the download of large files in vehicular networks.
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1 INTRODUCTION

THE recent development of the IEEE 802.11p WAVE
(Wireless Access in Vehicular Environment) protocol [1]

and the allocation of Dedicated Short Range Communications
(DSRC) spectrum, have increased interest in vehicular net-
working. In the United States, the FCC has allocated75MHz
of spectrum in the5.9GHz band exclusively for vehicular
networks and in Europe, the ETSI has allocated a20MHz
range in the same band. These bands enable vehicle-to-vehicle
communication as well as vehicle-to-infrastructure (and vice
versa) communication, and capabilities like these open up a
number of possibilities. Most applications focus on safety,
such as avoiding rear-end collisions; extended braking [1], [2];
and detecting and disseminating information about potholes,
bumps and other anomalous road conditions [3]. Recently,
applications that concern entertainment and file sharing are
also receiving attention and involve different challenges(e.g.,
AdTorrent [4], CarTorrent [5], FleaNet [6], C2P2 [7]).

Content access and vehicle file sharing would enable users
to access movies, music, videos, and other relevant content.
In this paper we investigate the possibility of exploiting inter-
vehicular communication to enable P2P file sharing without
the use of access points (APs). One possibility for content
access is to use the cellular infrastructure, but recent reports
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suggest that with the increasing use of smart phones, cellular
data bandwidth is likely to remain limited and expensive [8].
Another option is to use APs, but they may be hard to deploy
in high densities. In addition, due to the latency of content
access from the Internet, a vehicle quickly passing by an AP
might not have sufficient time to download its desired data. In
contrast, the WAVE/WAVE BSS modes of IEEE 802.11p allow
for rapid vehicle-to-vehicle file transfers [1] over potentially
longer contact durations (e.g., if the vehicles are traveling
in the same direction). Nevertheless, we note that the coded
storage techniques we explore and analyze in this paper could
also be used in a heterogeneous network architecture which
integrates vehicle-to-vehicle communication with vehicle-to-
infrastructure communication.

We identify two basic dissemination schemes that can be
employed for data transfers in vehicular networks - one is
the well studied ( [4], [5], [9]–[13])push-basedmechanism
and the other is apull-basedretrieval scheme which we study
in this paper. As the names indicate, in push-based schemes,
content is pushed into the networks, whereas in pull-based
schemes, content is pulled from the network. It may be noted
that push-based mechanisms work well for small sized data
transfers such as traffic updates, pothole monitoring and other
content that might be of interest to all users, but would fail
to perform well for large file transfers of interest to only a
few users (e.g., movies, long videos). This can be seen easily
because traditional push-based schemes involve replicating the
same file over multiple relays (e.g., epidemic routing [9], spray
and wait [10], file swarming [4], [5]), which can be quite
inefficient for large files. Other methods have been proposed
such as the use of erasure coding [11], [12] and network
coding [13], and even though they help reduce the delay and
enhance the reliability, they fundamentally work by pushing
more data than the file size into the network.
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The application considered here is close in spirit to a
vehicular network based movie-rental application, similar to
Netflix for mail. The application is not real-time, similar to
how it may take a few days before a Netflix movie arrives in
the mail. For such an application, there is no strict latency
requirement, however, it is still desirable to minimize the
average latency. The movies are stored in set of vehicles, such
as taxis or buses in a city, to which the rental company has
access. We call these as the seed vehicles. Other vehicles,
which may have subscribed to the movie-rental application
will be able to opportunistically download movies from these
seed vehicles as they drive around. We call these as the sinks.

One can consider the entire storage of all the seed vehicles
as a distributed repository. Given a set of files, we try to answer
in this work the specific question of how to store the files in
the repository.

Hence in this work, we consider a P2P file sharing ap-
plication where the files are stored in the seed nodes as a
distributed repository and sinks retrieve these files on-demand.
The amount of data downloaded by a sink is no more than the
file size (excluding control data), and thus such a pull based
scheme is not only efficient but will also scale well with the
number of nodes, file size etc. But in order to improve the
latency and reliability of content access, intuitively thefiles
should be stored with some redundancy. Thus, in order to
reduce the latency of file access, we shift the burden from
the expensive bandwidth to the relatively inexpensive storage,
thereby enabling additional applications to run. Previously
Kapadiaet al. [7] have suggested a similar scheme, where
the content is stored using simple uncoded replication. The
novel contribution of our work is that we recommend the use
of erasure codes, especially for large files, and we quantify
the performance improvement of coded storage compared to
uncoded replication.

We consider out of scope of this paper the orthogonal
problem of the process by which the file repository is initially
created and maintained. For this purpose other previously
proposed schemes such as coded dissemination [14] or direct
infrastructure download could be used. When the inter-vehicle
communication data rates are high, or when the communicated
files are sufficiently small, we find that simply storing multiple
copies of each file has almost identical performance to an
optimized erasure coded representation. However, we show
that in other cases, when the file sizes are large compared to
the download bandwidth, a distributed coded representation
offers very substantial benefits and decreases the average
download time by orders of magnitude.

Our analytical contribution is a novel probabilistic analysis
of the latency for replicated and encoded distributed storage
for vehicular networks. We analyze the expected delay for a
vehicle trying to collect pieces to reconstruct a desired file
by meeting other vehicles according to a memoryless process.
We show how both replicated and encoded storage correspond
to different balls and bins processes and using stochastic
dominance and coupling arguments on these processes, we
bound the expected download time. We identify three regions
of interest depending on how the communication bandwidth
per vehicle interactiond, compares to the file sizeM and the

vehicle storage capacity per fileC/m (hereC is the storage per
node andm is the number of files, and the setup is described
in detail below). Our most surprising result is in thebandwidth
limited regime: when d < C/m. For this case we show that
distributed erasure coding yields a latency ofM/d, which
is equivalent to replicating all the files in all the vehicles.
While coding uses much less storage, the equivalent set up of
uncoded replication performsN/α times worse, whereN is
the number of vehicles andα is redundancy factor.

Beyond our analytical model, we present a comprehensive
performance analysis using a real vehicle trace consistingof
1,000 taxis in Beijing and 1,608 buses in Chicago, combined
with a realistic 802.11p DSRC Packet Delivery Ratio (PDR)
model. These simulations validate the key insights from the
analysis, demonstrating that coded storage substantiallyim-
proves the timeliness of file downloads particularly in the
bandwidth limited regime for large files. For instance, when
using the Beijing dataset, we show that for downloading 1GB
files, by the time 80% of the nodes are able to completely
download the file under coded storage, only 4.4% of the nodes
succeed if uncoded replication is used.

2 BACKGROUND AND RELATED WORK

The fundamental goal of this paper is to analyze and minimize
the delay in downloading files in a pull-based P2P vehicular
content storage system. In contrast to prior work such as [7]
which assumes that the content in such a system is stored using
uncoded replication, we advocate and analyze the performance
when the content is stored using erasure codes. Erasure coding
consists of separating each file intok chunks and from these
generatingn > k chunks of the sameM/k size. If a Max-
imum Distance Separable (MDS) erasure code [15] is used,
any k out of then encoded chunks suffice to reconstruct the
original file. One specific family of codes that are almost-MDS
and are suitable for our application are digital fountain codes.
Initially proposed by Byerset al. [16] and later developed
by Luby [17] and Shokrollahi [18], digital fountain codes are
binary near-MDS (almost all sets ofk(1 + ǫ) chunks suffice
to reconstruct the file with high probability, but we neglect
ǫ for simplicity) and have very fast and simple encoding and
decoding algorithms. Using ideas related to this paper, fountain
code designs were introduced for sensor network problems by
Dimakis et al. [19] and Kamraet al. [20].

Erasure coding and uncoded replication have previously
been compared in other contexts. For instance, [21] compares
coding and uncoded replication for distributed storage in a
wired system, and argues that coding is a clear winner as it
provides mean times to failure that are magnitudes higher than
that provided by replication. Another work [22] analyzes and
compares these two approaches from the perspective of their
ability to provide content availability in a P2P distributed hash
table. They indicate that, given its complexity, erasure coding
is useful only when the servers are extremely unreliable. Our
work on vehicular networks has a different focus, not on
ensuring availability in the face of server failures, but rather
on reducing latency in the face of sparse and short-duration
vehicular encounters. In this setting, we argue that codingis
indispensable, particularly for large files.



3

Because they involve intermittent encounters, sparse vehic-
ular networks can be considered examples of Delay/Disruption
Tolerant Networks (DTNs). Closest in spirit to our work are
two previous studies with an overlapping set of authors, who
have examined the use of erasure codes in DTNs for reliably
routing information between a particular source-destination
pair [11], [12]. These studies provide a comparative analysis
showing that the use of erasure coding can provide significant
robustness to en-route path/node failures (the focus of [11]),
as well as reduced latency (the focus of [12]), for push-
based networks. In contrast, our emphasis in this work is on
evaluating the latency and reliability of erasure coding for a
pull-based network, specifically suitable for large files.

Also seemingly related to our work are papers that ad-
vocate the use of network coding for content dissemination
or distribution. The use of network coding in the form of
mixing of packets in intermediate nodes for content distri-
bution was first proposed in the context of a content delivery
system called Avalanche [23], [24]. Several researchers have
extended this idea to adopt network coding to handle content
distribution in vehicular networks, e.g., CodeTorrent [13],
VANETCODE [25], CodeOn [26], and VCD [14]. Again,
an essential distinction is that these works focus primarily
on pushing files and messages to other nodes, whereas our
focus is on pull-based retrieval for large files. The simpler
pre-coded storage approach for file retrieval that we advocate
is not network codingper se because it does not involve
any in-network recombination of packets. Network coding,
while intuitively appealing, is in fact not readily applicable
to the setting we consider where individual nodes are seeking
some particular content that is already stored in the network
(not in the dynamic process of being disseminated). Dynamic
network coding could still be (somewhat artificially, perhaps)
introduced in our setting by forcing the continual transfer
and re-coding of stored codewords whenever cars encounter
each other; but this would give rise to a layer of additional
complexity. This is because one would now have to decide the
non-trivial question of which particular file’s coded contents
should be transferred and coded together when two cars
encounter each other, and since storage is limited, one would
also need to determine what other content should be evicted
when new coded content is created. Network coding across the
files might eliminate this issue, but will work only if the nodes
were interested in all the files [27]. Our use of erasure coding
avoids these problems entirely. For these reasons, we do not
consider or evaluate dynamic network coding approaches in
this work.

Finally, we note that our theoretical analysis relies on balls
and bins processes (see e.g., [28]) and stochastic dominance
arguments [29], [30] that are used to obtain bounds on the
expected delay for coded storage.

3 MODEL AND PROBLEM SETUP

In this section, we present a simplified model of a basic file
sharing system and present a set of assumptions governing the
model, making it amenable to analysis, but more importantly,
giving us crucial insights into the system. Some of the sim-
plifying assumptions (e.g., regarding mobility) will be relaxed

later when we consider numerical simulations over realistic
vehicular traces. We assume there areN identical participating
seed vehicles (or nodes), each with a storage capacity ofC bits
allocated for the file sharing application. The total number
of different files stored in the system is denoted bym; for
simplicity, we assume that all the files have the same size
of M bits (assumeC ≥ M) and are equally likely to be
requested.

It is desired to distribute thesem files to as many nodes as
possible. It is assumed that the total available storage exceeds
the total size of all files: i.e.,NC ≥ mM. Denoteα = NC

mM
and note that we can store each fileα ≥ 1 times throughout
the system and saturate the available capacity in the system.
Typically, we will haveα < N , which means that each file
will not be stored in all the nodes.

We refer toα as thesystem redundancy, since it is the
number of times each bit is stored in the system. In this paper,
we consider and analyze the expected delay in downloading
files when uncoded replication scheme and the coded storage
scheme are used. For the uncoded replication scheme (also
called uncoded storage), we simply store each fileα times
in the nodes ensuring that a node doesn’t store the same file
multiple times (maximal spreading). On the other hand, for
the coded storage scheme, an(n, k) MDS code is used and
each file is split intok chunks and encoded inton chunks
of the same size. We setn/k = α, equal to the total system
redundancy. This is because, as the effective size of each file
after coding isnM/k, in order to saturate the system capacity,
we needNC = m(nM/k), yieldingα = n/k.

We focus on the latency experienced by a given sink vehicle
that is trying to download one of them files. For the analysis,
we assume an i.i.d. encounter model in which the sink is an
external node that encounters any of theN nodes uniformly at
random at each encounter. We impose a key communication
constraint: whenever the sink meets any other vehicle, it
can download at mostd bits of data. We refer tod as the
bandwidth constraint. Note that this parameter implicitly
incorporates both the duration of the contact as well as the link
rate. In our numerical simulations, we relax these simplifying
assumptions, as we use encounters based on real vehicular
traces and the download bandwidth is not a constant but rather
a random variable that depends on the contact duration and the
link quality model used.

Given all other parameters, we would like to determine the
optimal values ofn andk for coding. In order to do so, we
note that each chunk has sizeM/k and so we want to choose
k such that the chunk is downloadable within the bandwidth
constraint (d). Thus we wantk ≥ M/d, but since higherk
equates to higher coding complexity, we usek = ⌈M/d⌉. The
chunk size is therefore eitherM or d, whichever is lower (in
practice we will haved < M for large files). Note thatk = 1
in fact corresponds to not using any coding at all. Now, once
k is fixed, choosen = αk. Since there areN nodes, each
node will containβ = n/N chunks of a file.β > 1 implies
there is at least one node which contains two different chunks
for the same file.

We define thedelay or latency D as the number of
encounters needed before being able to fully reconstruct a file,
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Variable Brief Description
N Number of nodes
m Number of files
C Storage capacity of each node (bytes)
M File size (bytes)
d Bandwidth limitation (bytes)
(n, k) Coding parameters
α Redundancy factor
β Number of chunks from a file in the same node
D Random variable denoting the delay in downloading a

file

TABLE 1: List of common variables used.

and in the next section we quantify the expected latencyE[D]
for both the storage schemes. This can be multiplied by the
expected inter-encounter time to give the latency in units of
time.

We have listed the commonly used variables along with
brief descriptions in Table 1.

4 THEORETICAL ANALYSIS

Given the number of nodesN , the storage per nodeC, the
file size M, and the number of files, we can compute the
redundancy of each fileα = NC

mM . The files are stored
according to coded or uncoded storage as described above, and
the goal here is to analyze the expected delay in downloading
a file from such a system. Since all files are equally popular,
it is sufficient to consider any one file.

We make extensive use of balls and bins processes [28]
in our analysis. The basic idea is to represent nodes as
bins, and the throwing of a ball randomly into any of bins
with equal probability models the sink meeting each node
uniformly at random. The configuration of balls in bins that
corresponds to a complete file download is defined differently
in each case, as discussed below, but the common goal is
to determine the expected time to reach this configuration,
which corresponds to the expected delay. If instead of using
uniform contact probabilities, even if we assume that the
encounter probabilities of the sink with the nodes are non-
uniform, the problem is equivalent to a balls and bins process
with non-uniform bin selection probabilities and this problem
is extremely hard with no known solutions.

4.1 Uncoded File Storage

We first analyze the latency of accessing a file in a vehicular
network utilizing uncoded replication. Specifically, we show
that the latency is inversely proportional to the redundancy in
the system and the bandwidth constraint.

In this scheme, all the files are stored ‘as such’ in various
nodes. We assume the system redundancyα to be an integer
(recall thatα is the number of times each file is stored in the
system). Since the capacityC > file sizeM, each file can be
stored completely in a node. When the sink meets a node, it
can download a maximum ofd bits or M bits (entire file)
whichever is lower. So depending on the values ofd andM,
we can have two cases. Ifd ≥ M, then there is no bandwidth
constraint at all. So,P[a node isgood] = α/N , where a good
node is one which contains the required file. Thus the number

of nodes to be seen before encountering a good node is a
geometric random variable with meanE[D] = N

α . But if d <
M, only a fractiond/M of the file will be downloaded every
time the sink meets a node. SoE[D] = N

α

(

M
d

)

.

b b b b b b b

1 2 α N

Fig. 1: A vehicular network withN nodes and redundancy
α represented in the balls and bins framework. Each node is
represented as a square, with the shaded squares containing
copies of the file the sink is interested in.

Alternatively, in the balls and bins framework of Fig 1, this
corresponds to throwing balls intoN bins where each ball
can land into any one bin with equal probability. If there is
no bandwidth restriction, we are interested in counting the
average number of balls to be thrown before a ball lands
into one of the shaded bins (which isN/α as above). But
when there is bandwidth restriction, we want to determine
the number of balls in expectation that must be thrown until
the firstα bins containM/d balls total. In this case, once a
ball lands in any of the shaded bins, we repeat the experiment
again. Note that a ball can fall into the same bin multiple times,
which is equivalent to meeting the same node multiple times;
but at each time the sink can download a different portion of
the file. SoE[D] = N

α

(

M
d

)

which is the same as that obtained
above. Thus we have,

E[D] =

{

N/α if d ≥ M or M/d ≤ 1,
N
α

(

M
d

)

else if d < M or M/d > 1.

Combining,

E[D] =
N

α
max(1,M/d). (1)

Hence, the expected delay is increased by a factor ofM/d
when there is a bandwidth constraint.

4.2 Coded File Storage

In this section, we analyze the expected delay in reconstructing
a file under a coded storage scheme. As explained before,
when using a(n, k) coding, each file is split intok chunks
and then coded inton chunks and distributed to the nodes.
In order to reconstruct the file, the sink has to download any
k out of then chunks. Whereas each file is storedα times
in uncoded replication, it is expandedα = n/k times when
using coding. Thus, analyzing the delays of both cases for the
sameα makes a fair comparison.

Balls and Bins model
Recall thatβ is the number of chunks per file that a node gets
to store (β = n/N ). As before, each node can be represented
as a bin and thus we haveN bins. Balls thrown into the
bins are equivalent to the sink meeting a node at each time
step. Whenever a sink meets a node, it can only download a
single chunk since the chunk size is equal to the bandwidth
constraint, and so the sink can meet the same nodeβ times
before running out of new data. Thus we can set the capacity
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1 2 3 NN − 1

1

2

β

Fig. 2: The balls and bins model for the coded case for integer
β ≥ 1

of each bin to beβ balls (assumeβ to be an integer). See Fig
2. In order to relax the condition on the integrality ofβ we
note that we can set the capacity of a few bins to⌈β⌉ and the
rest to⌊β⌋, making the bins non-identical and thus difficult to
analyze. Also note that the final expression obtained does not
requireβ to be an integer. We will note below what happens
whenβ < 1.

Now, in order to get a file, we need to download anyk
different chunks out of then chunks.In the balls and bins
process, we are interested in finding out the number of balls
to be thrown in expectation, so that there arek total balls
in all of the bins. We make a note that since the bins have
limited capacity, they could overflow and hence the required
expectation is not alwaysk. Let us analyze the delay by
considering three different cases based on whetherβ ≤ 1,
1 < β < k or β ≥ k.

Case I: β ≤ 1

b b b b b b b

1 2 n N

Fig. 3: The balls and bins set up whenβ ≤ 1

In order to understand the capacityβ being less than1, we
note that this in fact corresponds ton ≤ N , sinceβ = n/N .
Thus onlyn out of theN nodes store the chunks. Without loss
of generality, consider the firstn nodes to contain the chunks.
In the balls and bins process, we are interested in counting
the number of balls in expectation to be thrown until there are
k balls in any of the firstn bins (see Fig 3). The expected
number of balls to be thrown before the first ball lands into
any of then bins isN/n; the second ball takesN/(n− 1) in
expectation and so on. Thus,

E[D] =
N

n
+

N

n− 1
+ . . .+

N

n− k + 1
= N(Hn −Hn−k) ≈ N log [n/(n− k)] ,

sinceHn ≈ logn. Usingα = n/k, we get,

E[D] ≈ N log [α/(α− 1)] . (2)

Even though this equation does not depend on parameters
like M, C etc., there is an implicit dependence, since for
example,α depends onN , C, M, m and we need to have
the chunk sizeM/k to be equal to the bandwidth constraint
d.

Case II: 1 < β < k

To recall,β is the capacity per bin, or the number of times
the same node can be seen before the sink runs out of useful
chunks. Let us assume thatβ is an integer. We are interested
in finding out the expected number of throws to getk balls
into the system. Deriving an exact expression forE[D] seems
hard and so we upper bound the expected delay. Also note
thatE[D] ≥ k.

Let us define the state of the systemS at any time as the
arrangement of the balls in the bins and|S| to be the number
of balls in the system. For example when|S| = 2, valid states
include S = {2, 0, 0, . . . , 0}, {1, 1, 0, . . . , 0} etc., where the
j th element in the set corresponds to the number of balls in
the j th bin. For a generali, there are an exponential number
of statesS such that|S| = i.

Let Ti→i+1 be the number of balls required to add one more
ball to the system, given that there are alreadyi balls in the
system. The expected delay is then

E[D] =

k−1
∑

i=0

E[Ti→i+1]. (3)

We first note that the distribution ofTi→i+1 can be deter-
mined if the current state is given, otherwise it is extremely
difficult. For example, given thatS = {0, 0, . . . , 0} (i.e.
i = 0 and there are no balls in the system),T0→1 is 1
with probability 1 (or geometric with failure probability0);
and given that the state isS = {β, 0, 0, . . . , 0} (i.e. the first
bin is full with β balls), thenTβ→β+1 is geometric with
failure probability 1/N . Thus once we know the state, we
can determine the distribution ofTi→i+1. But what can we
say aboutTi→i+1 without conditioning on the state? As an
example, suppose there arei = β balls in the system, then
there is a finite probabilityq with which one of the bins
may be full, in which case, the distribution is geometric with
failure probability 1/N and with the remaining probability
(1−q), the distribution is geometric with failure probability0.
Thus we can expressP[Tβ→(β+1) = z] = qP[Geom(1/N) =
z] + (1 − q)P[Geom(0) = z], where Geom(x) is a geometric
random variable with failure probabilityx. We make a note
that Tβ→(β+1) is a probabilistic mixture of two geometric
random variables with mixing probabilitiesq and 1 − q. For
a generali, Ti→i+1 is a probabilistic mixture of at most
N geometric random variables. Even though it is difficult
to determine the mixing probabilities for everyi, we can
effectively eliminate them, for which we use the concept of
Stochastic dominance (see [29], [30] for more details):

Defn: Stochastic Dominance Consider two random vari-
ables X and Y , possibly defined on different probability
spaces. WhenX is stochastically smaller thanY , then for
everyz ∈ R, the probability inequalityP(X ≤ z) ≥ P(Y ≤ z)
must hold or in terms of the cumulative distribution function,
FX(z) ≥ FY (z). This is denoted asX � Y , i.e. X is
stochastically dominated byY .

Another concept we need below is that of Coupling.

Defn: Coupling For a given set of random variables
X1, X2, . . . , Xn, a coupling is defined as a new set of random
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variables(X̂1, X̂2, . . . , X̂n) over the same probability space
such that the marginal distribution of̂Xi is same as that of
Xi for i = 1, 2, . . . , n. Thus for all measurable subsetsE of
R, P(X̂ ∈ E) = P(X ∈ E).

Remark If X � Y , then E[X ] ≤ E[Y ]. This is noted by
seeing thatE[X ] =

∑

z(1 − FX(z)) ≤
∑

z(1 − FY (z)) =
E[Y ].

We list three useful lemmas below.
Lemma 4.1:A random variableX is stochastically domi-

nated by another random variableY if and only if there exists
a coupling(X̂, Ŷ ) of X andY such thatP(X̂ ≤ Ŷ ) = 1.
Refer to Lemma 2.11 in [30] for proof.

Lemma 4.2:Let X ∼ Geom(p) andY ∼ Geom(q), where
p andq are the failure probabilities. Ifp ≤ q, thenX � Y .

Proof: At each step (starting from0), a real number is
selected at random from[0, 1] and X̂ and Ŷ are defined to
denote the step at which the number chosen belongs outside
[0, p] or [0, q] respectively. We note that if̂X succeeds at step
x, so that the number chosen at that step is for the first time
higher thanp, then Ŷ could not have succeeded before or at
x i.e. P(Ŷ ≥ x | X̂ = x) = 1. P(X̂ ≤ Ŷ ) =

∑∞
0 P(Ŷ ≥

x | X̂ = x)P(X̂ = x) =
∑∞

0 (1)P(X̂ = x) = 1. Thus
P(X̂ ≤ Ŷ ) = 1 giving X � Y . Hence a geometric random
variable is always dominated by another geometric random
variable with higher failure probability.

Lemma 4.3:Let us have l random variables
X1, X2, . . . , Xl, with Xj � X1 for all j = 2, 3, . . . , l.
If X is a probability mixture of X1, X2, . . . , Xl, such
that pX(z) =

∑l
j=1 αjpXj

(z) with constantsαj ≥ 0

(j = 1, 2, . . . , l) and
∑l

j=1 αj = 1, thenX � X1.

Proof of Lemma 4.3: FX(z) =
∑l

j=1 αjFXj
(z) ≥

∑l
j=1 αjFX1

(z) = FX1
(z). Thus we haveFX(z) ≥ FX1

(z)
for all z, which impliesX � X1.

In other words, this lemma states that a probabilistic mixture
of geometric random variables is stochastically dominatedby
the constituent geometric random variable with the biggest
failure probability.

Back to the case wheni = β, since the biggest failure prob-
ability is 1/N , the corresponding geometric random variable
stochastically dominates other geometric random variables
(Lemma 4.2), and so from Lemma 4.3, we can see that
Tβ→β+1 � Geom(1/N), conveniently removing the depen-
dence onq. Thus we note that whenTi→i+1 is a probabilistic
mixture of geometric random variables with biggest failure
probabilityp, thenTi→i+1 � Geom(p). We are now all set to
get the upper bound on the latency.

Theorem 4.4:The expected delay due to coded storage in
the case when1 < β < k is upper bounded byn(HN −
H⌈N(1−1/α)⌉), whereHN is theN th harmonic number.

Proof: Consider a random variableD′
i =

∑k−1
i=0 T ′

i→i+1

whereT ′
i→i+1 is a geometric random variable with failure

probability p′i. By suitably choosingp′i, we will first prove
that Ti→i+1 is stochastically dominated byT ′

i→i+1 for each
i.

When the firstβ balls are thrown, none of the bins could
have overflowed and soTi→i+1 is geometric with failure

probability 0 for i = 0, 1, . . . , β − 2, β − 1. We choose
p′i = 0 in these cases. Once there areβ balls in the system,
as explained above,Ti→i+1 is a probabilistic mixture of
geometric random variables with the biggest failure probability
1/N . From the insight above, we setp′β = 1/N , so that
Ti→i+1 � Geom(1/N). Also, whenβ ≤ i ≤ 2β − 1, its not
possible to have two or more bins full, and so in all these cases,
the biggest failure probability is1/N ; thus we setp′i = 1/N
for β ≤ i ≤ 2β − 1. Further, its not difficult to see that we
should setp′2β = 2/N .

Using similar arguments, we setp′i = j/N for jβ ≤ i <
(j + 1)β, for j = 0, 1, . . . , (k/β − 1) (assumingk/β = x to
be an integer, otherwise usex = ⌊k/β⌋ above). For the last
case wheni = k− 1, sincex or more bins cannot be full, set
p′k−1 = (x− 1)/N . We note thatx = k

β = k
nN = N

α .
For eachi, since we have chosenp′i to be at least as big

as the biggest failure probability in the probabilistic mixture
of geometric random variables that constituteTi→i+1, we can
note thatTi→i+1 � Geom(p′i) using Lemmas 4.2 and 4.3. This
impliesE[Ti→i+1] ≤ E[Geom(p′i)] and thusE[D] ≤ E[D′] by
summing over alli. Noting thatE[Geom(p)] = 1

1−p ,

E[D′] =
k−1
∑

i=0

E[T ′
i→i+1] =

x−1
∑

j=0

(j+1)β−1
∑

i=jβ

E[T ′
i→i+1]

=

x−1
∑

j=0

(j+1)β−1
∑

i=jβ

E[Geom(j/N)] =

x−1
∑

j=0

β

1− j/N

= Nβ(HN −HN−x) = n(HN −H⌈N(1−1/α)⌉).

Sincek ≤ E[D] ≤ E[D′], we get

k ≤ E[D] ≤ n(HN −H⌈N(1−1/α)⌉).

Note that when using this expression, it does not matter
whetherx or β is an integer or not. Also, for high values ofα,
n(HN −H⌈N(1−1/α)⌉) ≈ βN log [α/(α− 1)] sinceβ = nN .

The above analysis is not restricted to keepingβ < k. We
can note that whenβ ≥ k, α = n/k ≥ N and thus for large
values ofα, the average delay expression can be approximated
ask ≤ E[D] ≤ k[1 + 1/2α+ o(1/α2)], thus confirming with
the result below.

Case III: β ≥ k

Since the capacity is sufficiently large, no bin can get full in
k throws and soE[D] = k.

To summarize,

E[D]







≈ N log
(

α
α−1

)

if β ≤ 1

≤ βN log
(

α
α−1

)

else if β > 1

Combining, we obtain our final bound,

E[D] ≤ max(1, β)N log

(

α

α− 1

)

≈
N

α
max

(

1,
M

d

α

N

)

,

(4)
where the approximation holds for high values ofα.

A note on the choice ofk: in order to derive all the above
expressions, we have chosenk = M/d. But what would
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happen if thek is chosen any higher? First, consider the case
when n is a multiple ofN . By choosingk twice its actual
value, for instance, each node will have only half the chunk
size as before, but twice the number of chunks, so the amount
of data per node is the same, thus the average delay will be
the same. Now ifn < N , by increasingk, we also increase
n, i.e. more nodes contain desired data but less of it. Overall,
we did not observe any improvement in the average delay by
increasingk.

4.3 The Benefits of Coding: Summary

By comparing eqn (1) and eqn (4), it is clear that the expected
delay with coding is at least as good or better than uncoded
replication. The interesting cases ofd are whenM/d = 1
and M

d
α
N = 1; the former givingd = M and the latter giving

d = Mα
N = C/m. Thus we have the following three regimes:

• (High Bandwidth regime) d ≥ M: The expressions
for the latencies in both the coded and uncoded storage
schemes become almost equal withE[Duncoded] = N/α ≈
E[Dcoded], and so coding performs same as uncoded
replication (note that sincek = 1, coding is equivalent to
uncoded file replication).

• (Intermediate Bandwidth regime)C/m ≤ d ≤ M:
From the expressions, we haveE[Duncoded] =

N
α

M
d and

E[Dcoded] ≤
N
α . Thus the improvement of using coding is

M/d. Each node cannot store chunks from all the files
due toC/m ≤ d and so the sink has to wait to meet good
nodes, which is the only factor contributing to the delay.

• (Bandwidth limited regime)When d ≤ C/m, we obtain
E[Dcoded] ≤ M

d (and sinceE[Dcoded] ≥ k = M
d , we

have thatE[Dcoded] =
M
d ). Because,E[Duncoded] =

N
α

M
d ,

the improvement here isN/α. Thus under such a severe
bandwidth constraint, coding performs as if complete files
were available in all the nodes, only to be limited by the
bandwidth.

5 TRACE BASED EXPERIMENTS

We now turn to an empirical evaluation of the benefits of
coded storage, using real vehicular traces. We use GPS traces
of 1,000 taxis in Beijing and 1,608 buses in Chicago.

We assume that the nodes continue to run their application
throughout the day. Note that we do not assume the nodes
to be moving throughout the day, only that on-board radio
and the computer may continue to work even if the node is
stopped.

For inter-vehicular communication, we used a realistic
model of IEEE 802.11p from [31], the details of which are
given in section 5.4 below. We next present the description of
the datasets used.

5.1 Dataset Description

The Beijing dataset consists of GPS traces collected from
00:00hrs to 23:59hrs on Jan 5, 2009 local time, recorded every
minute for a total of 2,927 taxis. The GPS co-ordinates span
32.1223 to 42.7413 in latitude and111.6586 to 126.1551 in
longitude. Of these 2,927 taxis, we chose a thousand randomly

(a) Beijing dataset

(b) Chicago dataset

Fig. 4: Maps of the routes traced by a few randomly selected
nodes in the Beijing and the Chicago datasets. We limited the
number of nodes so as to not clutter the image. Colors are
chosen randomly for each node by the tool we used to plot
the routes.

for our simulations. In Fig 4a, we show1 the routes taken by
a randomly chosen subset of these thousand taxis. Note that
we used about 8 taxis to display to avoid clutter.

For the Chicago dataset, we collected data starting from
Nov 1, 2010 at 11:06hrs (Chicago local time) for every 30
seconds and used data worth the first 24hrs. The latitudes and
longitudes of this dataset range from41.6440 to 42.0651 and
−87.8866 to −87.5256 respectively. The routes taken by a
random subset of these nodes (7 buses) are shown in Fig 4b.
Since the routes are carefully planned ahead, one can see the

1. We used gpsvisualizer.com and google.com to obtain theseplots.
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(a) Beijing dataset

(b) Chicago dataset

Fig. 5: Density of moving taxis vs time

difference between the routes in Fig 4a and Fig 4b. We also
note that many routes overlap with each other (spatially if not
temporally) and so not all can be seen clearly from the map.

In Fig 5, the density of the nodes is shown for each dataset,
for which we plot the number of moving nodes versus time.
In Fig 5a and Fig 5b, the 0 minute corresponds to the time
the dataset begins, and hence for the Beijing dataset it is
00:00 hrs, whereas for the Chicago dataset it is 11:06 hrs
(both local time). We determine whether a node is not moving
if its coordinates do not change for a continued duration
(about two minutes). We note that the average duration that
a taxi is moving is 9.4 hours in the Beijing dataset and quite
remarkably, this value is 9.6 hours for the Chicago dataset.

It can be seen in Fig 5a that as the data set starts at 12am,
the density drops to the lowest at around 4am and starts to
pick up and reaches a peak between 8am and 10am. It drops
after that but again reaches a peak between 4pm and 6pm, after
which it starts decreasing rapidly. Correspondingly in Fig5b,
which starts at about 11am, the density peaks between 4pm
and 6pm, then drops to very low at around 4am and then picks
up again to reach a peak at 8am.

5.2 Performance Metrics

In order to characterize the performance of the system, we
cannot simply use the average delay in downloading a file
as a figure of merit. This is because, since the traces are
time limited, there could be files that may not get fully
reconstructed by the end of the duration of the trace, and so it
is hard to quantify the delay of such incompletely downloaded
files. Thus, we rely primarily on two metrics: one is thefull-
recovery probability, which measures the probability that a file
can be fully recovered by a sink by a given time and the other
is the average file download percentage, which measures, on
average, how much of a file is downloaded by a given time.
Thus, for example, a file-recovery probability of0.9 means
that the nodes were able to successfully download full files
90% of the time and an average file download percentage of,
say, 95 means that the nodes were able to download 95% of
the file on the average.

5.3 Experiment Methodology

The nodes are indexed from 1 toN , whereN is the number
of nodes (N = 1000 for the Beijing dataset, andN = 1608
for the Chicago dataset). The files are indexed1 through
m. Since the end goal is to deploy a file sharing system in
a vehicular network, we try to make reasonable choices of
various parameters involved. A capacity of 100GB per node
is assumed as a default, unless specified otherwise. Similarly,
by default, files are assumed to be of size 1GB, typical of
movie clips and we consider a default of 2,500 files in the
system.

As explained before, the two primary metrics of perfor-
mance are the full-recovery probability and the average file
download percentage, both characterized as functions of time.
Therefore, our experimental methodology is to carry out a
number of experiments, and in each there is a sink trying to
download a file. We record these metrics of interest along time
and average across experiments.

Each experiment consists of the following three steps: first,
the files are allocated to the nodes; then, a sink-file pair
is determined; and this is followed by a simulation of the
encounter between the sink and the rest of the nodes using
the trace. We will describe in detail these aspects next.

The first step is that of storing the files onto the nodes. If
coding is not used, files are not transformed; but if coding is
used, files are encoded to get chunks. Both in the uncoded
and the coded storage schemes, the files and the chunks are
stored by ensuring maximal spreading. That is, in the case
of uncoded storage, we make sure to not store the same file
twice or more in the same node; and in the case of coded
storage, multiple chunks of the same file are not stored in
the same node, unless all other nodes have been used. In
fact, we found that by randomly storing files/chunks, coding
still performed virtually the same whereas the performanceof
uncoded storage scheme decreased slightly. Thus, we decided
to use maximal spreading so as not to worry about the
performance degradation introduced by randomization, even
though random storage may be more realistic.
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(a) Full-recovery probability (Beijing)
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(b) Average file download percentage
(Beijing)
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(c) Full-recovery probability
(Chicago)
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(d) Average file download percentage
(Chicago)

Fig. 6: Evaluating the performance of distributed storage codes in the default setting consisting of 2,500 files each of size 1GB
stored in nodes each having 100GB storage for both the Beijing and Chicago datasets. There are 1,000 nodes in total in the
Beijing dataset and 1,608 nodes in the Chicago dataset.

Next, a random node is selected to be a sink by selecting a
random index from{1, 2, . . . , N}, and it tries to download a
random file (by choosing a random index from{1, 2, . . . ,m}).

The third step involves the simulation of the contacts
between the sink and the other nodes, so that the sink can
download the chosen file opportunistically. Note that the day-
long trace is divided into intervals of length one minute each
for the Beijing dataset and 30 seconds each for the Chicago
dataset, resulting in a total of 1440 and 2880 slots for the
Beijing and the Chicago dataset respectively. The choice of
the granularity is dictated by the dataset. At each slot, we
determine the distance between the given sink and every other
node, and apply the radio model (described below) to find out
the number of packets transferred, if any.

For each experiment, we keep track of the percentage of the
file downloaded and whether the file download is complete or
not at each time step. When presenting the results, we average
over 50 random sinks, and for each sink, we run the entire
simulation 100 times choosing a different file each time.

5.4 Realistic Radio Link Model

The IEEE 802.11p standard specifies the data rate to range
from 1.5Mbps to 27Mbps with the default being 3Mbps, which
we use in our simulations. For inter-vehicular communication,
we use an empirical model of packet delivery characteris-
tics obtained from [31]. The authors characterize the packet
delivery ratio (PDR) against various parameters such as the
separation between two nodes, their relative velocity etc., in a
number of different environments and the overall experiments
lasted for about30 hours. Of the various environments in
which their experiments were conducted, the closest match
to our dataset is the Suburban Road (SR) environment. Thus
we use their PDR vs separation distance data (Fig 3(a) in
[31]) to carry out our simulations. It may also be emphasized
that the authors found that the relative velocity between two
nodes does not significantly affect the PDR, the way inter-
vehicular distance does. We choose packet sizes of 380 bytes
with payload 300 bytes. Additionally a protocol set up time
of about 1ms is considered (based on [31]).

5.5 Choice of the coding parameter k

From the Beijing dataset, we observed an average contact
duration of 55.6s (assuming a radio range of 500m) leading

to an average data transfer of 21MB (at 3Mbps under ideal
conditions). Since it is desirable to be able to transfer multiple
chunks per encounter, we choose a safe chunk size of 1MB.
We use this same chunk size for the Chicago dataset too.

5.6 Discussion of the Results
Our most important results are shown in Fig 6, in which we
consider a typical file sharing scenario with 2,500 files each
of size 1GB; and each node having about 100GB storage.
Such a system is implemented atop both the datasets, and both
the full-recovery probability and the average file download
percentage are measured for each time step. While we pri-
marily discuss the results with respect to the Beijing dataset,
similar discussions follow for the Chicago dataset. We note
that coding offers significant benefits compared to uncoded
replication. For example, at the end of 24 hours, files are
reconstructed fully 98% of the time by using coding, whereas
without coding, only 19% of the files are reconstructed fully
(see Fig 6a). The corresponding values for average file down-
load percentage are 99% and 61% respectively. If we were to
consider the instant when 80% of nodes are able to complete
their downloads, this corresponds to about 600 minutes in
the trace when coding is used, but only 4.4% of nodes are
successful in full downloads by 600 minutes if coding is not
used. An interesting observation to make is that since the
Beijing trace begins in the middle of the night with relatively
little traffic, one can see from Fig 6 that the rate at which files
are completed starts to slow down around 60 minutes (1 a.m.)
and then picks up again at 400 minute (7 a.m.). No such trend
can be seen in the Chicago dataset because the dataset starts
at around 11am Chicago local time. Another factor affecting
the rate towards the end is the scarcity of new chunks (similar
to the coupon collector problem).

Further, we performed a number of experiments to thor-
oughly understand the effect of various parameters on the
performance of the system, by systematically varying the
parametersM, C and m. In our evaluations, we keep two
parameters constant and vary the third. The results are shown
for the Beijing dataset and those of the Chicago dataset are
omitted for brevity since they display similar trends.

5.6.1 Effect of file size
As file size increases, since system storage remains constant,
we are effectively decreasing the system redundancy, which
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Fig. 7: Plots showing how various parameters affect the full-recovery probability. In each of the cases, one parameter is varied
while keeping the others constant. Typical values used are astorage capacity of 100GB, 2,500 files and file size 1GB.
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Fig. 8: Plots showing the impact of different parameters on the average file download percentage. The parameters are sameas
in Fig 7.

should adversely impact latency. This is observed for both
coded and uncoded storage, but there are clear differences in
relative performance. We notice from Fig 7a and Fig 8a that
when the file size is very small (100MB in the figures), coding
offers no benefit at all. But as the file size is increased to 1GB,
coding offers tremendous improvements by being able to fully
download full files most of the time (98% of the time in Fig
7a), whereas only about a fifth of the time (Fig 7a) without
coding. When the file size is increased further to 5GB, the
performance of coding suffers, but not drastically, whereas in
the absence of coding, the probability of full recovery drops
almost to zero (from Fig 8a, and we note that many sinks have
been able to download about a tenth of the file on the average,
but not a complete file).

5.6.2 Effect of the number of files and the capacity
Figs 7b and 8b show the impact of the number of files on
the system performance. As the number of files increases,
the system redundancy decreases and hence the full-recovery
probabilities and the file download percentages both start
to decrease. And, as the capacity increases from 10GB to
100GB to 500GB, files can be replicated many more times
and hence the full-recovery probabilities and the file download
percentages both start to get better (Fig 7c and Fig 8c). An
interesting observation to make is that the curve corresponding
to the case when there are 25,000 files with 100GB storage
per car in Fig 7b and the curve corresponding to 2,500 files

with 10GB storage per car in Fig 7c (or Fig 8b and Fig 8c) are
both identical (if we choose the same set of sink file pairs).
This is because having 25,000 files on nodes with 100GB has
the same system redundancy as having 2,500 in 10GB nodes.
Also note that some of the probabilities or percentages for the
uncoded replication start non-zero, since some of the sinks
already contain the files they are interested in, whereas when
coding is used, no node can contain a full file by itself and so
all the probabilities and percentages are 0 to begin with.

5.7 Absolute File Download Latency
A cautionary note is in order in interpreting our results in this
section in terms of the absolute numbers, which suggest that
downloading a large 1GB-sized file in a vehicular network is
likely to take six to ten hours even with coding. We note that
our traces, though they involve in the order of 1,000 nodes,
are still relatively quite sparse in terms of encounters as they
involve large areas in Beijing and Chicago. Thus the latency
values presented in our study in terms of absolute numbers
may not be representative of what might be possible with much
denser vehicular network deployments (say 100,000+ vehicles
in a large city) during high-traffic hours. But the dramatic
gaps observed between the performance of coded and uncoded
storage in these simulations indicate strongly that the useof
coding is essential for speeding up large file downloads in
encounter-based vehicular networks, regardless of vehicular
density.
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6 CONCLUSION

We have studied the effect of coded storage on the latency
of on-demand, pull-based content access in an intermittently
connected vehicular network. We developed a mathematical
model to study the relative benefits, and proved that optimized
coded storage is never worse than uncoded storage, and can
significantly improve the latency performance in the case
of large files and bandwidth limitations. We have further
validated our findings using realistic simulations based on
large-scale vehicular trace involving taxis in Beijing andbuses
in Chicago. Our numerical results confirm that file download
latency (particularly for large files) is improved dramatically
when the content is stored using erasure codes.

There are still many unanswered questions. Open questions
include how to re-distribute content when there is node churn,
and the possibility of learning patterns in vehicular encounters
to further optimize the content storage. Another interesting
problem is to determine the optimal storage strategy if the
popularities of various files are known beforehand. Some of
the preliminary results we have on unequal file popularitiesare
available in [32]. We also note that our traces, albeit involving
1,000 cars, are still relatively sparse given that they involve
city-scale mobility. It is important to investigate content access
latency in denser deployments, to understand the performance
of file sharing in large-scale vehicular networks.
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