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Abstract—With today’s intelligent vehicles, there are a variety
of information-rich sensors, both on and off-board, that can
stream data to assist drivers. In the future, we imagine physical
infrastructure capable of sensing and communicating data to
vehicles to improve a driver’s awareness on the road. To process
this data and present information to the driver in real-time, we
introduce VESPER, a real-time processing framework and online
scheduling algorithm designed to exploit distributed devices that
are connected via wireless links. A significant feature of the
VESPER algorithm is its ability to navigate the trade-off between
accuracy and computational complexity of modern machine
learning tools by adapting the workload, while still satisfying
latency and throughput requirements. We refer to this capability
as polymorphic computing. VESPER also scales opportunistically
to leverage the computational resources of external devices.
We evaluate VESPER on an image-processing pipeline and
demonstrate that it outperforms offloading schemes based on
static workloads.

I. INTRODUCTION

The U.S. Department of Transportation is in the process
of developing rules to advance vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication technology [1].
It is believed that this technology will help to improve safety
and reduce congestion on the road. As these technologies
become a reality, we believe there will be a wealth of informa-
tion available from various static and mobile sensing sources
including video cameras and other sensor feeds, that could
be used to assist drivers. However, presenting such streams
of sensor data directly to a driver in a raw format would be
overwhelming and impractical.

An Advanced Driving Assistance System (ADAS) is needed
to extract useful details from these sensors, for instance to
give a driver information about traffic or hazards beyond
visual range. However, a single vehicle may not be able
to handle processing of all the incoming sensor data on its
own. In order to meet time constraints, such systems often
employ specialized hardware, such as GPUs, or offload to the
cloud. However, static offloading schemes are not well suited
for vehicular applications. Such schemes are susceptible to
changes in resource availability, due to variations in wireless
link quality as a vehicle drives around, and thus they will often
fail to perform as desired, for instance incurring too high of
a latency. Moreover, in this context, unlike traditional mobile
applications (where typically only two computation points are
considered: on-mobile or in-cloud), there are many points
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Fig. 1. Potential processing resources available to a car

where computation could take place, as depicted by the loops
in Figure 1. These points generally provide a trade-off between
latency and computational capability and availability, with
the more computationally capable nodes incurring a higher
latency and relatively lower availability. A robust system for
driving assistance needs to constantly adapt the offloading
decisions to effectively utilize all the available processing and
communication resources that may be available.

In this work, we recognize that in some cases a working
real-time processing system can be more important than an
accurate one and we introduce the concept of polymorphic
computing for this domain. Here polymorphic (coined from
poly- “many” and morphic - “forms”) refers to different
computational pipelines that could be used for a processing
task that offer different accuracy-performance tradeoffs. The
fundamental idea here is that at a given point in time, an
application’s workload (resulting from a particular processing
pipeline that may be optimized for accuracy) may not be
achievable within a given time frame to meet real-time re-
quirements. This could be due to a number of reasons outside
the control of the application. However, rather than simply
failing, it would be more useful if the application could adapt
its workload (in other words, change the actual processing
pipeline itself) in a way that it could be completed within
the time constraints, albeit at the cost of some reduction in
accuracy.

We propose a real-time vehicle sensing and perception
augmentation system (VESPER) that incorporates dynamic
offloading and polymorphic computing. VESPER provides the



following features:
• Workload Adaptability: VESPER changes its process-

ing pipeline based on the available computing resources
and their link qualities.

• Support for Intermittent Connectivity: External com-
puting devices such as the cloud may not always be avail-
able to a car, and can come and go frequently. VESPER
is adaptive to the changes in the device connectivity.

• Scalability: VESPER is capable of handling multiple
computing devices (including on the sensor platform, on
car, roadside, and in the cloud) seamlessly.

II. RELATED WORKS

A variety of computational offloading problems have been
studied previously. However, the ability to handle the intermit-
tent connectivity of devices, multiple processing pipelines and
real-time constraints, sets the VESPER algorithm apart. We
highlight some prior applications of computational offloading
below.

Odessa [2] is a system designed to improve the latency and
throughput of a streaming application through offloading and
parallelism decisions using the Sprout [3] framework. It ac-
complishes this by making greedy incremental scheduling de-
cisions. While it has demonstrated good performance, Odessa
is only designed only for a two-node network, consisting of a
mobile device and a server.

Glimpse [4] is a real-time object recognition and tracking
system built to run on mobile devices. It utilizes an active
cache to mitigate the impact of latency variations between a
mobile device and the cloud in order to provide continuous
performance. While similar to our work in that it addresses
real-time constraints, Glimpse’s dependence on the cloud is a
limitation we overcome with VESPER.

III. BACKGROUND

In this section we define the problem we are trying to ad-
dress, introduce an application to help motivate this discussion,
and identify the metrics by which the system is evaluated.

A. Driver Perception Augmentation Application

Currently, drivers make most of their driving decisions
based on what can been seen directly through their wind-
shields. These decisions may not be optimal and could be
potentially improved if the driver is provided with a look-
ahead into the future road and traffic conditions. In this work,
we consider an application where a drone is streaming images
of the road ahead to a car to provide the driver with traffic
information. The raw images are not particularly useful, and in
fact can be harmful, if the driver needs to divert his/her atten-
tion to interpreting them. The system, therefore, requires the
implementation of an image processing pipeline for intelligent
detection of the vehicles on the road. In order for the system to
be helpful, the results of this pipeline need to be computed and
delivered to the driver in real-time. This real-time constraint
necessitates that the system be capable of adapting to the
dynamic availability of computational resources and wireless

link quality. The system should accomplish this while provid-
ing the highest level of performance possible. We discuss the
constraints and performance metrics in detail in the following
subsection.

Our image processing pipelines are based on YOLO [6], a
real-time object detection system that uses a CNN to detect and
localize objects in images. We use two variations of YOLO,
namely TinyYOLO and YOLOv2, as our image processing
pipelines to detect cars on a highway. As shown in Figure 2,
TinyYOLO and YOLOv2 exemplify the performance trade-off
at the core of polymorphic computing.

B. Performance Metrics

When the vehicle receives external sensor data (images in
our case), VESPER determines which processing pipeline to
use and where in order to extract the best information from the
image within the time constraints. The following metrics are
used to evaluate the performance of the controller algorithm:

• Latency: Latency, or makespan, represents the time it
takes an image to make its way through the processing
pipeline. It is a function of the chosen pipeline, the
resource availability, and the wireless link quality at the
time of execution. In our application example, the latency
constraint would be dictated by how far the drone is
traveling in front of the car, so that the driver has enough
time to react to any information provided.

• Throughput: To maintain the driver’s awareness of traffic
conditions ahead, the system should deliver updates to the
driver at a reasonable rate, or throughput, measured in
frames processed per second. This constraint determines
the minimum rate at which the system needs to process
images and is a measure of the scheduler’s ability to
parallelize the workload based on available resources.

• Accuracy: The accuracy metric represents how well the
output of the processing pipeline fits the ground truth
in the real world. The scheduler will attempt to use the
most accurate pipeline for the longest period of time
while the system is running. Therefore, we believe that
the time-averaged expected accuracy is a useful measure
for algorithm performance. In this work we use mAP as
our accuracy value.

The primary goal of the VESPER algorithm is to maximize
the system’s accuracy while ensuring that the throughput and
latency constraints are satisfied. The throughput constraint
is a lower bound while the latency constraint is an upper
bound. In our envisioned application, these constraints would
be dependent on the speed of the car and the distance to the
drone as shown in Figure 3.

IV. SYSTEM DESIGN

A. Framework

The VESPER framework consists of several components,
namely the image source, scheduler, dispatcher, token man-
ager, performance monitor, pipeline database, and one or more
devices. The framework components are connected as shown
in Figure 4.



(a) Drones-eye view of highway (b) TinyYOLO (57.1% mAP @ 207 fps*) (c) YOLOv2 (76.8% mAP @ 67 fps*)

Fig. 2. Illustration of polymorphic computing: two different vision processing pipelines (variations of YOLO), for vehicle detection in images, that offer
different trade-offs between accuracy and performance. *on an NVIDIA Titan X GPU [5]
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Fig. 3. Parameters affecting the real-time constraints

a) Image Source: The nature of our target application re-
quires a constant stream of images. These images are provided
by a drone over a wireless link. Due to the transient nature
of wireless links and other unpredictable circumstances, we
have implemented the ability to control the frame rate used
by the drone when supplying the images. This provides some
flexibility for the system to adapt its throughput. We discuss
this capability in more detail in Section IV-B.

b) Scheduler: The scheduler is the key component of our
framework and is where the VESPER scheduling algorithm
executes. The scheduling algorithm is responsible for selecting
an image processing pipeline so as to maximize the accuracy
of the system while satisfying the makespan and throughput
constraints. Due to its critical nature, the scheduler is run on
the car to make the system robust against intermittent device
connectivity, since external devices such as an RSU may not
always be connected. Section IV-C describes the scheduler in
more detail.

c) Dispatcher: Communication between the scheduler
and any devices connected to the system take place through
the dispatcher. The dispatcher relies on TCP to ensure that all
messages are received.

d) Token Manager: To ensure that we do not assign too
much work to a device, we have implemented a token manager.
Tokens are associated with a particular device and the number
created depends on the amount of threads of work that a device
can support. A token is required to assign work to a device.

e) Performance Monitor: This component tracks the
various metrics used to assess system performance, including
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Fig. 4. Framework Architecture

makespan (M̂ ) and throughput (T̂ ). An exponential weighted
moving average (EWMA) is used to average some of these val-
ues over time. The monitor also tracks per-device performance
to allow the scheduler to make more informed decisions.
This includes the device’s processing rate and round-trip time
(RTT).

f) Pipeline Database: We collect the execution times of
our image-processing pipelines offline for each type of hard-
ware and store this information in a database. The scheduling
algorithm uses this information along with live performance
measurements to predict if a pipeline is feasible or not under
the current operating conditions.

g) Devices: At any given point, there could be multiple
computing devices connected to the car, such as nearby RSUs.
Each device receives computing jobs from the dispatcher.
For each incoming job, the device timestamps the start and
the finish time of execution, which are then used by the
performance monitor to profile the execution times of these
devices and their corresponding link qualities.

B. Frame Rate Adaptation

To ensure that images are arriving sufficiently fast, the
VESPER algorithm applies frame rate adaptation to make sure
that the system delivers the desired throughput performance
to satisfy the application constraints. VESPER uses a propor-
tional controller which attempts to approach the throughput
constraint by maintaining unity of the ratio T0/T̂ , where
T0 and T̂ represent the system’s throughput constraint and
measured system throughput, respectively.



We have modified the proportional controller slightly to
make it more robust in practice. Firstly, we boost the through-
put constraint by 1% to make the system more likely to satisfy
this requirement. We’ve observed empirically that aiming
exactly for the constraint would often cause the system to
fall short. Secondly, we set a lower and upper bound on the
requested frame rate. The lower bound is simply a logical
restriction whereas the upper bound is included to prevent any
excessive rates from being requested.

C. Scheduling Algorithm

The scheduling component of VESPER determines which
image processing pipeline and which devices to use in an
attempt to maximize accuracy while ensuring the real-time
constraints are satisfied. The scheduler runs on the car and
makes its decisions based on the most recent performance data
available. As images arrive, they are distributed to scheduled
devices using a token-based queuing system.

1) Devices and Tokens: Devices are the workhorses of the
VESPER framework. When a device establishes connectivity
to the car, the device generates tokens based on the number
of GPUs available to be used on that device. These tokens are
placed in a FIFO queue. A token is needed by the scheduler
in order to assign an image to a device for processing. These
tokens essentially limit the number of images that can be in-
process at a device at any point in time. A token is consumed
from the token queue when a job is sent out to a device and
is recreated when the device completes the work. If a device
completes its work quickly, its token gets added back to the
queue very frequently. VESPER rewards efficient work with
more work.

It is possible for a connected device to not be used at
all if it fails to meet the system’s makespan constraint. To
ensure that performance data for such devices do not get stale,
VESPER will periodically probe the device with fake work to
get fresh measurements. If the link to a particular device is
lost, the system may lose some frames that were assigned to
that device, but the frames on other devices are still processed
as normal. Loss of a few frames is acceptable as VESPER
reacts quickly to ensure that the throughput and makespan
constraints are still satisfied. Once a device is disconnected,
the controller removes the token for that device and it is not
considered for further scheduling until it reconnects. Note that
there will always be at least one device available to the system,
namely the car itself.

2) Performance Measurements: The VESPER scheduler
will periodically review the past performance of all the devices
and determine the best pipeline to use for processing subse-
quent images. It accomplishes this by tracking the processing
rates and link times for each device. Jobs are timestamped
at the car when they leave and return to the Dispatcher.
This makes it possible for the car to calculate a job’s entire
makespan. In addition, jobs are timestamped at the devices
when the devices start and finish working on them, allowing
VESPER to determine the execution time for a job on each
device, without requiring time synchronization with the car.

When combined with the pipeline profiles, the execution time
can be used to approximate an effective processing rate for
each device. By subtracting the execution time from a job’s
makespan, the latency, or RTT, due to the link can also be
determined.

3) Scheduler Logic: VESPER uses the processing rate and
link estimates to determine if a pipeline is feasible given
the throughput and makespan constraints of the system. If a
higher-accuracy pipeline is feasible given the available devices
then VESPER will switch to that pipeline. If a device leaves or
its performance worsens, VESPER may drop back to a faster,
albeit less accurate, pipeline to ensure the real-time constraints
are still satisfied.

The design of the algorithm is such that it will terminate
faster when the system is performing poorly. The scheduler
checks the feasibility of pipelines in increasing order of com-
putational complexity. When the algorithm reaches a pipeline
that cannot be accommodated, it will terminate early. The
algorithm is O(PD), where P is the number of pipelines
available and D is the number of devices connected at the
time of execution.

The images sent by the drone are buffered by the car until
they expire or are scheduled to be processed by a device.
The scheduler loop runs at a fixed frequency and uses device
performance data to make its decisions, as described. M̂ and
T̂ are measured over fixed time intervals and are continu-
ously updated by the performance monitor. The monitoring
frequency is three times as fast as the scheduler to ensure that
the scheduler uses up-to-date measurements.

V. EXPERIMENTAL SETUP

We devise a set of experiments to evaluate the performance
of VESPER under various conditions. We assume a star
topology where the drone (camera) and RSUs wirelessly
connect directly to the car. We believe this topology accu-
rately represents a real-world scenario for a driver perception
augmentation application.

For our experiment, we imagine that the car communicates
to the drone and roadside unit(s) using Wi-Fi. Due to the
difficultly of getting permission to fly a drone around moving
vehicles to test our system in a live environment, we instead
use a network emulation tool called Mahimahi [7] to emulate
the links in our experimental scenarios. While the links are
emulated, we believe the use of traces obtained from real
environments supports our confidence that the results we
obtain in-lab will be indicative of what we would expect to see
in the real-world and the traces also allow for reproducibility.

A. Image Processing Pipelines

VESPER utilizes the reference implementations of the
YOLO and TinyYOLO objection detection pipelines, which
are publicly available. Both networks are loaded into memory
at runtime and await images for processing. We profiled both
pipelines on all of our devices, namely the car and the RSU.



TABLE I
HARDWARE SPECS

Device CPU RAM GPU
Drone

(Raspberry Pi 3)
ARM Cortex-A53

(1.2 GHz) 1 GB -

Car
(Desktop)

Intel Core i7-4770
(3.4 GHz) 16 GB NVIDIA

1050 Ti
RSU

(Jetson TX2)
ARM Cortex-A57,
Denver 2 (2.0GHz) 8 GB NVIDIA

Pascal

B. Benchmarks

To better assess the performance of VESPER, we imple-
mented a static algorithm within our framework to use as a
benchmark. The static algorithm has no capability for frame-
rate or pipeline adaptation. This algorithm uses all connected
devices regardless of their performance.

C. Hardware Specifications

Table I describes the hardware we used. In all of our
experiments, we assign the number of tokens based on the
number of GPUs present in each device. For the car and RSU
we issued a single token. We did not consider using the drone
for neural network computation due to its power limitations,
as it is running a Raspberry Pi 3.

Images were captured by a Logitech HD Pro C920 Webcam
connected to the drone. The camera captures images at 1080p
resolution. At the level of JPEG compression we use for
transmission, images are about 20-30 KB in size.

VI. RESULTS

Through a series of experimental scenarios, we evaluate the
performance of VESPER and demonstrate its capabilities. The
scenarios are run for 30 minutes. Unless otherwise stated, the
makespan and throughput constraints for each experiment are
M0 = 0.8 seconds and T0 = 8.0 frames/second (fps), respec-
tively. By default, the frame rate adaptation and scheduling
algorithms are run every 6 seconds. We refer to this as the
control loop time. The control loop time is a tunable parameter
that determines how quickly the algorithm takes actions. We’ve
determined experimentally that 6 seconds works adequately.

Through our experiments, we aim to answer the following
questions:

• How well does VESPER perform and what overhead is
incurred by using this framework?

• How well does VESPER scale to leverage external de-
vices and how responsive is it to changes in computa-
tional resource availability and link quality?

A. Scenario 1: Overhead

In the first scenario, we aim to assess the overhead of
VESPER by comparing it to a static algorithm in an en-
vironment where the car is the only device available for
computation. Figure 5 shows the average accuracy, as defined
in Section III-B, versus average throughput. The vertical red

Fig. 5. Scenario 1: Accuracy/Throughput Performance

Fig. 6. Scenario 1: Makespan Distribution

line represents the throughput constraint for the system. We
know if the system is satisfying the throughput constraint if it
is located on or to the right of this line. Here, we can see that
both the Static and VESPER algorithms met this constraint.

The two horizontal lines in the plot represent the accuracy
of the two pipelines available for selection by the scheduler,
namely TinyYOLO and YOLOv2. The average accuracy of
our system will be located somewhere between those two
accuracies, based on how long each pipeline is used during
operation. The Static algorithm will always be on one of these
lines, as it does not switch pipelines. In this case it is set

Fig. 7. Scenario 2: Accuracy/Throughput Performance



Fig. 8. Scenario 2: Makespan Distribution

to only use TinyYOLO. We can conclude from this plot that
VESPER did not find it possible to schedule YOLOv2 while
satisfying the throughput constraint since it is also on the blue
line. This is actually by design, as we wanted to focus on
assessing VESPER’s overhead for this scenario. From data
we’ve gathered, the car takes about 0.188 seconds on average
to process an image using YOLOv2 and therefore can only
support about about 5 fps using that pipeline. On the other
hand, TinyYOLO takes about 0.098 seconds per image on
the car. With a throughput constraint of T0 = 8.0, VESPER
determined that only TinyYOLO could be used.

Through the empirical makespan CDF in Figure 6 we can
see that there is little overhead with running the VESPER algo-
rithm over the static case. This plot shows the latency of image
processing, from image reception to result, with the vertical
red line representing the makespan constraint. We know there
were no late images since the CDF hits 1.0 before reaching
this line. Comparing the two CDFs, there is no significant
penalty incurred when running the VESPER algorithm with
no external devices present. The CDFs are fairly sharp since
only local processing on the car is performed, meaning link
quality does not play an important role here.

B. Scenario 2: Scalability

In the second scenario, we introduce the RSUs as exter-
nal computing resources and observe VESPER’s ability to
leverage them to improve its accuracy. Four RSUs are active
for the entire experiment (meaning they are operational but
still subject to varying link quality). In Figure 7, we observe
that VESPER, while maintaining the throughput constraint, is
able to achieve an average accuracy between TinyYOLO and
YOLOv2.

Whenever a new device connects to the system, the VES-
PER controller probes the device initially to estimate the
link quality and the device execution rate. During this phase,
the car is the only device executing the jobs. Since the car
can only support the TinyYOLO pipeline while meeting the
constraints, the accuracy during the initial phase is low. After
the probing phase, which may end after just a single frame
for a device, VESPER is occasionally able to change the
pipeline to YOLOv2 when conditions allow, giving the system

better accuracy. The time-averaged accuracy of VESPER is,
therefore, better than TinyYOLO’s accuracy. By leveraging
the RSUs, VESPER is able improve the average accuracy
of the system. Through the makespan CDF, show in Figure
8, we see that while VESPER achieves higher accuracy, this
accuracy comes at the cost of makespan due to the heavier
processing for YOLOv2. This plot helps to visualize the trade-
off that VESPER is making. As long as it continues to satisfy
the makespan constraint, VESPER may sacrifice makespan in
order to improve accuracy.

VII. CONCLUSION

In this paper, we have presented VESPER, a real-time
polymorphic computing framework for driver perception aug-
mentation. VESPER exploits the computational resources of
devices connected wirelessly with the car to perform complex
processing tasks. It handles intermittently connected devices
and allows for workload adaptation, wherein the processing
pipeline can be changed based on the available resources of
the devices and their link qualities. We have developed the
framework and demonstrated its performance using a computer
vision task for identifying vehicles in drone images. Through
our experiments we have shown that VESPER maximizes
the accuracy of the system while satisfying the real-time
constraints of latency and throughput for the application.
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