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ABSTRACT
Urban sensing, participatory sensing, and user activity recog-
nition can provide rich contextual information for mobile
applications such as social networking and location-based
services. However, continuously capturing this contextual
information on mobile devices consumes huge amount of en-
ergy. In this paper, we present a novel design framework
for an Energy Efficient Mobile Sensing System (EEMSS).
EEMSS uses hierarchical sensor management strategy to
recognize user states as well as to detect state transitions.
By powering only a minimum set of sensors and using ap-
propriate sensor duty cycles EEMSS significantly improves
device battery life. We present the design, implementation,
and evaluation of EEMSS that automatically recognizes a
set of users’ daily activities in real time using sensors on an
off-the-shelf high-end smart phone. Evaluation of EEMSS
with 10 users over one week shows that our approach in-
creases the device battery life by more than 75% while main-
taining both high accuracy and low latency in identifying
transitions between end-user activities.

Categories and Subject Descriptors
C.3.3 [Special Purpose and Application Based Sys-
tems]: Real-time and embedded systems

General Terms
Design, Experimentation, Measurement, Performance
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1. INTRODUCTION
As the number of transistors in unit area doubles every

18 months following Moore’s law, mobile phones are packing
more features to utilize the transistor budget. Increasing the
feature set is mostly achieved by integrating complex sens-
ing capabilities on mobile devices. Today’s high-end mobile
device features will become tomorrow’s mid-range mobile de-
vice features. Current sensing capabilities on mobile phones
include WiFi, Bluetooth, GPS, audio, video, light sensors,
accelerometers and so on. As such the mobile phone is no
longer only a communication device, but also a powerful en-
vironmental sensing unit that can monitor a user’s ambient
context, both unobtrusively and in real time.

On the mobile application development front, ambient
sensing and context information [1] have become primary
inputs for a new class of mobile cooperative services such
as real time traffic monitoring [2], and social networking
applications such as Facebook [3] and MySpace [4]. Due
to the synergistic combination of technology push and de-
mand pull, context aware applications are increasingly uti-
lizing various data sensed by existing embedded sensors. By
extracting more meaningful characteristics of users and sur-
roundings in real time, applications can be more adaptive
to the changing environment and user preferences. For in-
stance, it would be much more convenient if our phones can
automatically adjust the ring tone profile to appropriate vol-
ume and mode according to the surroundings and the events
in which the users are participating. Thus we believe user’s
contextual information brings application personalization to
new levels of sophistication. While user’s context informa-
tion can be represented in multiple ways, in this paper we
focus on using user state as an important way to represent
the context. User state may contain a combination of fea-
tures such as motion, location and background condition
that together describe user’s current context.

A big hurdle for context detection, however, is the limited
battery capacity of mobile devices. The embedded sensors in
the mobile devices are major sources of power consumption.



For instance, a fully charged battery on Nokia N95 mobile
phone can support telephone conversation for longer than
ten hours, but our empirical results show that the battery
would be completely drained within six hours if the GPS
receiver is turned on, whether it can obtain GPS readings
or not. Hence, excessive energy consumption may become a
major obstacle to broader acceptance of context-aware mo-
bile applications or services, no matter how useful the service
may be. In mobile sensing applications, energy savings can
be achieved by shutting down unnecessary sensors as well
as carefully selecting sensor duty cycles (i.e., sensors will
adopt periodic sensing and sleeping instead of being sam-
pled continuously). In this paper, we define sensor sampling
duration as the length of the time a sensor is turned ON for
active data collection. We define sensor sleeping duration
as the time a sensor stays idle. The sensing and sleeping
durations, or sensor duty cycles, are generally referred to as
sensor parameters.

To address the problem of energy efficiency in mobile sens-
ing, we present the design, implementation, and evaluation
of EEMSS, an energy efficient mobile sensing system that
incorporates a hierarchical sensor management scheme for
power management. EEMSS uses a combination of sensor
readings to automatically recognize user state as described
by three real-time conditions; namely motion (such as run-
ning and walking), location (such as staying at home or on
a freeway) and background environment (such as loud or
quiet). The core component of EEMSS is a sensor manage-
ment scheme which defines user states and state transition
rules by an XML styled state descriptor. This state descrip-
tor is taken as an input and is used by our sensor assignment
functional block to turn sensors on and off based on a user’s
current condition.

The benefits of our sensor management scheme are three-
fold. First, the state description mechanism proposed in
this paper is a flexible way to add/update user states and
their relationship to the sensors. For instance, to account
for emerging application needs new states and sensors may
be incrementally added to the state description. Second,
to achieve energy efficiency, the sensor management scheme
assigns the minimum set of sensors and heuristically deter-
mines sampling lengths and intervals for these set of sensors
to detect user’s state as well as transitions to new states.
Lastly, our sensor management scheme can be easily ex-
tended as a middleware that manages sensor operations and
provides contextual information to higher layer applications
with multiple types of devices and sensors involved.

EEMSS is currently implemented and evaluated on Nokia
N95 devices. In our EEMSS implementation, the state de-
scription subsystem currently defines the following states:
“Walking”, “Vehicle”, “Resting”, “Home talking”, “Home ent
ertaining”, “Working”,“Meeting”, “Office loud”,“Place quiet”,
“Place speech” and “Place loud”. All these states are speci-
fied as a combination of built-in Nokia N95 sensor readings.
The sensors used to recognize these states are accelerometer,
WiFi detector, GPS, and microphone. EEMSS incorporates
novel and efficient classification algorithms for real-time user
motion and background sound recognition, which form the
foundation of detecting user states. We have also conducted
a field study with 10 users at two different university cam-
puses to evaluate the performance of EEMSS. Our results
show that EEMSS is able to detect states with 92.56% ac-
curacy and improves the battery lifetime by over 75%, com-

pared to existing results. Note that although in this paper
we focus only on states that can be detected by integrated
sensors on mobile devices, our sensor management scheme
is general enough that one can apply our infrastructure to
mobile sensing systems that involves more sensors and de-
vices.

The remainder of this paper is organized as follows. In
Section 2, we present relevant prior works and their relations
to our study. In Section 3, we describe the sensor manage-
ment scheme which is the core component of EEMSS. In
Section 4, we introduce a case study of EEMSS on Nokia
N95 devices and present the system architecture and imple-
mentation. In Section 5, we list the empirical results of dif-
ferent sensor power consumptions as one of the motivations
of our system design and discuss the sensor duty cycling
impact on system performance. In Section 6, we propose
novel real-time activity and background sound classification
mechanisms that result in good classification performance.
The user study is presented in Section 7, where we evalu-
ate our system in terms of state recognition accuracy, state
transition discovery latency and device lifetime. Finally, we
present the conclusion and our future work direction in Sec-
tion 8.

2. RELATED WORK
There has been a fair amount of work investigating multi-

sensor mobile applications and services in recent years. The
concept of sensor fusion is well-known in pervasive comput-
ing. For example, Gellersen et al. [5] pointed out the idea
that combining a diverse set of sensors that individually cap-
tures just a small aspect of an environment may result in a
total picture that better characterizes a situation than loca-
tion or vision based context.

Motion sensors have been widely used in monitoring and
recognizing human activities to provide guidance to specific
tasks [6, 7, 8]. For example, in car manufacturing, a context-
aware wearable computing system designed by Stiefmeier et
al. [6] could support a production or maintenance worker by
recognizing the worker’s actions and delivering just-in-time
information about activities to be performed. A common
low cost sensor used for detecting motion is the accelerome-
ter. With accelerometer as the main sensing source, activity
recognition is usually formulated as a classification problem
where the training data is collected with experimenters wear-
ing one or more accelerometer sensors in a certain period.
Different kinds of classifiers can be trained and compared in
terms of the accuracy of classification [9, 10, 11, 12]. For
example, more than 20 human activities including walking,
watching TV, running, stretching, etc. can be recognized
with fairly high accuracy [12].

Most existing works to accurately detect user state require
accelerometer sensor(s) to be installed on pre-identified po-
sition(s) near human body. Our aim is to avoid the use
of obtrusive and cumbersome external sensors in detecting
user state. As such, we remove the need to strap sensors
to human body. EEMSS is able to accurately detect human
states, such as walking, running and riding a vehicle by just
placing the mobile phone anywhere on the user’s body with-
out any placement restrictions. In this context it is worth
noting that Schmidt et al. [13] first proposed incorporating
low level sensors to mobile PDAs/phones to demonstrate
situational awareness. Several works have been conducted
thereafter by using the commodity cell phones as sensing.



computing or application platforms [14, 15, 16, 17, 18, 19].
For example, “CenceMe” [16] enables members of social net-
works to share their sensing presence with their “buddies”
in a secure manner. The system uses the integrated as well
as external sensors to capture the users’ status in terms of
activity, disposition, habits and surroundings. A CenceMe
prototype has been made available on Facebook, and the
implementation and evaluation of the CenceMe application
has also been discussed [17]. Similarly, “Sensay” [15] is a
context-aware mobile phone and uses data from a number
of sources to dynamically change cell phone ring tone, alert
type, as well as determine users’ “un-interruptible” states.
“Sensay” requires input from an external sensor box which
is mounted on the user’s hip area and the system design does
not have energy efficiency concern. Moreover, the decision
module of “Sensay” is implemented on a computer instead
of mobile device. In comparison, our approach in EEMSS
design uses the off-the-shelf mobile device and manage sen-
sors in a way such that sensing is conducted in an energy
efficient manner.

Researchers from different fields have studied and used a
large number of sensors including GPS, Bluetooth, WiFi de-
tector, blood oxygen saturation sensor, accelerometer, elec-
trocardiograph sensor, temperature sensor, light sensor, mi-
crophone, camera, etc. in projects such as urban/paticipatory
sensing [14, 20, 21], activity recognition[22, 23, 24], and
health monitoring [25, 26, 27]. For example, Whitesell et
al. [21] have designed and implemented a system that ana-
lyzes images from air sensors captured from mobile phones
and indoor air pollution information has been extracted by
comparing the data to a calibrated chart. Targeting obesity
problem in health monitoring domain, Annavaram et al. [24]
showed that by using data from multiple sensors and apply-
ing multi-modal signal processing, seemingly similar states
such as sitting and lying down can be accurately discrimi-
nated, while using only a single accelerometer sensor these
states can not be easily detected. Wu et al. [27] have de-
signed “SmartCane” system which provides remote monitor-
ing, local processing, and real-time feedback to elder patients
in order to assist proper usage of canes to reduce injury and
death risks. While these works only focused on how to more
accurately detect human context using one or more sensors,
in this paper we emphasize both energy efficiency and state
detection accuracy. In fact, in [17], the authors were well
aware of the battery life constraint of mobile devices and
different duty cycling mechanisms have been considered and
tested for different physical sensors. However the lack of
intelligent sensor management method still withholds the
device lifetime by a significant amount.

The problem of energy management on mobile devices has
been well-explored in the literature such as [28, 29, 30, 31,
32]. For example, Viredaz et al. [28] surveyed many fun-
damental but effective methods for saving energy on hand-
held devices in terms of improving the design and coop-
eration of system hardware, software as well as multiple
sensing sources. Event driven power-saving method is in-
vestigated by Shih et. al. to reduce system energy con-
sumptions [31]. In their work, the authors focused on re-
ducing the idle power, the power a device consumes in a
“standby” mode, such that a device turns off the wireless
network adaptor to avoid energy waste while not actively
used. The device will be powered on only when there is an
incoming or outgoing call or when the user needs to use the

PDA for other purposes. To further explore the concept of
event-driven energy management, a hierarchical power man-
agement method was used in [32]. In their demo system
“Turdecken”, a mote is used to wake up the PDA, which in
turn wakes up the computer by sending a request message.
Since the power required by the mote is enough for holding
the whole system standby, the power consumption can be
saved during system idle time.

In our system design, we build on many of these past ideas
and integrate them in the context of effective power man-
agement for sensors on mobile devices. In order to achieve
human state recognition in an energy efficient manner, we
have proposed a hierarchical approach for managing sensors,
and do so in such a way that still maintains accuracy in sens-
ing the user’s state. Specifically, power hungry sensors are
only activated whenever triggered by power efficient ones.
By only duty cycling the minimum set of sensors to detect
state transition and activating more expensive ones on de-
mand to recognize new state, the device energy consumption
can be significantly reduced. A similar idea was explored by
the “SeeMon” system [33], which achieves energy efficiency
by only performing context recognition when changes occur
during the context monitoring. However, “SeeMon” focuses
on managing different sensing sources and identifying con-
dition changes rather than conducting people-centric user
state recognition.

3. SENSOR MANAGEMENT
METHODOLOGY

In this section we will describe our design methodology
for EEMSS framework. The core component of EEMSS is
a sensor management scheme which uniquely describes the
features of each user state by a particular sensing criteria
and state transition will only take place once the criteria
is satisfied. An example would be that “meeting in office”
requires the sensors to detect both the existence of speech
and the fact that the user is currently located in office area.
EEMSS also associates the set of sensors that are needed to
detect state transitions from any given state. For example,
if the user is “sitting still” and in order to detect“movement”
mode accelerometer must be sampled periodically.

3.1 State and Sensor Relationship
Sensor assignment is achieved by specifying an XML-format

state descriptor as system input that contains all the states
to be automatically classified as well as sensor management
rules for each state. The system will parse the XML file
as input and automatically generate a sensor management
module that serves as the core component of EEMSS and
controls sensors based on real-time system feedback. In
essence, the state descriptor consists of a set of state names,
sensors to be monitored, and conditions for state transitions.
It is important to note the system designer must be well fa-
miliar with the operation of each sensor and how a user
state can be detected by a set of sensors. State description
must therefore be done with care so as to not include all
the available sensors to detect each state since such a gross
simplification in state description will essentially nullify any
energy savings potential of EEMSS.

Figure 1 illustrates the general format of a state descrip-
tor and the corresponding state transition process. It can
be seen that a user state is defined between the “<State>”



Figure 1: The format of XML based state descriptor
and its implication of state transition.

and “</State>” tags. For each state, the sensor(s) to be
monitored are specified by “<Sensor>” tags. The hierarchi-
cal sensor management is achieved by assigning new sensors
based on previous sensor readings in order to detect state
transition. If the state transition criteria has been satisfied,
the user will be considered as entering a new state (denoted
by“<NextState>”in the descriptor) and the sensor manage-
ment algorithm will restart from the new state. For example,
based on the sample description in Figure 1, if the user is
at “State2” and “Sensor2” returns “Sensor reading 2” which
is not yet sufficient for detecting state transition, “Sensor3”
will be turned on immediately to further detect the user’s
status in order to identify state transition.

There are three major advantages of using XML as the
format of state descriptor. First, XML is a natural lan-
guage to represent states in a hierarchical fashion. Second,
new state descriptors can be added and existing states can
be modified with relative ease even by someone with lim-
ited programming experience. Finally, XML files are easily
parsed by modern programming languages such as Java and
Python thereby making the process portable and easy to
implement.

3.2 Setting Sensor Duty Cycles
Recall that in the first phase of state description the sys-

tem designer will specify the list of states and the sensors

that are required to detect that state and all the possible
state transitions. In the second phase, the system designer
must carefully set the sampling period and duty cycles to
balance the state detection accuracy with energy efficiency.
In our current implementation these values are set manu-
ally based on experimentation. In this phase of system con-
figuration we also design and test classification algorithms
that recognize user status based on different sensor read-
ings. These classification algorithms are pre-trained based
on extensive experiments conducted by researchers. We will
present the specific sensor parameters used in EEMSS in
Section 5 and the classification algorithms in Section 6.

3.3 Generalization of the Framework
We would like to emphasize that the system parameters

need only to be set once after the training phase and can
be used repeatedly during the operation of the sensing sys-
tem. However, we do recognize that the process of man-
ually setting sensor duty cycles for all sensors and states
may be cumbersome even if it is rare. We believe there
are ways to semi-automate sensor assignment mechanism.
In order to provide an automated sensor assignment mech-
anism rather than manually specifying sensor parameters,
a sensor information database could be built a priori on
each mobile device that stores the sensor power consump-
tion statistics and also how the data provided by one sensor
can be approximated with the data from a different sen-
sor. For instance, position data from GPS can be approxi-
mated using cell tower triangulations. We envision that in
future the sensor management effort will be pushed from the
developer-end to the device-end where the sensor informa-
tion database serves as a stand-alone sensor management
knowledge center. In this scenario the sensor management
scheme as well as the sensor sampling parameters could be
generated or computed based on knowledge database with
limited human input.

As noted earlier our XML based state description mech-
anism is highly scalable as new states can be added or up-
dated easily. With each new state addition in our current
implementation we need to define a classification algorithm
that recognizes the new state. Once the classification algo-
rithm is defined we can generate the sensor parameters after
a brief training period.

Various sensors makes the user’s contextual information
available in multiple dimensions, from which a rich set of
user states can be inferred. However, in most cases different
users or higher layer applications may only be interested
in identifying a small subset of states and exploit the state
information for application customization. For example, a
ring tone adjustment application, which can automatically
adjust the cell phone alarm type, may only need to know the
property of background sound in order to infer the current
situation. A medical application may require the system
to monitor one’s surrounding temperature, oxygen level and
the user’s motion such as running and walking to give advise
to patient or doctors. In a personal safety application, one
factor that one may care is whether the user is riding a
vehicle or walking alone such that the mobile client is able
to send warning messages to the user when he or she is
detected walking in an unsafe area at late night. These are
all examples of mobile sensing systems with particular needs,
by which our framework design can be potentially adopted.



4. EEMSS IMPLEMENTATION – A CASE
STUDY

4.1 Description
In this section we will describe a practical implementation

of a state detection system using EEMSS framework. For
this case study we focus on using only built-in sensors on
Nokia N95 device to detect states. N95 has several built-in
sensors, including GPS, WiFi detector, accelerometer, and
embedded microphone. The goal of the case study is to con-
duct a prototype implementation using EEMSS framework
and to quantify the performance in terms of state recogni-
tion accuracy, detection latency, as well as energy efficiency.
As such we select a set of states that describe the user’s
daily activities and have defined the state and sensor rela-
tionships in XML using the format introduced in Section 3.
Table 1 illustrates the set of user states to be recognized by
EEMSS and three characteristic features that define each of
these states. The three features are the location, motion and
background sound information. The list of sensors necessary
to detect these three features are also shown in Table 1. We
selected a sample set of user states that can all be detected
solely using the in-built sensors on N95 in this case study.

For each user state, our EEMSS implementation moni-
tors the characteristic features defining that state by reading
a corresponding sensor value. For instance, various back-
ground sounds can be detected and discriminated by sam-
pling the microphone sensor. In addition to monitoring the
current state, EEMSS also monitors a set of sensors that
define a state transition. Recall that state description using
hierarchical sensor management not only defines the set of
sensors to be sampled, but also specifies possible state tran-
sitions and the sensor readings that trigger the transition.
If a state transition happens, a new set of sensors will be
turned on to recognize one’s new activity. Here we select
one of the user states (Walking) and illustrate how the state
transition is detected when the user is walking outdoor. Fig-
ure 2 shows the hierarchical decision rules. It can be seen
that the only sensor that is being periodically sampled is
GPS when the user is walking, which returns both the Geo-
coordinates and the user’s speed information that can be
used to infer user’s mode of travel. If a significant amount
of increase is found on both user speed and recent distance
of travel, a state transition will happen and the user will be
considered riding a vehicle. Once GPS times out due to lost
of satellite signal or because the user has stopped moving for
a certain amount of time, a WiFi scan will be performed to
identify the current place by checking the surrounding wire-
less access points. Note that the wireless access point sets
for one’s frequently visited places such as home, cafeteria,
office, gym, etc. can be pre-stored on the device. Finally,
the background sound can be further sensed based on the
audio signal processing. We will quantify the accuracy and
device energy efficiency in Section 7.

It is important to note that the Nokia N95 device con-
tains more sensors such as Bluetooth, light sensor, and cam-
era. However, we chose not to use these sensors in current
EEMSS case study implementation due to either low tech-
nology penetration rate or sensitivity to the phone’s physical
placement. For instance, experiments have been conducted
where a mobile device will probe and count the neighboring
Bluetooth devices, and the results show that the number
of such devices discovered is very low (usually less than 5),

Figure 2: The sequential sensor management rules
used to detect state transitions when the user is
walking outdoors.

even though a big crowd of people is nearby. Light sen-
sor is also not used in our study because the result of light
sensing depends highly on whether the sensor can clearly
see the ambient light or its view is obstructed due to phone
placement in a pocket or handbag. Therefore it could po-
tentially provide high percentage of false results. Moreover,
since we focus on an automated real-time state recognition
system design, the camera is also not considered as part of
our study since N95 camera shutter requires manual inter-
vention to turn on and off the camera. Even though these
sensors have not been used in our case study, they still re-
main as important sensing sources for our future study.

4.2 Architecture and Implementation
The main components of EEMSS, including sensor man-

agement and activity classification, have been implemented
on J2ME on Nokia N95 devices. The popularity of Java
programming and the wide support of J2ME by most of the
programmable smart phone devices ensure that our system
design achieves both portability and scalability. However,
the current version of J2ME does not provide APIs that al-
low direct access to some of the sensors such as WiFi and
accelerometer. To overcome this, we created a Python pro-
gram to gather and then share this sensor data over a local
socket connection.

The system can be viewed as a layered architecture that
consists of a sensor management module, a classification
module, and a sensor control interface which is responsi-
ble of turning sensors on and off, and obtaining sensed data.
We also implemented other components to facilitate debug-
ging and evaluation, including real-time user state updates,
logging, and user interfaces. Figure 3 illustrates the design
of the system architecture and the interactions among the
components.

As mentioned in the previous subsection, the sensor man-
agement module is the major control unit of the system. It
first parses a state description file that describes the sensor
management scheme, and then controls the sensors based
on the sensing criteria of each user state and state transi-
tion conditions by specifying the minimum set of sensors to



State Name State Features Sensors Monitored
Location Motion Background Sound

Working Office Still Quiet Accelerometer, Microphone
Meeting Office Still Speech Accelerometer, Microphone

Office loud Office Still Loud Accelerometer, Microphone
Resting Home Still Quiet Accelerometer, Microphone

Home talking Home Still Speech Accelerometer, Microphone
Home entertaining Home Still Loud Accelerometer, Microphone

Place quiet Some Place Still Quiet Accelerometer, Microphone
Place speech Some Place Still Speech Accelerometer, Microphone
Place loud Some Place Still Loud Accelerometer, Microphone
Walking Keep on changing Moving Slowly N/A GPS
Vehicle Keep on changing Moving Fast N/A GPS

Table 1: The states and their features captured by our system (EEMSS).

be monitored under different scenarios (states). The sen-
sor management module configures the sensors in real-time
according to the intermediate classification result acquired
from the classification module and informs the sensor con-
trol interface what sensors to be turned on and off in the
following step.

In our case study, the classification module is the con-
sumer of the sensor raw data. The classification module first
processes the raw sensing data into desired format. For ex-
ample, the magnitude of 3-axis accelerometer sensing data is
computed, and FFT is performed on sound clips to conduct
frequency domain signal analysis. The classification module
returns user activity and position feature such as “moving
fast”, “walking”, “home wireless access point detected” and
“loud environment” by running classification algorithms on
processed sensing data. The resulting user activity and po-
sition information are both considered as intermediate state
which will be forwarded to the sensor management module.
The sensor management module then determines whether
the sensing results satisfy the sensing criteria and decides
sensor assignments according to the sensor management al-
gorithm.

The sensor interface contains APIs that provide direct ac-
cess to the sensors. Through these APIs, application can
obtain the sensor readings and instruct sensors to switch
on/off for a given duty cycle, as well as change the sample
rate. As mentioned previously, due to J2ME limitations,
GPS and embedded microphone are operated through J2ME
APIs while accelerometer and WiFi detector are operated
through Python APIs.

5. ENERGY CONSUMPTION MEASURE-
MENT AND SENSOR DUTY CYCLES

In this section, we present our methodology to deter-
mine the energy consumption of sensors used in the current
EEMSS case study, in order to understand how to best co-
ordinate them in an effective way. We conducted a series of
power consumption measurements on different built-in sen-
sors that are used in this case study, including GPS, WiFi
detector, microphone and accelerometer. We discuss the im-
plementation of duty cycling mechanisms on the sensors and
the corresponding energy cost for each sensor sampling.

The sensors on a mobile phone can be categorized into
two classes. The first class includes the accelerometer and
microphone. These sensors once turned on operate continu-
ously and require an explicit signal to be turned off. More-

Figure 3: System architecture of EEMSS implemen-
tation on Nokia N95. (1)System reads in the XML
state descriptor which contains the sensor manage-
ment scheme. (2)Management module determines
the sensors to be monitored based on current user
state which is specified by the sensor management
scheme. (3)Management module instructs the sen-
sor control interface to turn on/off sensors. (4)
Sensor control interface operates individual sensors.
(5) Sensor interface reports readings to classification
module. (6)Classification module determines the
user state. (7)Classification module forwards the in-
termediate classification result to management mod-
ule. (8) The user’s state is updated and recorded in
real-time. (9) The relevant information is also dis-
played on the smart phone screen.

Sensor Power(W) Current(A)
First Class
Accelerometer 0.0599 0.0150
Microphone 0.2786 0.0707

Second Class
GPS 0.3308 0.0862

WiFi Scan 1.4260 0.3497
Bluetooth Scan 0.1954 0.0486

Table 2: Power and current consumption summary
for different sensors on Nokia N95.



Sensor Duty Cycles Computation Time/Sample Energy(J)/Sample
Accelerometer 6s sensing + 10s sleeping < 0.1s 0.359
Microphone 4s sensing + 180s sleeping Quiet: < 0.5s. Loud/Speech: ∼ 10s. 1.114

GPS Queries every 20s, timeout in 5 minutes < 0.1s 6.616
WiFi scan Event triggered (< 2s to finish) < 0.1s 2.852

Table 3: Sensor duty cycles, device computation time and sensor energy cost per sample.

over, both the accelerometer and the microphone need to be
activated for a minimum period of time to obtain meaning-
ful sensing data. For instance, collecting an instant audio
sample does not provide any meaningful data to represent
the background sound type. The second class of sensors in-
cludes GPS, WiFi detector, and Bluetooth scanner. These
sensors when turned on gather instantaneous samples, and
are automatically turned off when the sampling interval is
over.

For both classes, the energy cost of sensing depends not
only on the instant power drain, but also on the operating
duration of the sensors. For example, due to API and hard-
ware limitations, the GPS on Nokia N95, even when using
assisted-GPS functionality, requires at least 10 seconds to
successfully synchronize with satellites and will remain ac-
tive for about 30 seconds after a location query. As such,
the overall energy consumption even to collect a single GPS
sample is quite significant. A WiFi scan takes less than 2
seconds to finish, and a Bluetooth scan takes around 10 sec-
onds to complete, with the duration increasing linearly with
the number of Bluetooth devices in the neighborhood.

5.1 Power Consumption Measurement
We first measure sensor power consumptions through Nokia

Energy Profiler [34], a stand-alone application that allows
developers to test and monitor application energy usage in
real time. Measurement results are summarized in Table 2.
From these results, it can be seen that power consumed
by different sensors vary greatly. Among these sensors, ac-
celerometer consumes the least amount of power compared
to other sensors, and fortunately accelerometer is also capa-
ble of detecting any body movements with a high precision.
Hence accelerometer could be first indicator of state transi-
tion with high probability if it involves user body motion. In
such a case, accelerometer could be sampled periodically as
triggers to invoke other sensors if necessary. On the other
hand, due to the large power drain and long initialization
time, GPS is used only when it is necessary to measure
the speed of user’s movement so as to discriminate between
modes of travel such as riding in vehicle versus walking.

5.2 Sensor Duty Cycles, Computation Time
and Energy Cost

EEMSS achieves its energy efficiency goals using a two
pronged approach. First, the state descriptors guarantee
that only a minimum set of sensors are monitored in any
given state. Second, energy consumption is reduced by care-
fully assigning duty cycle to each sensor. Note that duty
cycling a sensor is going to tradeoff reduced energy con-
sumption with potentially reduced accuracy/speed of state
detection. In our current implementation we manually set
these duty cycles by running extensive trials in our training
phase.

Table 3 summarizes the duty cycles for each of the four

sensors implemented in EEMSS. It can be seen that ac-
celerometer and microphone sensing both perform duty cy-
cling where the sensor will be turned on and off repeatedly
based on the parameters shown in Table 3. Note that even
though the energy cost can be saved by reducing sensing in-
tervals, if the sampling period is too short the sensor read-
ings will not be sufficient to represent the real condition. On
the other hand, while a longer sensing period could increase
the robustness of state recognition, it would also consume
more energy. The same tradeoff applies for sleep interval as
well. A longer sleep interval may reduce energy consump-
tion, but the detection latency will be increased. There are
two reasons for assigning longer duty cycles to the micro-
phone versus the accelerometer, as indicated by the param-
eters in Table 3. First, the accelerometer draws significantly
less power, and hence it can be sampled more frequently with
small impact on battery lifetime. Second, the accelerometer
captures user motion change, which tolerates less detection
delay compared to identifying background sound type.

GPS is queried periodically when the user is moving out-
doors, to provide location and speed information. We allow
5 minutes time out interval for GPS, a relatively long du-
ration for the GPS to lock satellite signal. We found in
our experiments that under some circumstances (e.g.: when
the user is walking between two tall buildings or taking a
bus), the N95 GPS may be either temporarily unavailable
or needs a much longer time than usual to acquire the sig-
nal. Therefore, a longer timeout duration is required for the
GPS to successfully get readings. WiFi scanning is event-
based rather than being performed periodically. In EEMSS,
a WiFi scan is performed under two scenarios: (1) when
the user is detected as moving, a WiFi scan is conducted
to check if the user has left his or her recent range, and (2)
when the user has arrived at a new place, we compare the
nearby wireless access points set with known ones in order
to identify the user’s current location.

Even though the duty cycle parameters have been refined
through extensive empirical tests, the sensing parameters fi-
nally adopted by EEMSS (as shown in Table 3) may not
achieve the optimal tradeoff between energy consumption
and state detection accuracy. In our current implementa-
tion, the parameters are manually tuned and each sensor
follows a fixed sampling rate when activated. No optimiza-
tion or dynamic adjustment has been implemented. In fu-
ture we plan to construct models that capture the tradeoff
between energy and state detection accuracy, and find auto-
matic ways to set the sensing parameters to achieve better
tradeoff. It is also likely that the sensing parameters may
be need be readjusted dynamically based on the real time
results.

The computation time (including the time for data pro-
cessing and classification) and sensor energy consumed per
sample based on sensor duty cycle parameters, are summa-
rized in Table 3. It can be seen that except for loud au-



dio signal processing and classification, which takes approx-
imately 10 seconds to complete (mainly consumed at the
FFT stage), all other computations finish almost instanta-
neously, which enables our system to conduct real-time state
recognition. The energy consumption results not only prove
the fact that shutting down unnecessary sensing is impor-
tant, but also provide us useful insights on designing optimal
duty cycles in future work.

6. SENSOR INFERENCE AND
CLASSIFICATION

In this section, we discuss the sensing capabilities and po-
tential human activities that could be inferred from sensors
used in our case study. We also discuss our proposed classi-
fication algorithms to detect user states of interest.

6.1 GPS Sensing and Mode of Travel
Classification

In our case study the primary purpose of using GPS is
to detect user’s mode of travel. Besides providing real-time
location tracking, GPS can also provide user’s velocity at a
given instance. By combining the instantaneously velocity
information and the recent distance of travel measured by
comparing current position with previous ones it is possible
to robustly distinguishing one’s basic mode of travel such
as walking or riding a vehicle. For example, if the velocity
is greater than 10 mph we consider that the user is using
an automotive transport. The classifier is trained by sev-
eral location tracking records of user and certain threshold
values are identified and implemented into the classification
algorithm.

GPS can also be used to identify when a user has entered
a building or other indoor environment since a location re-
quest timeout will occur since the satellite signals are are
likely to be blocked in the indoor environment. It is worth
mentioning that from the system implementation point of
view, obtaining instant speed as well as the location request
timeout functionality are both supported by J2ME API.

6.2 WiFi Scanning and Usage
The MAC address of visible wireless access points around

the user can be inferred by performing a WiFi scan. Since
MAC address of each wireless access point is unique, it is
possible to tag a particular location by the set of access
points in that location. Therefore the mobile device is able
to automatically identify its current location by simply de-
tecting nearby wireless access points. For example, it is
easy to tell that the user is at home if the WiFi scan re-
sult matches his or her home access point set that is pre-
memorized by the device. In our current EEMSS implemen-
tation, the wireless access points feature of the user’s home
and office (if applicable) will be pre-recorded for recognition
purpose. While in our current implementation we pre-record
the set of access points for each of user’s well defined loca-
tions, such as home and office, there are several alternative
implementations such as SkyHook [35] that provide the lo-
cation information by a database table lookup of a set of
access points.

WiFi scan can also be used to monitor a user’s movement
range since a wireless access point normally covers an area
of radius 20-30m. Hence if the user moves out of his/her
recent range a WiFi scan will detect that the current set of

Mode STDV Range of Magnitude
Still 0 - 1.0334
Walk 9.2616 - 21.3776
Run 35.3768 - 52.3076

Vehicle 4.0204 - 12.6627

Table 4: Standard deviation range of accelerometer
magnitude readings for different user activities

Still Vehicle Walking Running
Still 99.44% 0.56% 0 0

Vehicle 8.81% 73.86% 16.29% 1.04%
Walking 1.18% 10.62% 88.20% 0
Running 0 0 0 100%

Table 5: Classification results based on standard de-
viation of accelerometer magnitude values. The first
column represents the ground truth while the first
row represents the classification results based on ac-
celerometer readings.

WiFi access points are replaced by a new one. In our system
implementation, if the user is detected moving continuously
by accelerometer, a WiFi scan will be performed to check
whether the user has left his or her recent location and if
so, GPS will be turned on immediately to start sampling
location information and classify the user’s mode of travel.

6.3 Real-time Motion Classification Based on
Accelerometer Sensing

Activity classification based on accelerometer readings has
been widely studied using various machine learning tools [9,
10, 11, 12]. However, in most of the previous works one or
more accelerometer sensors have to be attached to specific
body joints such as knees and elbows. Several data features
are then extracted from readings of multiple accelerometers
in order to design sophisticated classifiers to recognize user
activities. Most of these classification algorithms are both
data and compute intensive and hence are unsuitable for
real-time classification using current mobile phone comput-
ing capabilities.

In our system design, mobile phone is the only source of
accelerometer readings. We only make the assumption that
the mobile phone is carried by the user at all times without
any placement restrictions. Hence, it becomes extremely
difficult to perform motion classification using accelerome-
ters alone as is done in previous study [12]. We use only the
standard deviation of accelerometer magnitude as one of the
defining features independent of phone placement in order
to conduct real-time motion classification.

We have collected accelerometer data in 53 different ex-
periments distributed in two weeks in order to train the clas-
sifier. The lengths of experiment vary from several minutes
to hours. Within each empirical interval, the person tags the
ground truth of his/her activity information for analysis and
comparison purposes. The standard deviation for different
activities within each empirical interval is computed off-line.
Table 4 shows the range of standard deviation distribution
based on different data sets collected.

It can be found out that there exist certain standard devi-
ation threshold values that could well separate stable, walk-



ing, running, and vehicle mode with high accuracy. In order
to verify this observation, we have implemented a real-time
motion classification algorithm on N95 mobile phone that
compares the standard deviation of accelerometer magni-
tude values with the thresholds in order to distinguish the
user’s motion. The device is carried by the user without ex-
plicit requirement of where the phone should be placed. 26
experiments have been conducted each containing a combi-
nation of different user motions. The standard deviation of
accelerometer magnitude is computed every 6 seconds, and
right after which the user’s motion is being classified. Ta-
ble 5 shows the classification results in percentage of recog-
nition accuracy. It can be seen that the algorithm works
very well for extreme conditions such as stable and running.
Furthermore, even though the classifier tends to be confused
with walking and vehicle mode due to feature overlap, the
accuracy is still well maintained above 70%.

In our case study of EEMSS, since we do not explicitly
require the system to identify states such as “Running” and
that GPS is already sufficient to distinguish the mode of
travel states including “Walking” and “Vehicle” as described
in Section 6.1, the accelerometer is simply used to trigger
other sensors such as WiFi detector whenever user motion
is detected. The accelerometer will only be turned on as
classification tool of user motion when the GPS becomes
unavailable. However, note that the framework design of
EEMSS is general enough that allows one to specify new
states such as “Running” in the XML state descriptor as
well as the corresponding sensor management rule (e.g.: ac-
celerometer classification is required). The state descriptor
will be parsed and understood by the system which in turn
makes sensor control decisions accordingly.

6.4 Real-time Background Sound Recognition
This subsection describes the algorithm used for back-

ground sound classification. These algorithms were coded
in Java and run on N95 to classify sound clips recorded
using N95. The device records a real time audio clip us-
ing microphone sensor and the recorded sound clip will go
through two classification steps (Figure 4). First, by mea-
suring the energy level of the audio signal, the mobile client
is able to identify if the environment is silent or loud. Note
that the energy E of a time domain signal x(n) is defined
by E =

∑
n |x(n)2|. Next, if the environment is considered

loud, both time and frequency domains of the audio signal
are further examined in order to recognize the existence of
speech. Specifically, speech signals usually have higher si-
lence ratio (SR) [36] (SR is the ratio between the amount
of silent time and the total amount of the audio data) and
significant amount of low frequency components. If speech
is not detected, the background environment will simply be
considered as “loud” or “noisy”, and no further classification
algorithm will be conducted to distinguish music, noise and
other types of sound due to their vast variety of the signal
features compared to speech.

SR is computed by picking a suitable threshold and then
measuring the total amount of time domain signal whose
amplitude is below the threshold value. The Fast Fourier
Transform has been implemented such that the mobile de-
vice is also able to conduct frequency domain analysis to the
sound signal in real time. Figure 5 shows the frequency do-
main features of four types of audio clips, including a male’s
speech, a female’s speech, a noise clip and a music clip. It

Figure 4: Decision tree based background sound
classification algorithm.
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Figure 5: Comparison of frequency domain features
of different audio signals.
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Figure 6: Frequency histogram plots after applying
SSCH to sound clips described in Figure 5.



Speech Music Noise
SRthres = 0.6 95.31% 18.00% 26.07%
SRthres = 0.7 91.14% 16.00% 18.17%
SRthres = 0.8 70.91% 10.00% 11.66%
SRthres = 0.9 32.64% 8.00% 8.59%

Table 6: Percentage of sound clips classified as
“speech” for different SRthres values.

can be seen clearly that as compared to others, speech sig-
nals have significantly more weight on low frequency spec-
trum from 300Hz to 600Hz. In order to accomplish speech
detection in real time, we have implemented the SSCH (Sub-
band Spectral Centroid Histogram) algorithm [37] on mobile
devices. Specifically, SSCH passes the power spectrum of
the recorded sound clip to a set of highly overlapping band-
pass filters and then computes the spectral centroid 1 on
each subband and finally constructs a histogram of the sub-
band spectral centroid values. The peak of SSCH is then
compared with speech peak frequency thresholds (300Hz -
600Hz) for speech detection purpose. Figure 6 illustrates
the outputs of applying SSCH algorithm to the sound clips
shown in Figure 5. It can be found out clearly that the
histogram peaks closely follow the frequency peaks in the
original power spectrum.

The classification algorithm is trained and examined on
the same data set including 1085 speech clips, 86 music
clips and 336 noise clips, all with 4 seconds length which are
recorded by Nokia N95 devices. We investigate the effect
of different SR thresholds (denoted by SRthres) on classifi-
cation accuracy. The results of speech detection percentage
are shown in Table 6. It can be seen that as SR thresh-
old increases, the number of false positive results are re-
duced with sacrifice of speech detection accuracy. We choose
SRthres = 0.7 throughout our study which provides more
than 90% of detection accuracy and less than 20% false pos-
itive results. The above classification results show that a
4-second sample of audio clip is long enough for the classi-
fier to identify the background sound type. It is also impor-
tant to note that the complexity of the SSCH algorithm is
O(N2) and as the filter overlaps are small, the running time
is empirically observed to be close to linear. Empirical re-
sults show that on average the overall processing time of a 4
seconds sound clip is lower than 10 seconds on N95 devices.
In future as compute capabilities of mobile phones increase
we expect the latency of such complex audio processing will
be reduced significantly.

7. PERFORMANCE EVALUATION

7.1 Method
In this section, we present an evaluation of EEMSS, as-

sessing its effectiveness in terms of state recognition accu-
racy, state transition detection latency, as well as energy
efficiency.

We have conducted a user trial in November 2008 at Uni-
versity of Southern California and Carnegie Mellon Univer-

1The spectral centroid C of a signal is defined as the
weighted average of the frequency components with mag-

nitudes as the weights: C =
∑

f f ·X(f)
∑

f X(f)

sity. The main purpose of the user trial was to test the
performance of EEMSS system in a free living setting. We
recruited 10 users from both universities including under-
graduate and graduate students, faculties and their family.
The recruitment drive was conducted through online mailing
lists and flyers. Each participant was provided with a Nokia
N95 device with the EEMSS framework pre-installed. Ba-
sic operating instructions were provided to the users at the
start of the experimental trials. Each user carried the de-
vice with EEMSS running for no less than two days. Each
participants was requested to fully charge the mobile bat-
tery before starting the EEMSS application. EEMSS will
continue to run in the background till the battery is com-
pletely drained. Participants then fully charge the phone
once again before starting the EEMSS application. The cy-
cle of fully charging and discharging continued till the expi-
ration of user’s participation time in the experiments.

EEMSS automatically records the predicted user state
using the three discriminating features: motion, location
and background sound. For each state transition EEMSS
recorded the new user state and the time stamp of when
the user entered that state. The predicted user state data is
stored locally on the mobile phone. In addition to carrying
the mobile phone each user was also given a diary in order to
manually record ground truth for evaluation purpose. The
diary was made of a standardized booklet containing a table
with fine-grained time line entries. Each entry of the book-
let contains three simple questions. In particular, we asked
participants to record their motion (e.g.: walking, in vehicle,
etc), location, and background sound condition (e.g.: quiet,
loud, speech, etc). We then compared diary entries with
the EEMSS recognition results. There are two reasons mo-
bile devices were not used to collect ground truth. First, in
order to guarantee instantaneous state transition detection
sensors need to be monitored continuously which leads to a
significant reduction on device lifetime. Second, the device
doesn’t necessarily provide 100% state recognition accuracy
due to classification algorithm constraints. Hence, we de-
cided to use the simplest way where users wrote down their
activities in the given booklet. At the end of the EEMSS
evaluation period, we collected more than 260 running hours
of data with more than 300 user state transitions detected.

7.2 Results

7.2.1 EEMSS Capabilities
EEMSS is able to characterize a user’s state by time, lo-

cation and activities. Besides providing real-time user state
update, EEMSS keeps tracking the user’s location by record-
ing the Geo-coordinates of the user when he or she is moving
outdoor (recall that GPS is turned on continuously and the
location information is retrieved every 20 seconds in this
scenario). Figure 7 and 8 visualize the data collected by
EEMSS on 2-D maps. They show the daily traces captured
by EEMSS of two different participants from CMU and USC
on two campus maps respectively. Within the time frame of
these two traces, the EEMSS application keeps running and
the phone has not been recharged. Both users have reported
that they took buses to school, and the dashed curves which
indicate “Vehicle” mode are found to match the bus routes
perfectly. The solid curves indicating “Walking” state match
the traces that the user is walking between home and bus
station, and within university campus.



Figure 7: Recognized daily activities of a sample
CMU user. The figure shows the time, user location
as well as background sound condition detected by
EEMSS.

Figure 8: Recognized daily activities of a sample
USC user. The figure shows the time, user location
as well as background sound condition detected by
EEMSS.

Besides monitoring location change and mode of travel of
the user in real-time, EEMSS also automatically detects the
surrounding condition when the user is identified to be still
at some places in order to infer the user’s activities. In Fig-
ure 7 and 8, by probing background sound, the surrounding
conditions of the user can be classified as quiet, loud and
containing speech. Consequently, the system is able to infer
that the user is working, meeting, resting, etc. by combin-
ing the detected background condition with location infor-
mation obtained by WiFi scan. Hence, we conclude that
the user state information recognized by EEMSS accurately
matched the ground truth as recorded by the users.

7.2.2 State Recognition Accuracy
We first present the state recognition accuracy of EEMSS

for each user. We compared the state predicted by EEMSS
with the ground truth state recorded in the user’s diary for
every time step. Accuracy is defined as the number of correct
predictions over the total number of predictions. Figure 9
shows the state recognition accuracy for the ten participants
in this study. The recognition accuracy varies slightly from
one user to another simply due to different user behaviors
during the experiment. The average recognition accuracy
over all users is found to be 92.56% with a standard deviation
of 2.53%.
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Figure 9: The state recognition accuracy for all 10
participants.

At some place Walking Vehicle
At some place 99.17% 0.78% 0.05%

Walking 12.64% 84.29% 3.07%
Vehicle 10.59% 15.29% 74.12%

Table 7: EEMSS confusion matrix of recognizing
“Walking”, “Vehicle” and “At some place”. The first
column represents the ground truth while the first
row represents the recognition results. For example,
“At some place” is recognized as “Walking” in 0.78%
of the time.

We also examine the overall state recognition accuracy in
terms of the confusion matrix of identifying “Walking”, “Ve-
hicle” and “At some place”. We do not present the confusion
matrix for all 11 states introduced in Section 4 due to the
fact that “Working”, “Meeting”, and “Office loud” states can
be discriminated based only on audio sensing, whereas in
Section 6.4 we already showed that our background sound
classification can provide more than 90% accuracy, hence
we are able to aggregate them together as “At office”. Sim-
ilarly, “Home speech”, “Home loud” and “Resting” can be
summarized as “At home”. Meanwhile, the sets of states de-
scribed above can be discriminated using only location in-
formation. For instance, “Working” and “Meeting” and “Of-
fice loud” are all characterized by their office location while
“Resting”, “Home loud”and “Home speech” all take place at
home. In Section 6.2 we already explained that performing
WiFi scan can detect location with certainty, hence we are
able to treat 9 states including ‘Resting”, “Home talking”,
“Home entertaining”, “Working”, “Meeting”, “Office loud”,
“Place quiet”, “Place speech” and “Place loud” as a super
state: “At some place” to verify state recognition accuracy.
Table 7 shows the corresponding confusion matrix. The first
column represents the ground truth while the first row rep-
resents the returned states by EEMSS. It can be seen that
the accuracy is very high when the user is staying at some
place such as home, office, etc. compared to traveling out-
doors. From this table, 12.64% of walking time and 10.59%
of vehicle time is categorized as “At some place”. This is
because that GPS readings are unavailable due to the de-
vice limitations which causes the location timeout and hence
the system considers that the user has entered some place.
However, this false conclusion can be self-corrected since the
accelerometer is able to monitor the motion of the user when
he or she is considered still and hence GPS will be turned
back on immediately as the user keeps moving. The rea-
son that riding a vehicle is recognized as walking is due to
the fact that although we have implemented algorithms that



Walking Vehicle At some place
Walking N/A < 40 sec < 5 min
Vehicle < 1.5 min N/A N/A

At some place < 1 min N/A N/A

Table 8: Average state transition detection latency.

prevent the system to consider regular slow motions of ve-
hicles as walking, there exists extreme conditions where the
vehicle is moving very slowly and thus being recognized as
the wrong state. We plan to incorporate other mechanism
in EEMSS such as combining more than one sensor readings
such as accelerometer and GPS to differentiate one’s mode
of travel.

Note that the difference between Table 7 and Table 5 is
that in Table 5 the motion classification is performed based
on accelerometer readings whereas in Table 7 we show the
recognition accuracy results of EEMSS system. Specifically,
in our current EEMSS system implementation, once the user
is moving outdoors, GPS will be continuously sampled which
not only provides location update but acts as a single source
of mode of travel classification such as walking and riding a
vehicle. Accelerometer is not turned on during this period
to reduce energy cost. However, when GPS becomes un-
available accelerometer could be activated to monitor and
detect one’s motion as well as mode of travel.

7.2.3 State Transition Detection Latency
Necessary sensors have been assigned for each user state

by the sensor management scheme to monitor state transi-
tion, and reading changes of specific sensors indicate that
the user status has been updated. Thus, state transition
detection latency is mainly bounded by the duty cycles of
the monitoring sensors as well as relevant parameters such
as GPS location request timeout value and the ones used
in classification module for increasing recognition accuracy.
The entries in Table 8 illustrate the state transition detection
latencies among “Walking”, “Vehicle” and “At some place”
by the EEMSS. It can be seen that Vehicle mode could be
quickly detected since only one or two GPS queries are re-
quired to identify the sudden change on user location. The
time required to recognize that the user has arrived at some
place is less than 5 minutes which is the period allowed for
GPS location request timeout, and after which a WiFi scan
will be performed immediately to recognize one’s current
location. Note that it takes longer time to detect the transi-
tion from riding a vehicle to walking because such a period
is required to distinguish the slow motion of vehicle and
walking. Since the accelerometer is sampled every 6 seconds
when the user is still, user motion can be detected in less
than 6 seconds and the user will be considered walking as
soon as WiFi scan is triggered by accelerometer and indi-
cates that the user has moved out of his recent position.
Such a process normally takes less than 1 minute, as shown
in Table 8. Similarly, the background sound change will be
detected in less than 3 minutes which is the duty cycle for
microphone (this is not shown in the table).

7.2.4 Device Lifetime Test
The benefit of low energy consumption of EEMSS has

been verified by researchers through lab studies lasting for
12 days. During each day of the study period two researchers
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Figure 10: Average N95 lifetime comparison of run-
ning EEMSS, CenceMe and the case where all sen-
sors are powered.

have each carried a fully charged N95 smart phone with
EEMSS application running on the background and the de-
vice lifetime has been examined. The average device lifetime
result with EEMSS application running on a fully charged
Nokia N95 device is 11.33 hours with regular cell phone func-
tionalities. Note that the device lifetime may vary due to
different user behaviors. For example, if the user stays at
home most of the time with little activities, the device may
stay active for much longer time since only accelerometer
and microphone will be periodically monitored as compared
to the case where one spends most of the time traveling out-
door and the device lifetime will significantly decrease due
to extensive GPS usage.

We have also examined the device lifetime by turning on
GPS, accelerometer and microphone on N95 device with the
same sampling frequencies as used in EEMSS, and WiFi
scanning is performed every 5 minutes (Note that in EEMSS
the WiFi scan is only conducted when the user is leaving
or arriving at some places). The device lifetime is found
to be less than 5 hours regardless of user activity since no
sensor management mechanism is implemented and all the
sensors will be periodically sampled until running out of bat-
tery, shown as “Without Sensor Management” in Figure 10.
In [17] it has been shown that the CenceMe application can
last for around 6.22 hours with no other applications run-
ning on the phone. Although the comparison may not be
comprehensive it is the only known result so far that de-
scribes the device lifetime with an mobile urban sensing ap-
plication running. Note that there exist some differences be-
tween CenceMe and EEMSS implementations. For example,
CenceMe adopts an audio sampling duration of 30 seconds
and the implements a 60 seconds duty cycle for the micro-
phone, whereas in EEMSS the audio sampling duration is
only 4 seconds and the microphone duty cycle is 180 seconds.
On the other hand, CenceMe implements an approximately
10 minutes duty cycle for GPS whereas in EEMSS GPS will
be turned on continuously when the user is moving outdoors
to provide location tracking. Moreover, CenceMe contains
data upload cycles and Bluetooth probing that require extra
power usage which are not implemented in our system. The
results of battery life durations are summarized in Figure 10,
and it can be seen that EEMSS gains more than 75% run-
ning hours compared to CenceMe and even larger amount
compared to the case where a urban sensing is conducted
without sensor management.

To visualize the effect of sensor management, Figure 11
illustrates the energy consumption model of our system at a
glance in a 20 minutes interval when the user walks from his
office to a library. It can be seen that at the beginning of the



Figure 11: Power usage at a glance.

test when the user is sitting in the office, only accelerome-
ter and microphone is being sampled to detect user move-
ment and identify background sound type. When movement
is detected, WiFi scanning will be performed to determine
whether the user has left the recent location. Note that
multiple WiFi scans may be required until the user leaves
his previous position. As the user walks towards the library,
GPS is turned on in order to provide positioning information
and we allow 5 minutes for GPS timeout as the user enters
the library where no GPS signal can be received. Finally,
a WiFi scan is performed to recognize the current location
and accelerometer will be turned back on for user motion
detection.

8. CONCLUSIONS AND FUTURE WORK
DIRECTIONS

Mobile device based sensing is able to provide rich con-
textual information about users and their environment for
higher layer applications and services. However, the energy
consumption by these sensors, coupled with limited battery
capacities, makes it infeasible to be continuously running
such sensors.

In this paper, we presented the design, implementation,
and evaluation of an Energy Efficient Mobile Sensing Sys-
tem (EEMSS). The core component of EEMSS is a sensor
management scheme for mobile devices that operates sen-
sors hierarchically, by selectively turning on the minimum
set of sensors to monitor user state and triggers new set
of sensors if necessary to achieve state transition detection.
Energy consumption can be reduced by shutting down un-
necessary sensors at any particular time. Our implemen-
tation of EEMSS was on Nokia N95 devices that uses our
sensor management scheme to manage built-in sensors on
the N95, including GPS, WiFi detector, accelerometer and
microphone in order to achieve human daily activity recogni-
tion. We also proposed and implemented novel classification
algorithms for accelerometer and microphone readings that
work in real-time and lead to good performance. Finally,
we evaluated EEMSS with 10 users from two universities
and were able to provide a high level of accuracy for state
recognition, acceptable state transition detection latency, as
well as more than 75% gain on device lifetime compared to
existing systems.

For future work, we decide to apply machine learning tech-

niques to our system design such that user’s specific behavior
could be learned to improve the recognition accuracy. How
to optimally assign sampling rates to sensors based on dif-
ferent user states will be extensively investigated, and we
plan on designing more sophisticated algorithms that dy-
namically assign sensor duty cycles to further reduce the
energy consumption while maintaining low latency for state
transition detection as well as high recognition accuracy. We
also plan on implementing our sensor management scheme
on more complex sensing applications which contain many
more types of sensors. Lastly, monitoring user context with
privacy concern gives us another promising research direc-
tion.
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