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ABSTRACT

We study the process of the spread of an infection among
mobile nodes moving on a finite, grid based map. A random
walk and a novel adversarial model are considered as two
extreme cases of node mobility. With N nodes, we present
analytical and simulation results for both mobility models
for a square grid map with size VG x V/G. A key finding is
that with random mobility the total time to infect all nodes
decreases with N while with an adversarial model we ob-
serve a reverse trend. Specifically, the random case results
in a total infection time of ©(£12&leN) a5 opposed to the
adversarial case where the total infection time is found to
be ©(v/Glog N). We also explore the possibility of emulat-
ing such an infection process as a mobile interaction game
with wireless sensor motes, and the above results are com-
plimented by traces obtained from an empirical study with
humans as players in an outdoor field.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless communication

General Terms

Performance

Keywords

infection spread, wireless network, node mobility, random,
adversarial

1. INTRODUCTION

Data dissemination in mobile wireless ad hoc networks
with a sparse density of nodes poses a variety of challenges.
A popular and sometimes the only viable option for dis-
seminating and gathering useful information in these kind
of networks is epidemic routing [21, 5, 12]. As the name
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implies, epidemic routing operates much like the spread of
an epidemic or an infection. In the absence of any central
entities, it represents the fastest way in which information
can be spread throughout a network. This mechanism is
widely employed in the design of protocols for wireless net-
works especially delay tolerant networks [10] also sometimes
known as intermittently connected networks. Some contexts
in which epidemic routing like mechanisms have been effec-
tively employed include node/neighbor discovery, data dis-
semination, routing, data gathering etc.

Traditionally, in social and environmental sciences, vari-
ous studies have explored the spread of epidemics to gain in-
sights into ways in which diseases spread. A rational school
of thought suggests that if some information could be learnt
about the way an infection spreads, it might make it pos-
sible to either halt or reduce the speed at which the in-
fection proceeds. It is ironic that a process mimicking the
spread of an infection is in fact an extremely useful way of
exchanging information in sparse intermittently connected
mobile networks (ICMNs). However, the information be-
ing disseminated among the nodes in ICMNs may contain
malicious information. Consequently, this information can
rapidly spread to all the nodes causing critical damage to
the functioning of the network.

Some examples in which such networks may be deployed
include (a) a conference setting for exchanging information
between participants, (b) a network set up on-the-go for
a disaster relief operation, (c) various wireless sensor net-
work related applications (example environment monitor-
ing, habitat monitoring etc.) where some/all nodes may be
mobile (d) sophisticated artificial intelligence and robotics
applications where teams of robots are deployed for explo-
ration. In all these settings, even the presence of a single
rogue participant node that may release a ‘virus’ into the
setting can quickly spread across to all other nodes leading
to a system malfunction. In this study, we formulate our
problem based on this simple model: initially one node is in-
fected and the infection is spread to another node via packet
transmissions if both are in radio range of each other. Once
a non-infected node is infected, it has the ability to infect
other innocent nodes. Interesting metrics of interest include
total time to infect a certain percentage of the nodes in the
network. The mean total infection time refers to the time
required to infect the entire network.

In general, in mobile wireless network studies, mobility
patterns of nodes have been found to have a significant im-
pact on the observed performance metrics [4, 6, 7]. A widely



employed mobility model of interest is a random mobility
model where node movements are ‘blind’ and memoryless.
In other words, a node moves independently of others and is
unaware of the environment. This represents one extreme in
the mobility space that we explore where the spread of an in-
fection is studied. At the other extreme, we study a context-
aware mobility model for the nodes. In this case, infector
nodes move toward non-infected nodes who in turn try to
evade them for as long as possible. We refer to this model as
an adversarial mobility model. As the name implies, nodes
view each other as adversaries or friends depending on their
state and their behavior changes accordingly. While the ad-
versarial mobility model may not be widely applicable under
all scenarios with ICMNSs, it presents a reasonable choice for
a context-aware mobility model.

Our primary contributions are as follows. We investigate
the spread of an infection in ICMNs with two extreme node
mobility behaviors, namely, a random and an adversarial
model. For nodes moving in a grid-based map, we quantify
the mean total infection time as a function of key param-
eters such as number of nodes and the size of the field via
mathematical analysis for both mobility models. Extensive
simulations are conducted to validate our analysis. A key
finding is that the total infection time with random node
mobility decreases with the total number of nodes, while
with adversarial node mobility this metric increases with the
number of nodes. To gain further insights into the infection
process, we encode this infection process into a game played
by humans with the aid of wireless sensor motes. The re-
sults obtained from real game play show a closer match with
the trends seen with the adversarial model as compared to
the random model. However, the results do not strictly fol-
low the simulation results. We analyze the collected trace
data and identify reasons that explain this deviation. These
empirical results serve in closing the loop of our study by
complimenting our earlier findings with the adversarial mo-
bility model.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide an overview of some related studies that
have appeared in the literature. We provide mathematical
analysis of the infection process using both the random and
adversarial mobility models in Section 3. Section 4 presents
simulation results that validate our analysis. In Section 5,
we present empirical results of the infection based flooding
game obtained from real play using mobility traces gath-
ered from human movements. Finally, Section 6 provides
brief conclusions and future research directions.

2. RELATED WORK

Several variants of epidemic routing have appeared in re-
cent literature [5, 12] for the purpose of data delivery in wire-
less mobile ad-hoc networks with sparse density. Common
metrics of interest in these studies include message delivery
latency, throughput, message delivery overhead, and buffer
usage. A closely related study to ours is the one conducted
by Dimitriou et al. [9] who model the infection spread pro-
cess by k concurrent random walks, each corresponding to a
node that may either be infected or non-infected. However,
the main focus of this study is comparison of worst case up-
per bounds for total infection time over different underlying
graphs such as lollipop graph, clique, and expander graphs.

Our proposal is certainly complementary to these works
but has some key differences. We investigate the infection
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process for a random and an adversarial mobility model on
a grid-based topology. The random walk based model em-
ployed in our study is well known and has been widely em-
ployed by researchers [2, 3, 11, 13] chiefly because it provides
a baseline against which performance of other mobility mod-
els can be compared. Our adversarial mobility model comes
from the idea of pursuer-evader games [14, 8, 18]. This kind
of mobility pattern is not only ubiquitous in nature, but can
also provide a powerful framework of investigation.

The empirical part of our study implements the infection
process as a mobile interaction game [22] with wireless sen-
sor motes. Packet transmissions among motes emulates the
infection spreading process and game ends when all the par-
ticipants have been infected. Although our idea of using
wireless sensor motes for such a game is novel, some other
studies have deployed motes for games in more static con-
texts. One example is a game called Trove [17], where the
participants negotiate with each other in a closed environ-
ment such as a room to reach a hidden treasure. Another
example is the use of static sensor motes as resources such
as virtual objects or characters in a physical environment in
a game called ‘Save the Princess’ [16].

3. ANALYSIS OF THE INFECTION
PROCESS

We provide a discrete space-time analytical model that
captures the performance of the infection process for the two
different node mobility behaviors: (a) random walk mobility
model (b) adversarial mobility model. Let N be the num-
ber of nodes involved in the infection process, including the
initial infector. For the ease of analysis, the field in which
the nodes are moving with random walk mobility model is
assumed to be a 2D torus with size v/G x v/G (similar set-
tings have been employed in other studies [19, 20]).> In the
adversarial mobility model, the field is assumed to be a grid
with boundaries rather than a torus. This is because with
an open field such as a torus, if nodes have similar skills, an
infected node may never be able to infect any non-infected
ones. The size of the grid is also VG x VG, hence, there are
a total of G grid cells in both cases. Two nodes are assumed
to be in communication range as long as they are co-located
in the same grid cell at the same time.

3.1 Random walk mobility model

This mobility model is ‘blind’ in that, at each step, each
node moves from a cell to a neighboring cell oblivious to the
positions and roles of the other nodes. As a precursor to
developing an expression for the total infection time, next,
we present some preliminary assumptions for this mobility
model.

e At time ¢t = 0 all nodes are placed in the torus uni-
formly at random. At any given time slot, a node in
a cell (z,7) selects one of the four adjacent cells, i.e.,
cells (i +1,5), (i — 1,5), (3,7 + 1), and (i,j — 1) with
equal probability, and moves to the selected cell. For
a torus all the operations should be modulo VG.

e Initially only one node is infected. All nodes perform
independent random walks, and a node is infected if it

Yin Section 4.1, we verify this assumption by simulations,
showing that the results for random walks on torus and grid
with boundaries have similar trend.



meets an infected one in the same cell. Note that the
independence assumption is valid when G >> N which
is frequently the case where nodes are moving around
in a large field. The infection process is complete when
all nodes are infected.

Aldous et al. [1] show that the the meeting time of two
random walks in such a setting can be modeled as an ex-
ponential distribution with mean C = O(GlogG). Note
that initially only one node carrying the infection will leave
N —1 non-infected nodes. A transition occurs in the infection
process when the infected node meets the first non-infected
node. The node movements can be modeled as independent
exponentials and since initially there are N — 1 non-infected
and one infected node such pairs, the average time taken to
infect the first non-infected node is given by,

5=

N1 1
Equation 1 shows that the average time to infect the first
node reduces as the total number of nodes increases. The re-
sult is intuitive because for the same field size, as the number
of nodes goes up, the probability of meeting the first non-
infected node increases thereby reducing the time to first
infection.

We generalize the above result as follows. At any given
time, there are ¢ nodes that are infected, consequently, (N —
1) nodes remain non-infected. Using the same idea as above,
the average time until any of the ¢ infected nodes meet any
of the (N — i) non-infected nodes is % Hence, the
expected time until all the nodes have been infected, i.e.
the expected total infection time, is given by:

O N-1 c
oN = 1:21 m (2)

The above equation can also be written as:
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Where Hxy_1 is the (N — 1)** Harmonic Number.
When N is large, Hy—1 = In(N — 1) + v in which ~ is
the Euler-Mascheroni constant 0.5772. Hence equation 3

becomes:
— C
N = 2-N -(0.5772 + log (N — 1))
GlogGlog N
- @(%) (4)

Equation 4 gives a tight bound for the average time to infect
all N nodes on a 2D torus with size \/@ X \/5 It also indi-
cates that the average total infection time reduces with N.
The result is somewhat counter-intuitive: it suggests that as
more and more nodes are injected, the total time to infect
all of them goes down. This is because the node movements
are random and as N increases, the time to infect the next
non-infected node progressively decreases. The above result
is verified by simulations in Section 4.1.
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3.2 Adversarial mobility model

In some cases, the infected nodes may be more pro-active
in spreading the infection by following and trapping non-
infected ones. An example scenario is a team of self reliant
robots being infected by some rogue robot(s). In this case,
the infected and non-infected nodes view each other as ‘en-
emies’. Before the analysis of such an infection process, we
first list the assumptions for the adversarial mobility model.

e Each node has location information of all the other
nodes. This can be done via a GPS device or employ-
ing other location based services.

e At each time step, assume that the uninfected nodes
move first, followed by the infected ones. A node can
move to any one of its eight (five if in an edge cell,
three if in a corner cell) neighboring cells. It may also
decide to stay put in its current cell.

e We assume that initially there’s only one infected node.
Without loss of generality, let the starting position of
this initial infector be the bottom-left corner of the
grid. The initial positions of the remaining N —1 nodes
may be anywhere except the bottom-left corner, cho-
sen uniformly at random.

e At any given time, a node will adopt one of the fol-
lowing three roles: pursuer (nodes who are infected),
evader (non-infected nodes being chased by pursuers)
and rest-node (non-infected nodes not being chased by
pursuers). We assume that a node is able to identify
the active roles of the other nodes.

e An evader e becomes infected if a pursuer p man-
ages to move into the current cell of e at any time
step. Once infected, a node cannot be disinfected. Let
(Zp,Yp), (Te,ye) denote the position of pursuer p and
‘chosen’ evader e, respectively.

e We assume a homogeneous environment in which all
nodes are assumed to have the same skill set (for e.g.,
speed, infection range etc.).

Based on the above preliminaries, we provide efficient
strategies for pursuers, evaders, and rest-nodes.

Pursuer Strategy: A pursuer p identifies its nearest
non-infected node (which becomes the evader e) and moves
to a neighboring cell such that |z, — z.| and |yp — ye| are
reduced, if applicable. The pursuer does not chase another
node until it infects the current identified evader.?

LEMMA 1. Following the pursuer strategy, if p starts from
any boundary of the square grid, it will be able to catch
evader e in less than or equal to VG — 1 steps no matter
how e mowves.

PRrOOF. Without loss of generality, suppose p starts (at
t = 0) at any one of the left boundary cells (1, ¥inst) in which
1 < Yinit < \/@ Because of the grid boundary constraints,

2In real scenarios, switching to chasing another noninfected
node may be more beneficial. However, due to the fact
that noninfected nodes always move away from pursuers
(see evader and rest-node strategies) in our model, chasing
a particular node until caught is the most efficient strategy
for pursuers. We will leave the building of more realistic
models and sophisticated strategies as future works.



there exists a time step ¢ (where 1 <t < v/G — 1) at which
p and e have common values on their y coordinates for the
first time. In other words, the pursuer ‘catches’ the evader
in the y-dimension.

For each of the following time steps after ¢, no matter how
the evader moves, the pursuer is able to choose a neighboring
cell such that y, will still equal to y.. While on the x-
dimension, the remaining time for the ‘catch’ is at most
V/G — 1 —t steps. This is because after the first ¢ steps, if p
has not caught e, the x coordinate for p will be (1+t), hence,
the maximum distance between p and e can be VG — (1+t).

As a result, the total time for the pursuer p to catch the
evader e is less than or equal to \/@ —-1. O

Although each evader will be eventually infected by a pur-
suer in bounded time, we seek to find a strategy to let the
evader ‘survive’ for as long as possible. It turns out that
for general initial positions of p and e, if the evader simply
moves to the opposite direction from the pursuer to ‘enlarge’
its distance from p, the time that he can avoid being infected
is maximized and matches the upper bound in lemma 1. The
formal definition of evader strategy is:

Evader Strategy: The evader e moves to a neighboring
cell that increases |xp — x| and |yp — yel, if such a cell ex-
ists. In case multiple choices exist , the evader chooses one
arbitrarily.

LEMMA 2. Given that a pursuer p starts from any bound-
ary cell of the square grid, and an evader e starts from any
cell in the map other than the neighboring cell of p on the
same boundary, the evader will be able to survive in at least
VG — 1 steps, if it follows the above evader strategy.

PROOF. Suppose p starts at any cell of the left boundary
cells (1,yinit). By the above strategy the evader will keep
moving towards right in order to enlarge the value of |z, —
Ze|. Since p cannot catch e until e hits the right boundary,
it requires the pursuer p to move at least VG -1 steps to
reach the right boundary to catch the evader. [

The special case which lemma 2 excludes is when the
evader e starts from p’s neighboring cell on the same bound-
ary (i.e: p starts at (1, yinst) and e starts at either (1, Yinat +
1) or (1, Yinst —1)). In this case, the time for p to catch e will
depend on the value of y;nit and is at most \/5 — 1. Because
the probability for this special case to happen is very low,
and it only affects the first infection, we will not take it into
consideration when calculating the total infection time.

So far we have not considered nodes that are neither pur-
suers nor evaders, i.e: neither infected nor being chased by
infectors. We call these nodes: rest-nodes. A simple strategy
for them is simply moving to a position in order to avoid get-
ting in contact with both current pursuers as well as evaders
(‘potential pursuers’). Hence, the rest nodes should follow
the following strategy:

Rest-node Strategy: The rest-nodes calculate their cur-
rent distance to all the pursuers and evaders. They move
to a neighboring cell that maximizes the summation of all
these distances, if such a cell exists. When this strategy is
adopted, it may be the case that remaining stationary in
their current cell is the best strategy for the rest-nodes.

Observation: In any closed field like a square grid, the
‘catch’ always happens at the boundary cells. We provide an
intuitive argument for the same. If the evader is not yet at a
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boundary, it can always find a neighboring cell to move to in
order to increase its distance from the current pursuer. Since
the grid provides finite boundaries, eventually the evader in
its quest to escape reaches a field boundary, gets trapped
and hence, caught by the pursuer.

Once the initial infector infects the first non-infected node
the result is two infected nodes at a boundary cell. Conse-
quently, for optimal total infection time, they both can op-
erate in parallel and simultaneously infect others. In other
words, each of the infected nodes chooses a different non-
infected node if one exists and chases them down (1-to-1
match between pursuer and evader). Hence, at the end of
an additional v/G — 1 steps, there will be a total of 4 nodes
that will be infected. This process continues until all the
nodes are infected signaling the end of the game.

Hence, in the infection process with N nodes on a VG x
VG grid, the total infection time dx can be written as:

(VG 1) [logy N1
= (9(\/§log2 N) (5)

The total infection time is a non-decreasing function of the
number of nodes N. This result is in contrast to the random
walk mobility case presented earlier in Section 3.1, where
we observed that the total infection time is a decreasing
function of the number of nodes. In the next section, we
will present simulation results that validate our analysis for
both mobility models.

on =

4. SIMULATIONS RESULTS AND
DISCUSSION

4.1 Random walk mobility model

We performed simulations of the infection process using
a discrete time model. Two different maps and movement
patterns are considered: (a) The one used in Section 3.1,
where the map is assumed to be a 2D torus and a node can
only move to one of its four neighboring cells. (b) The map
is a 2D grid with boundaries and a node randomly moves to
one of its eight neighboring cells in each time step. Initially,
all the nodes are distributed uniformly at random in the field
and they perform independent random walks. One node is
randomly selected as the initial infector. When an infected
node meets a non-infected one, the latter gets infected and
thereafter, both nodes continue performing random walks,
i.e. the node movement patterns are unchanged. As before,
a simulation run ends when all nodes are infected. All pre-
sented results are averages over 500 runs. Each simulation
run employs a different seed that decides the initial place-
ment of the nodes. Also, all the time metrics are reported
in units of discrete time steps. We found that the 95% con-
fidence intervals for the result metrics are quite tight and
hence we do not present error bars in the figures.

Figure 1 captures the average total infection time for the
random mobility model as a function of two parameters: the
number of nodes (N) and the side length of the map (v/G).
As seen in Figure 1(a), for a given fixed size map, the average
total infection time decreases with N. In Figure 1(b), we
observe that for a fixed number of nodes, the total infection
time increases with G. These observations match Equation 4
if we fix G and N, respectively.

In Figure 1(a), it is also important to note that even if
nodes move in a 2D grid with boundaries and each node



1800

T T T
-8~ G = 400/Torus/4 neighbor cells
o G =400/Grid/8 neighbor cells

G = 625/Torus/4 neighbor cells

G = 625/Grid/8 neighbor cells
-A- G = 900/Torus/4 neighbor cells
A G =900/Grid/8 neighbor cells
== G = 1225/Torus/4 neighbor cells
G = 1225/Grid/8 neighbor cells
G = 1600/Torus/4 neighbor cells
G = 1600/Grid/8 neighbor cells

1600 -

1400

*
-
3

1200

1000

800 4

600

Number of Time Slots

400

200+

AT R bl
20 25 30 35 40 45 50
Number of Nodes

(a) Variation with Number of Mobile Nodes

L L L
0 5 10 15

1800 T

Number of Time Slots

20 2‘2 2‘4 2‘6 2‘8 3‘0 3‘2 3‘4 3‘6 3‘8 40
Torus Side Length
(b) Variation with Field Size

Figure 1: Shows the average total infection time for
the random mobility model as a function of the num-
ber of mobile nodes and field size in figures (a) and
(b) respectively.

can move into one of its eight neighboring cells in each time
step, the trend of total infection time is same as the case of
2D torus. This observation serves as a validation for the as-
sumptions made in Section 3.1 and the comparison between
two different mobility models.

In order to verify the tightness of the bound suggested by
Equation 4, we plot the value of average total infection time
obtained from simulations on torus and corresponding value
obtained from analysis for N = 2, ..., 50 and v/G = 10, ..., 50.
Figure 2 confirms that this ratio stabilizes around 0.35, as
the number of nodes and torus size are increased. Notice
that the peaks in Figure 2 are more pronounced for lower
values of N. For low N, there is relatively larger difference
between harmonic number Hy_1 = 1 and log N employed
in the approximation in the analysis.

4.2 Adversarial mobility model

A similar simulation study was performed for the adver-
sarial mobility case using a similar discrete time model as
was employed before. At the beginning of the simulation
run, an infector is placed at the left-bottom corner and
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Figure 2: The ratio of average total infection time
over W, which converges around 0.35.

all other nodes are distributed uniformly at random in the
square field.

Again, as before, we assume that the infection range of
the nodes is one cell so that an evader will be infected if
there is a pursuer in the same cell as itself. The size of the
square grid is varied as {4 x 4, 6 x 6, 8 x 8, 10 x 10 }. The
number of nodes is varied in the range [2, 32]. A single run of
the infection process ends when all the nodes are infected.
Again, all results are averages over 500 runs and for each
single run a randomly generated seed determined the initial
location of the non-infected nodes.

Figure 3 shows the average total infection time for the
adversarial mobility model as a function of G and N. In
contrast to the random mobility case, for a given map size,
we observe that the total infection time increases with N
(Figure 3(a)). The total infection time also increases as the
field size is increased (Figure 3(b)) which shows similar trend
as in random mobility model. However, here, the average
total infection time y varies linearly with the field length
v/G whereas in the random mobility case d increases super-
linearly with v/G.

As before, to validate the tightness of the proposed ana-
lytical bound, we plot the the ratio of total infection time
obtained with simulations with v/G - log, N for different N
and \/@ values in Figure 4. We find that this ratio stabi-
lizes around 1, which implies the estimation of total infection
time given by Equation 5 is quite accurate.

Comparing the values of total infection time for the two
mobility models for the same G and N, we find that it takes
longer to infect mobile nodes in the random mobility case.
This is not surprising. Intuitively, there is a greater prob-
ability of rendezvous between nodes when infected nodes
are actively (with ‘open eyes’) chasing non-infected ones as
opposed to the case when all nodes are ‘blind-folded’ and
the infectors rely on fortuitous encounters with non-infected
ones for spreading the infection. More formally, for the
adversarial mobility model the time for one infected node
to catch another node is deterministic, and is given by the
length of the map (v/G — 1). However, for random mobility
this time is random due to the randomness of node mobility
and is given by ©(Glog G).
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Figure 3: Shows the average total infection time for
the adversarial mobility model as a function of the
number of mobile nodes and field size in figures (a)
and (b) respectively.

Simulation results of the infection process in continuous
time and space offer similar observations and trends. For
brevity and to avoid redundancy we do not include those
results here.

5. EMPIRICAL RESULTS FROM THE
MOBILE INTERACTION GAME

We have implemented a gaming version of the infection
process on telosb motes [15] and conducted a few test runs
with students from our laboratory in an outdoor field. This
experiment of implementing a mobile interaction game be-
sides providing a source of leisure and entertainment, also
serves an additional purpose. The collected trace logs pro-
vide useful data for off-line analysis thereby allowing the pos-
sibility of using different types of mobile interaction games
as test beds for evaluating performance of different wire-
less protocols. Next, we briefly describe some details of our
implementation highlighting some differences in the set-up
compared to the simulations and analysis presented earlier.
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Figure 4: The ratio of average total infection time
over \/élog2 N, which converges around 1.

A group of players each carrying a wireless sensor de-
vice (mote) gather around in a field with size 30m x
35m, representing the nodes in our study. Players are
told to avoid being infected for as long as possible. No
particular strategies are assigned to players.

e At the beginning, the clocks of all the motes are syn-
chronized to keep track of the time when different
motes get infected.

e Initially one player is infected (called initiator), his
mote has its red LED switched ON. This reveals the
identity of the infected player to the other players.

e Each infected mote, initially only that of the initia-
tor, broadcasts an infection packet periodically, every
BROADCAST_INTERVAL seconds. To visually aid
the players, the blue and green LEDs are toggled to in-
dicate that packets are being transmitted and received
respectively.

e All other motes in the range of an infected mote may
receive the packet®. If total number of infected pack-
ets received by a non-infected mote exceeds a certain
threshold, that mote also gets infected. Let this thresh-
old be denoted by INFECTION_THRESHOLD. This
is to emulate the fact that an infection usually requires
two nodes to stay together for a certain amount of
time.

e The moment a mote gets infected its red LED is turned
ON. This is an indication to the player that its behav-
ior must change from that of an evader to a pursuer.

e When all the players have been infected indicated by
lit red LEDs on the motes, an individual run of the
game is complete.

Appropriate logs are created and stored on the flash mem-
ory of the motes during individual runs of the game to en-
able off-line processing of the logs to determine the exact

3Sometimes, we observed that players in radio range of other
infected players did not get infected, because they used to
shield the chip antenna of the telosb motes with their hands.



Number of Players | Total Infection Time
N =10 91.69
N=38 88.22
N=6 74.11
N=4 157.20

Table 1: Result for total infection time with respect
to different number of players

T
=~ 4 players
6 players
=+ 8 players
-©- 10 players

Time (seconds)

4 5 6 7 8
Number of infected players

Figure 5: Shows the time-line for the flooding game
indicating the individual times when the " player
got infected.

time when each mote was infected. A reset function en-
abled multiple runs of the game to be executed one after
another. We set the value of INFECTION_THRESHOLD
to 10 while the BROADCAST_INTERVAL value was set to
100 milliseconds.

Before presenting the empirical results we note a few caveats.

The presented results represent two game runs for each N
value, hence, they may be influenced by the behavior of the
players that participated in the run. Moreover, the same
subset of players were juggled across the different game runs:
players that were generally enthusiastic to play the game ini-
tially tended to get tired at the end. As a result when we
conducted our final set of experimental runs for N = 4 play-
ers, we found that the total infection time was extremely
high and the results were biased because the time taken by
the pursuer to infect the first evader was exorbitant.

Table 1 presents the total infection time when the number
of players is varied as {10, 8,6,4}. Here, except for the the
N = 4 case where the first two individual infections took an
extremely long time, the results are quite reasonable and we
can observe the increasing trend in total infection time as
number of players grows.

However, when we look into the details of the infection
process, see Figure 5, even if we ignore the N = 4 case,
we find that the time taken to infect the first non-infected
player is different for different number of players. Recall that
lemma 1 and 2 indicated that this value should be a constant
(v/G — 1) for a given grid side length v/G. In the following,
we provide a brief discussion explaining this observation.

As one might expect in practical scenarios, we found that
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the capabilities and physical skills of different players are
different whereas in the analysis and simulation studies we
assume homogeneous skills across all nodes. Specifically,
certain players are more athletic and nimble compared to
others. For example, if an extremely fast runner is the initial
infector for the case with N = 10, and the result of that run
is compared to the case where an extremely slow runner is
the initial infector with N = 6, it may turn out that the time
taken to infect the first non-infected player with N = 10
is much smaller than with N = 6. This example can be
extrapolated so that the total infection time with N = 10
may be lower than with N = 6 which is contradictory to our
earlier results.

One may also argue that it is easier for one to infect the
first non-infected player when the game has a larger N as
compared to a smaller one. This is because in practical set-
tings, it stands to reason that the players are more or less
aware of each other’s skills such as how fast a player moves,
how competitive a player is, etc. Now, say with N = 8
players, the initial infector has more choices in terms of this
selection as compared to the case with N = 4 players. Al-
though human beings do not always make the globally opti-
mal decision of minimizing the total infection time, selecting
and trapping a player given fewer choices generally turns out
to be more difficult.

Furthermore, we observed that human beings did not per-
form optimally in the mobile interaction game. For exam-
ple, players getting infected did not immediately start chas-
ing other players. In some cases, multiple players ended up
chasing the same non-infected player whereas operating in
parallel would have resulted in a lower total infection time.
In other cases, some infectors ‘goofed’ up and spent time
chasing players that were already infected. Recall that in
the simulations and analysis presented earlier, each player
always has global knowledge of the state of the game and
strictly obeys the outlined strategies depending on its cur-
rent state. Clearly, in real-play oriented practical settings
this cannot be enforced especially when human beings are
participants in the experiment. The empirical observations
might show a closer match with the earlier model results
when entities such as robots may play the game.

In general, a small number of gaming experimental runs
may not be good for performance testing purposes simply
because humans are not pre-programmed and do not per-
form optimally as can be controlled in simulated environ-
ments. However, as data is collected from a large number of
experimental runs and players become more strict in follow-
ing the strategies, it is safe to assume that the bias caused
by player heterogeneity and skill dynamics can be reduced
and more accurate and statistically significant observations
can be made.

6. CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

We have presented a systematic study of a spread of an in-
fection across an intermittently connected wireless network.
Two different node mobility models have been considered
namely random mobility where node movements are ‘blind’
and adversarial mobility where the nodes view each other as
‘enemies’ and make movement decisions depending on each
others’ states and locations. We have studied the infection
process as a function of two key parameters namely the size



of the field and the number of nodes. A key result, val-
idated by analysis and simulations, is that total infection
time for the random mobility case decreases with the num-
ber of nodes while with adversarial mobility this time in-
creases with the number of nodes. Real world experimental
runs by humans and off-line processing collected logs pro-
vide some insights into the infection process. The empirical
results show a closer match with the trends seen with the
adversarial model, however, a large collection of real traces
is necessary for making statistical observations on the de-
tails of our study. Otherwise, the results will be biased by
human heterogeneity in terms of diverse player skills.

As part of our future research, we would like to extend
our model to capture node heterogeneity in terms of dy-
namics such as different speeds and infection ranges. Also,
the analytical model can be extended to capture the empiri-
cal experiments more accurately where the infectors require
multiple encounters with non-infected players in order to in-
fect them. More sophisticated strategies such as switching
short term goal and cooperation among nodes that will have
a significant effect on the infection process present another
promising research direction.
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