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Abstract—An interaction based human contact study experi-
ment has been conducted on 25 undergraduate students at USC,
each carrying a wireless device (Tmote) for a week duration. Each
mote transmits contact packets every 0.1 second to advertise
its presence and a node receiving the packets will record the
contact information. Data is processed off-line and a contact
graph has been generated based on the strength of pairwise
contact in order to visualize the grouping effect. All groups
are identified and it has been found out that although most
groups have small sizes and infrequent meetings, there exist large
groups that have encountered several times in one week duration.
The inter-contact and contact time distributions are found to
be similar to findings from previous studies done in different
settings. The inter-group contact time and group contact time
distributions are also found to be power law and exponential
in different time scales. Moreover, the contact arrival process is
found to be self similar for data from both our experiment and
the Haggle project [4].

I. INTRODUCTION

With the fast technology development on mobile devices,
contact based Delay Tolerant Networking (DTN) applications
such as mobile peer to peer file sharing which require commu-
nication among hand-held devices are gaining more research
interests. For example, Nokia N95 smart phones contain an
application named Home Media where a user is able to share
his/her content to peer devices through IEEE 802.11 ad hoc
communications. Since one of the main features of DTN is
that the network is disconnected most of the time, information
is thus exchanged opportunistically among people such that a
node only transmits data when it encounters another active
device. As a result, understanding human mobility patterns
and identifying the social contact dynamics become extremely
important. !

We have conducted a social contact trace collection ex-
periment similar to [8], [17], [4], [15] 2 In the experiment,
25 Tmotes [14] with wireless communication capabilities are
handed out to an undergraduate class at USC for a week.
Each student carries the device during the whole experiment
and each mote automatically logs the information about other
devices within communication range. Specifically, the time,

!'Such studies of human contacts are also useful for building epidemiolog-
ical models.

>The data set from our experiment is available at the following website:
http://anrg.usc.edu/www/downloads.
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duration and node IDs of each contact are stored in the mem-
ory for off-line processing. In order to maintain high detection
probability and reduce the latency of neighbor detection, each
node transmits a contact packet every 0.1 second and the
nearby nodes receiving the contact packets will record the
contact information immediately.

While previous works such as [4], [15] emphasized pairwise
dynamics such as contact and inter-contact duration for indi-
vidual contact, we have not only verified previous observations
on our data set but also studied the dynamics of groups
where a group consists of all the nodes forming a connected
networking component at any given time. Intuitively, all the
nodes ever involved in a single meeting will be considered
as a group. With all the groups identified in the off-line data
processing we have investigated the contact and inter-contact
time distribution of groups as well as the group properties
such as group size and number of group meetings. It is also
worth to mention that even though our empirical settings are
different from previous ones, the results such as inter-contact
time and contact time distribution are quite similar as they fit
the same distribution with slightly different parameters.

Self similarity has been identified for ethernet traffic in
the 1990s [12], [7]. Recently, researchers have also found
out that the contact arrival process in encounter based social
networking exhibits self similar nature [5], [18]. In this paper
we have examined the data from our experiment as well as the
Haggle project and found out that the contact arrival processes
in both cases are self similar, with Hurst Parameter (H) equals
0.94 and 0.9 respectively. Self similarity implies the long
range dependence and the bursty nature in the contact arrivals,
which could potentially provide useful insights on networking
protocol designs.

The remainder of the paper is organized as follows. In Sec-
tion I we present previous relevant works and compare them
to our approach. Section III contains the design methodology
of the contact collecting experiment, including a sleep cycling
mechanism which significantly increases the device lifetime.
In Section IV, a figure showing the contact records is given
and we present the “contact graph” that illustrates the contact
frequency and the grouping effect of the network. The group
properties including group sizes, frequency of group meetings
are also studied in this section. Then, in Section V, we study



the inter-contact time and contact time distributions, as well as
inter-group contact time and group contact time distributions.
Section VI contains the study of the self similar nature of
contact arrival process for both our experiment and data from
Haggle project. Finally, we will give the conclusion and future
work directions in Section VII.

II. RELATED WORK

So far, two kinds of experiments have been carried out
by researchers in order to study human mobility and contact
behaviors. The first approach relies on stable infrastructure
access points (AP) such that mobile devices could log the
presentation of nearby APs. In the second approach, mobile
nodes are only aware of peer devices and encounter based
device discoveries are recorded. UCSD [13] and Dartmouth [1]
experiments are examples of the first method where partici-
pating devices record the visibility of WiFi access points as
users move around. The experiments conducted by groups
at MIT [8], University of Toronto [17], University of Cam-
bridge [4] and National University of Singapore [15] are good
examples of the second approach. In Table I, we summarize
all the related experiments mentioned in addition to our study.

As can be seen from Table I, our seven-day experiment
focusing on an undergraduate class becomes a complement
to the previous contact trace collection experiments. Overall,
more than 50000 logs have been recorded by the devices in
one week duration. Meanwhile, it is important to notice that
as Bluetooth devices cannot provide a sampling interval lower
than 10 seconds (since the device discovery phase of Bluetooth
communication usually takes more than 10 seconds, and grows
linearly as number of neighboring devices increases), we are
able to reduce the granularity to 0.1 seconds since Tmotes
implement IEEE 802.15.4 radio which could provide almost
instant communication. Low sampling rate could ensure a high
probability of short term contact detection and maintain low
latency on contact discovery, as short term contacts are equally
important to long term ones if applications which only require
a small amount of data transfer are considered.

Several works [11], [3], [16], [9] have studied the contact
and inter-contact time as important factors in mobile ad
hoc networks as they determine the delay/throughput of the
network, and are critical in designing opportunistic forwarding
algorithms. While traditional works modeled the inter-contact
time by exponential distribution [11], [16], [19], recent ex-
periments such as [4], [15] show that the distributions of
contact and inter-contact time are indeed close to a power
law distribution. For example, the authors of [4] examine the
data sets from [13], [1] and their own experiment (Haggle) at
Cambridge and Intel campus and show that the time between
two subsequent contacts follows a power law distribution in a
large time scale (about 27 hours). By analyzing the empirical
data collected at National University of Singapore, Natarajan
et al. [15] have looked at more properties including contact
time, inter-contact time and inter-pair contact time and all
these parameters are found to be power law distributed in
certain time scale. In our work, we have not only verified their
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Fig. 1. The mote is placed inside the plastic case which is sealed during the
experiment.
Packet Trasmissions
|% Radio Offélep\adio on *Radin off
Fig. 2. Figure shows the duty cycling. Note that radio will be explicitly

turned on whenever there is a packet transmission.

observations but also studied the grouping effect as well as
group dynamics and distributions of inter-group contact time
and group contact time.

The self similar nature of contact arrival process in our
empirical study as well as Haggle project is also examined by
conducting variance-time and R/S (Rescaled Adjusted Range
Plot) analysis. In previous works, Chen et al. [5] have shown
that the visible WiFi access points records in UCSD and
Dartmouth experiments [13], [1] are self similar, and Wang
et al. [18] have also shown that the human contact arrival
process is self similar by analyzing traces collected at National
University of Singapore.

III. EMPIRICAL METHODOLOGY

25 volunteers from an undergraduate engineering class have
participated in the experiment, each student carries a wireless
sensor device (Tmote) with CC2420 radio. To prevent damage,
the mote is mounted inside a plastic case, as shown in Figure 1.
Devices are handed out in a weekly scheduled class and are
collected at the same time in the following week.

Each device periodically broadcasts contact packets every
0.1 second, and every time a node receiving the contact packets
will record the time, contact duration and the source node ID.
Due to the memory constraint of the wireless device (the flash
storage size is about IMB for Tmote), the contact packet is
only going to be logged if two nodes have not seen each other



Device Number of devices | Duration | Granularity (seconds) | Number of logs

UCSD PDA 273 77 days 120 175105

Dartmouth WiFi Adaptor approx. 10000 5 years 300 4058284
MIT Phone 100 9 months 300 N/A
Toronto PDA 23 16 days 120 2802
Haggle/Intel iMote 8 3 days 120 3984
Haggle/Infocom iMote 41 3 days 120 28250
Haggle/Cambridge iMote 12 5 days 120 8856
Singapore Phone 12 4 months 30 362599
Our Study TMote 25 7 days 0.1 53693

TABLE I

SUMMARY AND COMPARISON OF CONTACT TRACE COLLECTING EXPERIMENTS

for more than 10 seconds. Furthermore, at the beginning of the

experiment when all the 25 students are sitting together during : :
the class, all devices are set to be inactive to avoid unnecessary | |
memory usage.

Power consumption tests for Tmotes show that the battery
can only last for about 4 days if the mote keeps transmitting
and receiving packets continuously with 0.1 second interval. In
order to enlarge the duration of the experiment to more than 7
days, we have implemented a simple but efficient mechanism
where the radio is turned on and off periodically in order to
reduce the energy cost, as Figure 2 shows. Specifically, each I m
device will transmit contact packet every 0.1 second with the |
radio being active for 1.2 second inactive for 1.8 second. Since
radio is the main source of energy draw, shutting down the
radio in about 60% of the time can significantly reduce the
power consumption and the duration of the experiment can be
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easily extended to more than 7 days. Fig. 3. Experimental data at a glance.
Among all the 25 devices, 2 of them have been sent back
immediately and have not enrolled in the experiment, and 3
motes have been damaged and no records are found in the
device memory. Finally, 4 devices contain incomplete logs
that have contact information recorded for less than 7 days. B
Throughout this paper we will focus on the set of nodes o ]
that are not damaged and contain contact logs. The recorded = @ ° o - ! 1
contact traces have been extracted and studied after the ex- oL e : T ]
periment. The entire contact process during the whole week 1 R ° FRSE il
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curve represents one node’s record with the amplitude of R
peaks indicating the number of neighboring devices discov-
ered during the experiment. The vertical lines are marks for
midnights. The correlated peaks among multiple nodes suggest
that event such as class, discussion, etc. are taking place with

multiple members involved. Note that Figure 3 only contains

Fig. 4. Strength of pairwise contact. A larger circle size means longer overall
contact duration.



Fig. 5. G = (V, E): A virtual view of the social network (generated using
spectral distance embedding).

the devices that have complete 7-day records, and the rest who
do not have a complete 7-day log are not presented.

We have studied the pairwise contact strength which mea-
sures the overall duration a pair of nodes meet each other
during the experiment (Figure 4). It can be seen clearly that
some of the pairs such as node 3 and 22 have much longer con-
tact duration compared with others. Some of the nodes have
a higher degree due to the fact that they meet more different
people during the experiment. These nodes could potentially
become good message forwarders due to the fact that they are
“connected” to more nodes. Figure 4 also indicates that there
exist different group containing different sets of people. For
example, node 3, 12 and 22 are strongly connected among
each other and thus form a group. Meanwhile, node 12 is
closely related to node 5 who is however not related to node
3 and 22, hence node 5 cannot be considered a group member
of node 3, 12 and 22. In this case, node 12 and node 5 should
be considered as a different group.

In order to better visualize the grouping effect, a graph G =
(V, E) is generated where V' denotes the set of all nodes that
have contact information recorded during the experiment (i,e.:
node 9, 11 and 13 with no available logs are ignored) , and F
denotes the set of edges connecting the vertices (as shown in
Figure 5). An edge e = (u,v) indicates that node u and v have
ever been in contact during the experiment, with the distance
of e indicating how ‘“close” two nodes are related, i.e.: the
closer the two vertices are, the longer they have stayed together
during the experiment. The graph is drawn with the Spectral
Distance Embedding (SDE) technique [6], which is essentially
a variation of Multidimensional Scaling mechanism [2]. By
comparing Figure 5 with Figure 4, it is clear that the nodes
close to the perimeter are the ones that appear less frequently
in communication, as compared to the central nodes who have
made extensive contact with others.

To be more precise, a group is defined by the set of nodes
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Fig. 6. Number of groups satisfying certain properties (group size and number
of meetings)

Group size 2-3 | 46 | 7-10 | > 10
Number of such groups | 137 | 28 9 9
TABLE II

DISTRIBUTION OF GROUP SIZE.

that form a connected network component at any given time
during the experiment. It has been observed that many different
groups may possibly exist during the experiment, and in the
next subsection we will study group properties including the
distributions of group size and number of group meetings.

B. Group Properties

Identifying the grouping effect as well as the group prop-
erties could provide useful insights for protocol design in
interaction based mobile networks. For example, a routing
protocol may need to identify a “group leader” and rely on
that node to forward messages from the outside network to
members within the group. Thus it is crucial to understand
metrics such as number of groups, number of nodes in a group
and the frequency that a group of people gather together.

177 distinct groups have been discovered in our contact
study experiment with group size varying from 2 to 14 and
number of group meetings varying from 1 to 43. Figure 6
plots the number of groups with respect to group size and
number of group encounters. It can be seen that there exists
a large amount of “instant groups” that have shown up only

Group meeting times 1 2-5 | 6-10 | > 10
Number of such groups | 100 | 57 20 7
TABLE III

DISTRIBUTION OF GROUP MEETING TIMES.
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once during the whole experiment. Although most of groups
have small sizes and meeting times, there exists larger ones
who meanwhile have met more than once. For example, a
group of 10 people have met four times during the experiment
(as can be found in Figure 6). The statistics of number of
groups satisfying different criteria are also given in Table II
and Table III, which summarize the results in Figure 6.

V. IMPORTANT METRICS AND MODELING
A. Inter-contact Time and Contact Time Distribution

Researchers have studied the inter-contact and contact du-
ration for interaction based social networks in previous works,
and both are found to be power law distributed over certain
range. Specifically, in Haggle IMote experiment [4], it is
observed that the power law coefficient £ = 0.5 for inter-
contact duration and k = 1.5 for contact duration. In NUS
data [15], the inter-contact duration exhibits a power law
with £ = 0.55 and k£ = 0.84 for contact duration. We have
examined the same metrics and the results can be found in
Figure 7 and Figure 8. Similarly, both distributions appear
to be power law in certain time scale, and the power law
coefficient k is equal to 0.35 for inter-contact duration and
0.6 for contact duration. The contact duration distribution
decays slower as compared to previous studies, and the reason
is that in general, students tend to stay together longer as
they may have same classes/discussions. Moreover, the inter-
contact time distribution also decays slowly with coefficient
k = 0.35. Besides the fact that our experiment focuses on
less number of people which leads to a lower chance of
node encounter, a possible reason could be the infrequent
interactions among these students after class.

B. Inter-group Contact Time and Group Contact Time Distri-
bution and Model

In addition, we have investigated the distribution of inter-
group contact time as well as group contact time. Inter-group
contact time is defined by the time between subsequent group
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Fig. 8. Pairwise contact time distribution (log scale).

meetings, which infers the time that a message has to stay
inside a group in order to be sent out. Group contact time
is the duration that a group stays together, which determines
how much data group members are able to exchange. Under-
standing the distributions of these metrics will also be very
helpful in protocol design aspect. An example is that a group
header node implementing sleep scheduling mechanism has
to determine how often to wake up in order to maintain high
probability of node discovery.

The complementary cumulative density function (ccdf) of
inter-group contact time as well as group contact time dis-
tributions are plotted in Figure 9 and Figure 10. Similarly,
the distributions are found to be pareto (heavy-tailed) in
certain time scale and then decays exponentially. Let f(t) be
the probability density function of inter-group contact time
distribution, then f(¢) can be approximated as

ke, ift<te
e M if ¢t >t

ft) =

That is, the distribution follows a power law and an exponen-
tial distribution in different time scales cut off by ¢.. Note that
7 = lmain is arbitrarily chosen as the time unit that determines
the minimum possible inter-contact time. By curve fitting, it
can be found out that ¢, = 2000, k& = 0.23 and A = 0.0006.
The reason that a smaller k£ value is observed compared to
inter-contact time distribution is that it takes longer for a group
to “re-union” compared to the case where the time between
any two contacts is taken into consideration, thus on average
the time between two group meetings is longer.

Similarly, the probability density function g(t) for group
contact time distribution can be approximated as
K T, ift<t,
Ne Nt if ¢ >t

where t/. = 60, ¥’ = 0.8 and ) = 0.06 based on best curve
fittings. As compared to the inter-group contact time, the group

g(t) =
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contact time distribution follows the power law in a much
smaller time scale (60 minutes) and decays much faster with
the slope &’ close to 0.8.

VI. SELF SIMILARITY

We examine the data collected in Haggle project [4] * as
well as our empirical study and apply variance-time and R/S
plots (Rescaled Adjusted Range Plot) in order to verify the self
similarity of the contact arrival process. It turns out that the
two empirical studies have very close behavior in terms of self
similarity, with Hurst Parameter H =~ 0.9 in Haggle project
and H ~ 0.94 in our experiment. The self similarity of contact
arrival process not only indicates the long range dependence
of human mobility and contact behaviors, but also suggests
the bursty nature of the contact arrivals.

Figure 11 and Figure 13 show that the variance of the
aggregated contact process decays slowly as the time scale

3We focus on the Haggle experiment conducted during the IEEE INFO-
COM 2005 conference. Data is available at [1].
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Fig. 11. Figure shows that variance decays slowly as m increases in our
experiment.

increases. Note that the decay of variance can be expressed
by Var(X(™) = a-m~? in which a is constant, m is the
time scale length and (3 is a value ranging from O to 1 which
describes how fast the variance decays. For general processes
such as Poisson Process, 5 = 1. For self similar processes,
[ < 1 and the smaller 3 is, the larger effect of long range
dependence the process has and hence is more “self similar”.
Since the relation between Hurst Parameter and variance decay
slope satisfies H =1 — g [12], we are able to conclude that
H ~ 0.9 and H ~ 0.94 for Haggle project and our experiment
respectively.

The R/S analysis is another useful tool to identify self
similarity which divides the process by logarithmical intervals
and calculates the rescaled adjusted range for each subinterval,
and finally takes the average of all calculated values [10].
H can be estimated by the slope of R/S plot. Figure 12
and Figure 14 give an estimation of H ~ 0.9 for Haggle
experiment and H ~ 0.94 for our study, which verify our
conclusion above.

VII. CONCLUSIONS AND FUTURE WORK

We have conducted a human contact trace collection experi-
ment which serves as a complement to previous relevant stud-
ies. We are able to reduce the probing frequency to 0.1 second
which significantly increases the chance of detection of short
contact and decreased the latency of neighbor discovery. Data
containing contact information is processed off-line. We have
identified the grouping effect and studied group properties
including the distribution of group size and frequency of group
meetings. Inter-contact time and contact time, as well as inter-
group contact time and group contact time distributions have
been studied and modeled. Surprisingly, our observations are
similar to previous findings even though the empirical settings
are different. For example, the inter-contact time and contact
time fit the same distribution with different parameters. This
could help researchers develop suitable simulation models for
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human contact based networks. Finally we have investigated
the self similarity of contact arrival process by conducting
variance-time and R/S analysis to the data from Haggle project
and our own experiment.

For future works, we plan to carry out a larger scale contact
study experiment with longer duration such that the dynamics
of human interaction based networks can be more extensively
examined. We also plan to design and implement energy
efficient algorithms on mobile devices based on our empirical
findings and investigate the tradeoffs afterwards.
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