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Abstract—The problem of opportunistic spectrum access in
cognitive radio networks has been recently formulated as a non-
Bayesian restless multi-armed bandit problem. In this problem,
there are N arms (corresponding to channels) and one player
(corresponding to a secondary user). The state of each arm
evolves as a finite-state Markov chain with unknown parameters.
At each time slot, the player can select K < N arms to
play and receives state-dependent rewards (corresponding to the
throughput obtained given the activity of primary users). The
objective is to maximize the expected total rewards (i.e., total
throughput) obtained over multiple plays. The performance of
an algorithm for such a multi-armed bandit problem is measured
in terms of regret, defined as the difference in expected reward
compared to a model-aware genie who always plays the best K

arms. In this paper, we propose a new continuous exploration and
exploitation (CEE) algorithm for this problem. When no infor-
mation is available about the dynamics of the arms, CEE is the
first algorithm to guarantee near-logarithmic regret uniformly
over time. When some bounds corresponding to the stationary
state distributions and the state-dependent rewards are known,
we show that CEE can be easily modified to achieve logarithmic
regret over time. In contrast, prior algorithms require additional
information concerning bounds on the second eigenvalues of the
transition matrices in order to guarantee logarithmic regret.
Finally, we show through numerical simulations that CEE is
more efficient than prior algorithms.

I. INTRODUCTION

Multi-arm bandit (MAB) problems are widely used to make

optimal decisions in dynamic environments. In the classic

MAB problem, there are N independent arms and one player.

At every time slot, the player selects K(≥ 1) arms to sense

and receives a certain amount of rewards. In the classic non-

Bayesian formulation, the reward of each arm evolves in i.i.d.

over time and is unknown to the player. The player seeks to

design a policy which can maximize the expected total reward.

One variant of multi-armed bandits is the restless multi-arm

bandit problem (RMAB). In this case, all the arms, whether

selected (activated) or not, evolve as a Markov chain at every

time slot. When one arm is played, its transition matrix may

be different from that when it is not played. Even if the player

knows the parameters of the model, referred as the Bayesian

RMAB since the beliefs on each arm can be updated at each
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time based on the observations, the design of the optimal

policy turns to be a PSPACE hard optimization problem [2].

In this paper, we consider the more challenging non-

Bayesian RMAB problems, in which parameters of the model

are unknown to the player. The objective is to minimize regret,

defined as the gap between the expected reward that can be

achieved by a suitably defined genie that knows the parameters

and that obtained by the given policy. As stated before, finding

the optimal policy, which is in general non-stationary, is P-

SPACE hard even if the parameters are known. So we use

instead a weaker notion of regret, where the genie always

selects the K most rewarding arms that have highest stationary

rewards when activated.

We propose a sample mean-based index policy without

information about the system. We prove that this algorithm

achieves regret arbitrarily close to logarithmic uniformly

over time horizon. Specifically, the regret can be bound by

Z1G(n) lnn + Z2 lnn + Z3G(n) + Z4, where n is time,

Zi, i = 1, 2, 3, 4 are constants and G(n) can be any divergent

non-decreasing sequence of positive integers. The significance

of such a sub-linear time regret bound is that the time-

averaged regret tends to zero (or possibly even negative since

the genie we compare with is not using a globally optimal

policy), implying the time-averaged rewards of the policy

will approach or even possibly exceed those obtained by the

stationary policy adopted by the model-aware genie.

If some bounds corresponding to the stationary state dis-

tributions and the state-dependent rewards are known, we

show that the algorithm can be easily modified and achieves

logarithmic regret over time. Compared to prior work, our

algorithm requires the least information about the system.

Moreover, our simulation results show that our algorithm

obtains the lowest regret compared to previously proposed

algorithms when the parameters just satisfy the theoretical

boundaries.

Research in restless multi-arm bandit problems has a lot

of applications. For instance, it has been applied to dynamic

spectrum sensing for opportunistic spectrum access in cogni-

tive radio networks, where a secondary user must select K of

N channels to sense at each time to maximize its expected

reward from transmission opportunities. If the primary user

occupancy on each channel is modeled as a Markov chain with

unknown parameters, then we obtain an RMAB problem. We

conduct our simulation-based evaluations in the context of this



particular problem of opportunistic spectrum access.

The remainder of this paper is organized as follows: in

Section II, we briefly review related work on MAB problems.

In Section III, we formulate the general RMAB problem. In

Section IV, we introduce a sample mean based policy and

provide a proof for the regret upper bound for single channel

selection cases. In Section V, we evaluate our algorithm

and compare it via simulations with two previous proposed

algorithm. We conclude the paper in Section VI.

II. RELATED WORK

In 1985, Lai and Robbins proved that the minimum regret

grows with time in a logarithmic order [8]. They also proposed

the first policy that achieved the optimal logarithmic regret

for multi-armed bandit problems in which the rewards are

i.i.d. over time. Auer et al. developed UCB1 policy in 2002,

applying to i.i.d. reward distributions with finite support,

achieving logarithmic regret over time [9]. Their policy is

based on the sample mean of the observed data, and has a

rather simple index selection method.

One important variant of classic multi-armed bandit problem

is the Bayesian MAB. In this case, a priori probabilistic

knowledge about the problem and system is required. Gittins

and Jones presented a simple approach for the rested bandit

problem, in which one arm is activated at each time and

only the activated arm changes state as a known Markov

process [6]. The optimal policy is to play the arm with

highest Gittins’ index. The restless bandit problem was posed

by Whittle in 1988 [1], in which all the arms can change

state. The optimal solution for this problem has been shown

to be PSPACE-hard by Papadimitriou and Tsitsiklis [2]. The

restless bandit problem has no general solution though it may

be solved in special cases. For instance, when each channel

is modeled as identical two-state Markov chain, the myopic

policy is proved to be optimal if the channel number is no

more than 3 or is positively correlated [7].

There have been a few recent attempts to solve the restless

multi-arm bandit problem under unknown models. In [11],

Tekin and Liu use a weaker definition of regret and propose

a policy (RCA) that achieves logarithmic regret when certain

knowledge about the system is known. The algorithm only

exploits part of observing data and leaves space to improve

performances. In [5], Haoyang Liu et al. proposed a policy,

referred to as RUCB, achieving a logarithmic regret over time

when certain system parameters are known. The regret they

adopt is the same as in [11]. They also extend the RUCB

policy to achieve a near-logarithmic regret over time when no

knowledge about the system is available. However, they only

give the upper bound of regret at the end of a certain time

point referred as epoch. When no a priori information about

the system is known, their analysis of regret gives the upper

bound over time only asymptotically, not uniformly.

In our previous work [4], we adopted a stronger definition

of regret, which is defined as the reward loss with the optimal

policy. Our policy achieve a near-logarithmic regret without a

prior of the system. It applies to special cases of the RMAB,

in particular the same scenario as in [7].

III. PROBLEM FORMULATION

We consider a time-slotted system with one player and

N independent arms. At each time slot, the player selects

K(< N) arms and gets a certain amount of rewards according

to the current state of the arm. Each arm is modeled as a inde-

pendent discrete-time, irreducible and aperiodic Markov chain

with finite state space. Generally, the transition matrices in

the activated model and the passive model are not necessarily

identical. The player can only see the state of the sensed arm

and does not know the transitions of the arms. The player

aims to maximize its expected total reward (throughput) over

some time horizon by choosing judiciously a sensing policy

(algorithm) φ that governs the channel selection in each slot

based on observing history.

Let Si denote the state space of arm i. Denote ri
x the reward

obtained from state x of arm i, x ∈ Si. Without loss of

generality, we assume ri
x ≤ 1, ∀x ∈ Si, ∀i. Let Pj denote the

active transition matrix of arm j and Qj denote the passive

transition matrix. Let πi = {πi
x, x ∈ Si} denote the stationary

distribution of arm i in the active model, where πi
x is the

stationary probability of arm i being in state x (under Pi).

The stationary mean reward of arm i, denoted by µi, is the

expected reward of arm i under its stationary distribution:

µi =
∑

x∈Si

ri
xπi

x (1)

Consider the permutation of {1, · · · , N} denoted as σ, such

that µσ(1) > µσ(2) > µσ(3) > · · ·µσ(N). We are interested in

designing policies that perform well with respect to regret,
which is defined as the difference between the expected reward

that is obtained by using the policy selecting K best arms and

that obtained by the given policy. The best arm obtains the

highest stationary mean reward.

Let Y Φ(t) denote the reward obtained at time t with policy

Φ. The total reward achieved by policy Φ is given by

RΦ(t) =

t
∑

j=1

Y Φ(j) (2)

and the regret rΦ(t) achieved by policy Φ is given by

rΦ(t) = t
K

∑

j=1

µσ(j) − E(RΦ(t)) (3)

The objective is to minimize the growth rate of the regret.

IV. ANALYSIS FOR SINGLE ARM SELECTION

In this section, we focus on the situation when K = 1. In

this case, the player selects one arm each time. We first show

an algorithm called Continuous Exploration and Exploitation

(CEE) and then prove that our algorithm achieves a near-

logarithmic regret with time.



A. The CEE Algorithm for non-Bayesian RMAB

Our CEE algorithm (see Algorithm 1) works as follows.

We first process the initialization by selecting each arm for

certain time slots (we call these time slots step), then iterate

the arm selection by searching the index that maximizes the

equation shown in line 8 in Algorithm 1 and operating this

arm for one step. A key issue is how long to operate each

arm at each step. It turns out from the analysis we present in

the next subsection that it is desirable to slowly increase the

duration of each step using any (arbitrarily slowly) divergent

non-decreasing sequence of positive integers {Bi}∞i=1.

Algorithm 1 Continuous Exploration and Exploitation(CEE):

Single Arm Selection

1: // INITIALIZATION

2: Play arm i for Bi time slots, denote Âi(1) as the sample

mean of these Bi rewards, i = 1, 2, · · · , N
3: X̂i = Âi(1), i = 1, 2, · · · , N
4: n =

∑N
i=1 Bi

5: i = N + 1, ij = 1, j = 1, 2, · · · , N
6: // MAIN LOOP

7: while 1 do

8: Find j such that j = arg max
X̂j

ij
+

√

L ln n
ij

(L can be

any constant greater than 2)

9: ij = ij + 1
10: Play arm j for Bi slots, let Âj(ij) record the sample

mean of these Bi rewards

11: X̂j = X̂j + Âj(ij), i = i + 1, n = n + Bi;
12: end while

B. Regret Analysis

We first define the discrete function G(n), which represents

the value of Bi, at the nth time step in Algorithm 1:

G(n) = min
I

BI s.t.

I
∑

i=1

Bi ≥ n (4)

Since Bi ≥ 1, it is obvious that G(n) ≤ Bn, ∀n. Note that

since Bi can be any arbitrarily slow non-decreasing diverging

sequence, G(n) can also grow arbitrarily slowly.

In this subsection, we show that the regret achieved by our

algorithm has a near-logarithmic order. This is given in the

following Theorem 1.

Theorem 1: Assume all arms are modeled as finite state,

irreducible, aperiodic and reversible Markov chains. All the

states (rewards) are positive. The expected regret with Algo-

rithm 1 after n time slots is at most Z1G(n) ln n + Z2 lnn +
Z3G(n)+Z4, where Z1, Z2, Z3, Z4 are constants only related

to Pi, i = 1, 2, · · · , N , explicit expressions are at the end of

proof for Theorem 1.

The proof of Theorem 1 uses the following fact and two

lemmas that we present next.

Fact 1: (Chernoff-Hoeffding bound) Let X1, · · · , Xn be

random variables with common range [0, 1] and such that

E[Xt|X1, · · · , Xt−1] = µ. Let Sn = X1 + · · · + Xn.

Then for all a ≥ 0, P{Sn ≥ nµ + a} ≤ e−2a2/n and

P{Sn ≤ nµ − a} ≤ e−2a2/n.

The first lemma is a non-trivial variant of the Chernoff-

Hoeffding bound, first introduced in our recent work [4],

that allows for bounded differences between the conditional

expectations of sequence of random variables that we revealed

sequentially:

Lemma 1: [4] Let X1, · · · , Xn be random variables with

range [0, b] and such that |E[Xt|X1, · · · , Xt−1] − µ| ≤ C.

C is a constant number such that 0 < C < µ. Let Sn =
X1 + · · · + Xn. Then for all a ≥ 0,

P{Sn ≥ n(µ + C) + a} ≤ e−2( a(µ−C)
b(µ+C)

)2/n

and

P{Sn ≤ n(µ − C) − a} ≤ e−2(a/b)2/n

Proof: See [10].

Lemma 2: [3] Consider an irreducible, aperiodic Markov

chain with state space S, matrix of transition probabilities P,

an initial distribution ~q which is positive in all states, and

stationary distribution ~π(πs is the stationary probability of

state s). The state (reward) at time t is denoted by s(t). Let µ
denote the mean reward. If we play the chain for an arbitrary

time T, then there exists a value AP ≤ (mins∈S πs)
−1

∑

s∈S s

such that E[
∑T

t=1 s(t) − µT ] ≤ AP .

Lemma 2 shows that if a player keeps selecting the optimal

arm, the difference between the expected reward and the

highest stationary reward is bounded by a constant.

Based on these two lemmas, we can give the proof of

Theorem 1 show as below.

Proof: Below is a sketch of the proof. A detailed proof

can be found in [10].

σ(1) is the index of the optimal arm. The regret comes

from two parts: the regret when selecting an arm other than

arm σ(1); the difference between µσ(1) and E(Y Φ(t)) when

selecting arm σ(1). At most we lose a constant value from the

second part of the regret by Lemma 2. Next we will show

the number of selections of one arm other than σ(1) in line

8 is bounded by O(ln n), then the first part of regret can be

bounded by O(G(n) ln n) and the total regret can be bounded

by O(G(n) ln n).
For ease of exposition, we discuss the time slots n such

that G||n, where G||n denotes the time n is the end of certain

step. We define q as the smallest index such that

Bq ≥ ⌈max{ 2CP

µσ(1) − µσ(2)
,

CP

µσ(l)
, l = 1, 2, · · · , N}⌉

where CP = max{(minx∈Si πi
x)−1

∑

s∈Si s, 1 ≤ i ≤ N}.

We denote the following intermedium variables for ease of

expression: ct,s =
√

(L ln t)/s, w∗ = q(µσ(1) − CP

Bq
) and

wi = q
µσ(i)−CP /Bq

µσ(i)+CP /Bq
(µσ(i) + CP

Bq
− 1).

We have following propositions:

If arm σ(1) is selected for s(> α∗) steps, then

exp(−2(w∗ − sct,s)
2/(s − q)) ≤ t−4. (5)

, where α∗ = 1 + ⌈max {q, [w∗/(
√

L −
√

2)]2}⌉



Similarly, if arm σ(i) is selected for s(> αi) steps,

exp(
−2(wi + sct,s)

2

s − q
) ≤ t−4 (6)

, where αi = 1 + ⌈max {q, [wi/(
√

L −
√

2)]2}⌉.

Moreover, there exists

γ = ⌈max{(N − 1)(4α∗ + 1) + α∗, (N − 1)e4α∗/L + α∗,

max
2≤i≤N

{(N − 1)(4αi + 1) + αi, (N − 1)e4αi/L + αi}}⌉

such that for the time n, if G(n) > Bγ , then arm σ(1) is

selected at least α∗ times and arm σ(i) is selected at least

αi times. Next we will bound the number of times we fail to

choose the optimal arm by logarithmic order.

Denote Tj(n) as the number of times we select arm σ(j)
up to time n. Then, for any positive integer l, we have

Tj(n) =

1 +

n
∑

t≥
N
∑

i=1

Bi,G||t

I{ X̂σ(1)(t)

iσ(1)(t)
+ ct,iσ(1)

<
X̂σ(j)(t)

iσ(j)(t)
+ ct,ij

}

≤
n

∑

t=B1+···+Bγ ,G||t

α(t),t=B1+···+Bα(t)
∑

s1=α∗

β(t),t=B1+···+Bβ(t)
∑

sj=max(αj ,l)

I{ X̂σ(1),s1

s1
+ ct,s1 ≤

X̂σ(j),sj

sj
+ ct,sj

} + l + γ

where I{x} is the indicate function; iσ(j)(t) is the number of

times we select arm σ(j) when up to time t, ∀j = 2, · · · , N ;

X̂σ(j)(t) is the sum of every sample mean of arm σ(j) for

iσ(j)(t) plays up to time t; X̂σ(j),sj
is the sum of every sample

mean for sj times selecting arm σ(j).

The condition { X̂σ(1),s1

s1
+ ct,s1 ≤ X̂σ(j),sj

sj
+ ct,sj

} implies

that at least one of the following must hold:

X̂σ(1),s1

s1
≤ µσ(1) − CP

Bq
− ct,s1 (7)

X̂σ(j),sj

sj
≥ µσ(j) +

CP

Bq
+

µσ(j) + CP /Bq

µσ(j) − CP /Bq
ct,sj

(8)

µσ(1) − CP

Bq
< µσ(j) +

CP

Bq
+ (1 +

µσ(j) + CP /Bq

µσ(j) − CP /Bq
)ct,sj

(9)

Applying Lemma 1 and (5) and (6), we have:

P(
X̂σ(1),s1

s1
≤ µσ(1) − CP

Bq
− ct,s1) ≤ t−4

P(
X̂σ(j),sj

sj
≥ µσ(j) +

CP

Bq
+

µσ(j) + CP /Bq

µσ(j) − CP /Bq
ct,sj

) ≤ t−4

Denote λj(n) as

λj(n) = ⌈(L(1 +
µσ(j) + CP /Bq

µσ(j) − CP /Bq
)2 lnn)/(µσ(1) − µσ(j)

− 2CP

Bq
)2⌉

For l ≥ λj(n), (9) is false. So we get:

E(Tj(n)) ≤ λj(n)+γ+
∞
∑

t=1

t
∑

s1=1

t
∑

sj=1

2t−4 ≤ λj(n)+γ+
π2

3
.

The first part of the regret is bounded by

N
∑

j=2

E[Tj(n)](G(n)(µσ(1) − µσ(j)) + 2CP )

and the second part is bounded by CP

∑N
j=2 E(Tj(n).

Therefore, we have:

rΦ(n) ≤ G(n)+
N

∑

j=2

(G(n)(µσ(1)−µσ(j))+3CP )(λj(n)+γ+
π2

3
)

This inequality can be readily translated to the simplified

form of the bound given in the statement of Theorem 1, where:

Z1 =

N
∑

j=2

(µσ(1) − µσ(j))⌈
L(1 +

µσ(j)+CP /Bq

µσ(j)−CP /Bq
)2

(µσ(1) − µσ(j) − 2CP

Bq
)2
⌉

Z2 = 3CP

N
∑

j=2

⌈
L(1 +

µσ(j)+CP /Bq

µσ(j)−CP /Bq
)2

(µσ(1) − µσ(j) − 2CP

Bq
)2
⌉

Z3 = (γ +
π2

3
)

N
∑

j=2

(µσ(1) − µσ(j)) + 1

Z4 = 3(N − 1)CP (γ +
π2

3
)

Remark 1: : Algorithm 1 and Theorem 1 can be easily

extended to multi-arm case, where K is a known positive

integer. A near-logarithmic regret with time is also achieved.

Due to space constraints, we omit this part and details are

in [10].

C. Corollary

From the analysis above, we see that if sequence

{Bi}∞i=1 is constant and Bi ≥ ⌈max{ 2CP

µσ(1)−µσ(2) ,
CP

µσ(l) , l =

1, 2, · · · , N}⌉, then Algorithm 1 achieves logarithmic regret

over time. Specifically, we have the following corollary:

Corollary 1: The system model is the same as that in

Theorem 1. In Algorithm 1, if

Bi ≡ ⌈max{ 2CP

µσ(1) − µσ(2)
,

CP

µσ(l)
, l = 1, 2, · · · , N}⌉∀i ∈ N

the expected regret after n time slots is at most Z ′
1B1 lnn +

Z ′
2 lnn+Z ′

3B1+Z ′
4, where coefficients are obtained by putting

q = 1 in previous derivation.

Remark 2: : This corollary is a special case for Theorem

1, and reveals that we can design an algorithm achieving

logarithmic regret over time if certain knowledge of the system

is available.
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Fig. 1. Regret and variance performance for RCA, CEE and RUCB

V. NUMERICAL RESULTS

In this section, we compare our algorithm with two pre-

viously proposed policies in the context of opportunistic

spectrum access, RCA [11] and RUCB [5]. We focus on

two properties of the algorithms: regret and variance, which

show the efficiency and stability of the algorithms respectively.

The state of each channel evolves as an irreducible, aperiodic

Markov chain. We consider N = 5 channels with two states,

0 or 1. At each time slot, the player activates 1 channel. The

active and passive transition matrix for each channel are the

same, i.e. Pj = Qj, 1 ≤ j ≤ N . We set the non-decreasing

sequence {Bi}∞i=1 in Algorithm 1 a constant sequence. The

transition probabilities and rewards are shown in table I.

S p01, p10 r0, r1

ch.1 0.3, 0.9 0.1,1

ch.2 0.8, 0.7 0.1,1

ch.3 0.5, 0.1 0.1,1

ch.4 0.2, 0.4 0.1,1

ch.5 0.1, 0.5 0.1,1

TABLE I
TRANSITION PROBABILITIES AND REWARDS

For fairness, we set parameters for all three algorithms just

passing the theoretical bound. We set L = 415 in RCA,

L = 3126 and D = 171520 in the RUCB algorithm. In CEE

Algorithm 1, we set L to be 2.1 and Bi to be 49.

In Figure 1(a), we present the regret of RCA, CEE and

RUCB over 10 runs for 100 million time slots. In Figure 1(b),

we show the first 8 million time slots of regret to compare the

converging speed between RCA and CEE. In order to access

the stability of each algorithm, we also present variances of

rewards over 100 runs in Figure 1(c).

It is observed that CEE shows substantially better regret per-

formance than both RCA and RUCB. Besides, regret/ ln time
converges much more quickly in CEE than in RCA and RUCB.

It is reasonable because in CEE, the selection of arm depends

on the whole observing history, thus uses data much more

efficiently. We also observe RUCB and CEE outperform RCA

significantly in stability. The reward variances of RCA are

much higher than CEE and RUCB. One possible reason is

in RCA, the time interval between two selection is a random

variable which reduces stability.

VI. CONCLUSION

In this paper, we consider the non-Bayesian restless multi-

arm bandit problem which is important for opportunistic spec-

trum access in cognitive radio networks. We adopt a weak no-

tion of regret, defined as the gap of expected reward compared

to a genie who always plays the K best arms. We propose

an algorithm achieving a near-logarithmic regret over time

when no a prior information about the system is available.

We present another policy to achieve exact logarithmic regret if

some bounds pertaining to the stationary state distribution and

corresponding rewards are known. Compared with prior work,

this algorithm requires the least information. We also present

numerical results and analysis showing that CEE significantly

outperforms both of the two previously prosed algorithms, in

terms of regret and stability.
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