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Abstract—This paper studies the optimal transmission policy
for a Gilbert-Elliott Channel. The transmitter has two actions:
sending aggressively or sending conservatively, with rewards
depending on the action chosen and the underlying channel state.
The aim is to compute the scheduling policy to determine which
actions to choose at each time slot in order to maximize the
expected total discounted reward. We first establish the threshold
structure of the optimal policy when the underlying channel
statistics are known. We then consider the more challenging
case when the statistics are unknown. For this problem, we map
different threshold policies to arms of a suitably defined multi-
armed bandit problem. To tractably handle the complexity intro-
duced by countably infinite arms and the infinite time horizon,
we weaken our objective a little: finding a (OPT − (ε + δ))-
approximate policy instead. We present the UCB-P algorithm,
which can achieve this objective with logarithmic-time regret.

I. INTRODUCTION

Communication over the wireless channels are affected by
fading conditions, interference, path loss, etc. To gain a better
utilization of wireless channels, a transmitter needs to adapt
transmission parameters such as data rate and transmission
power according to the communication channel states.

In this paper, we analyze mathematically a communication
system operating over a 2-state Markov channel (known as
the Gilbert-Elliott Channel) in a time-slotted fashion. The
objective is for the transmitter to decide at each time, based
on prior observations, whether to send data at an aggressive
or conservative rate. The former incurs the risk of failure, but
reveals the channels true state, while the latter is a safe but
unrevealing choice. When the channel transition probabilities
are known, this problem can be modelled as a Partially Observ-
able Markov Decision Process (POMDP). This formulation is
very closely related to a recent work pertaining to betting on
Gilbert Elliott Channels [3], which considers three choices,
and shows that a threshold-type policy consisting of one, two,
or three thresholds depending on the parameters, is optimal.
In our setting, we show that the optimal policy always has a
single threshold that corresponds to a K-conservative policy,
in which the transmitter adopts the conservative approach for
K steps after each failure before reattempting the aggressive
strategy. Unlike [3], however, our focus is on the case when
the underlying state transition matrix is unknown. In this case,
the problem of finding the optimal strategy is equivalent to
finding the optimal choice of K. We map the problem to

a Multi-armed bandit, where each possible K-conservative
policy corresponds to an arm. To deal with the difficulties
of optimizing the discounted cost over an infinite horizon,
and the countably infinite arms that result from this mapping,
we introduce approximation parameters δ, ε, and show that
a modification of the well-known UCB1 policy guarantees
that the number of times that the arms that are more than
(ε + δ)) away from the optimal are played is bounded by a
logarithmic function of time. In other words, we show that the
time-averaged regret with respect to a (OPT − (ε+δ)) policy
tends to zero.

We briefly review some other recent papers in the literature
that have treated similar problems. Johnston and Krishna-
murthy [5] consider the problem of minimizing the trans-
mission energy and latency associated with transmitting a
file across a Gilbert Elliott fading channel, formulate it as
a POMDP, identify a threshold policy for it, and analyze it
for various parameter settings. Karmokar et al. [6] consider
optimizing multiple objectives (transmission power, delay, and
drop probability) for packet scheduling across a more general
finite-state Markov channel. Motivated by opportunistic spec-
trum sensing, several recent studies have explored optimizing
sensing and access decisions over multiple independent but
stochastically identical parallel Gilbert Elliott channels, in
which the objective is to select one channel at each time,
showing that a simple myopic policy is optimal [7], [8].
In [9], Dai et al. consider the non-Bayesian version of the
sensing problem where the channel parameters are unknown,
and show that when the problem has a finite-option structure,
online learning algorithms can be designed to achieve near-
logarithmic regret. In [10], Nayyar et al. consider the same
sensing problem over two non-identical channels, derive the
optimal threshold structure policy for it. For the non-Bayesian
setting, show a mapping to countably infinite-armed multi-
armed bandit, and also prove logarithmic regret with respect
to a (OPT −δ) policy, similar to the approach adopted in this
work for a different formulation.

The paper is organized as follows: section II introduces
the model; section III gives the structure of the optimal
policy when the underlying channel transition probabilities are
known; section IV talks about K-conservative policies and we
prove that the optimal policy corresponds to a K-conservative
policy; section V discusses using multi-arm bandits to find out



optimal K; to address the two challenges: infinite number of
arms, and infinite time horizon, we weaken our objective to
find policies which are at most (ε+ δ) away from the optimal
instead. We design the UCB-P algorithm to learn such policies.
We present simulation results in section VI. Finally, section
VII concludes the paper.

II. MODEL

For our problem setting, we consider the Gilbert-Elliott
channel which is a Markov chain with two states: good
(denoted by 1) or bad (denoted by 0). If the channel is
good, it allows the transmitter to send data with a high rate
successfully. However, if the channel is bad, it only allows
transmitter to send data with a low rate successfully. The
transition probabilities matrix is given as:

P =

[
P00 P01

P10 P11

]
=

[
1− λ0 λ0

1− λ1 λ1

]
. (1)

Define α = λ1 − λ0. We assume that the channel is positive
correlated, which means α ≥ 0.

At the beginning of each time slot, the transmitter chooses
one of the following two actions:
• Sending Conservatively (SC): the transmitter sends data

with a low rate. No matter what the channel state is, it can
successfully transmit a small number of bits. We assign a
reward R1 to this action. Since the transmission is always
successful, the transmitter cannot learn the state if this action
is chosen.
• Sending Aggressively (SA): the transmitter sends data

with a high rate. If the channel is in good state, we consider
the transmission successful and the transmitter can get a high
reward R2(> R1). If the channel is in bad state, sending with
a high rate will cause high error rate and drop rate, we consider
the transmission a failure and the transmitter gets a constant
penalty C. We assume if the transmitter sends aggressively,
it can learn the state of the channel. In other words, we
assume that when the channel is in a bad state an aggressive
transmission strategy will encounter and detect failure.

Because when sending conservatively, the state of the
channel is not directly observable, the problem we consider
in this paper turns out to be a Partially Observable Markov
Decision Process (POMDP) problem. In [1], it has been shown
that a sufficient statistic to make an optimal decision for
this POMDP problem is the conditional probability that the
channel is in state 1 given all past actions and observations.
We call this conditional probability the belief, represented by
bt = Pr [St = 1|Ht] which Ht is the history of all actions and
observations before tth time slot. When sending aggressively,
the transmitter learns the state of the channel; so the belief is
λ0 if the channel is bad or λ1 if the channel is good.

The following is the expression for the expected rewards:

R(bt, At) =

{
R1 if At = SC,
btR2 − (1− bt)C if At = SA,

(2)

where bt is the belief of the channel in good state and At is
the action taken by the transmitter at time t.

In this paper, we consider the expected total-discounted
reward to make decisions, which is defined as

E

[ ∞∑
t=0

βtR(bt, At)|b0 = p

]
, (3)

where R(bt, At) is the expected reward at t, β(< 1) is a
constant discounter factor, and b0 is the initial belief.

III. THRESHOLD STRUCTURE OF THE OPTIMAL POLICY

In this section, we discuss the optimal policy when the
transition probabilities are known. We prove that the optimal
policy is a one threshold policy and give a closed form
formulation of the threshold.

Policy, denoted by π, is defined as a rule which maps
belief probabilities to actions. We use V π(p) to represent the
expected total-discounted reward the transmitter can get given
the initial belief is p and policy is π:

V π(p) = Eπ

[ ∞∑
t=0

βtR(bt, At)|b0 = p

]
. (4)

The aim is to find a policy having the greatest value of the
expected total-discounted reward, denoted by V (p):

V (p) = max
π
{V π(p)} . (5)

According to [2, Thm. 6.3], there exists a stationary policy
which makes V (p) = V π∗(p), thus V (p) can be calculated by
the following equation:

V (p) = max
A∈{SA,SC}

{VA(p)} , (6)

where VA(p) is the greatest value of the expected total-
discounted reward by taking action A when the initial belief
probability is p. VA(p) can be expressed as:

VA(p) = R(p,A) + βE [VA(p′)|b0 = p,A0 = A], (7)

where b0 is the initial belief, A is the action taken by
transmitter, and p′ is the new belief after taking action A.

Sending conservatively: by taking this action, the belief
changes from p to T (p) = λ0(1 − p) + λ1p = αp + λ0,
hence,

VSC(p) = R1 + βV (T (p)). (8)

Sending aggressively: by taking this action, the channel state
is known, so

VSA(p) (9)
= (pR2 − (1− p)C) + β[pV (λ1) + (1− p)V (λ0)].

This formulation turns out to be similar to the problem
formulation in [3], except for two main differences as follows:
(1). We do not have a separate action for sensing.
(2). We introduce penalty when sending fails.

Theorem 3.1: The optimal policy has a single threshold
structure.

π∗(p) =

[
SC if 0 ≤ p ≤ ρ,
SA if ρ ≤ p ≤ 1,

(10)



where p is the belief, and ρ is the threshold.
We omit the proof here because it follows in a straightfor-

ward manner from the results in [3]. Since the penalty does
not change the linear property of function VSA(p), according
to [3, Thm. 1, Thm.2], Vβ(p) is convex and nondecreas-
ing, thus the optimal solution follows a threshold structure.
However, unlike [3], which shows the existence of multiple
thresholds, there is a single threshold for our problem setting.

A. Closed Form Expression of Threshold ρ

The threshold ρ is the solution of the following equation:

R1 + βV (T (ρ)) = VSA(ρ). (11)

There are two possible scenarios for T (ρ):
If T (ρ) ≤ ρ, we have V (T (ρ)) = VSC(T (ρ)), substituting

in Eq. (11), we can get:

ρ =
R1 + C

(R2 + C) + βV (λ1)− β R1

1−β
. (12)

Otherwise, we have V (T (ρ)) = VSA(T (ρ)), substituting in
Eq. (11), we can get Eq. (13) at the top of next page.

B. V (λ0) and V (λ1)

To calculate V (λ1) and V (λ0), there are also two possible
scenarios:

If λ1 ≤ ρ, then since λ0 ≤ λ1 ≤ ρ,

V (λ1) = V (λ0) =
R1

1− β
. (14)

Otherwise, λ1 > ρ, V (λ1) = VSA(λ1), using Eq. (9), we
get

V (λ1) =
λ1R2 − (1− λ1)C + β(1− λ1)V (λ0)

1− βλ1
. (15)

To get V (λ0), we adapt [3, Thm.4]:

V (λ0) = max
A∈{SA,SC}

{VA(λ0)} (16)

= max{R1 + βV (T (λ0)), VSA(λ0)}

= max{R1
1− βN

1− β
,

max
0≤n≤N−1

{1− βn

1− β
R1 + βnVSA(Tn(λ0))}}.

Since N is arbitrary and 0 ≤ β < 1, when N →∞, we have

V (p) = max
n≥0
{R1

1− βn

1− β
+ βnVSA(Tn(λ0))}. (17)

Using Eq. (9), Eq.(15), Eq. (17), we can get

V (λ0) (18)

= max
n≥0

{
1−βn

1−β R1 + βn (κnR2 + κnC(1− β)− C)

1− βn+1 [1− (1− β)κn]

}
,

where κn = Tn(λ0)
1−βλ1

= (1−αn)λS

1−βλ1
.

IV. K-CONSERVATIVE POLICIES

In this section, we will discuss the K-conservative policy,
where K is the number of time slots to send conservatively
after a failure, before sending aggressively again. The Markov
chain corresponding to K-conservative policy is as shown in
Fig. 1.
The states are the number of time slots which the transmitter

Fig. 1. K Conservative Policy Markov Chain.

has sent conservatively since last failure. There are K + 2
states in this Markov chain. State 0 corresponds to the moment
that sending aggressively fails, and it goes back to sending
conservatively stage. State K − 1 corresponds to that the
transmitter has already sent conservatively for K time slots,
and it will send aggressively next time slot. If the transmitter
sends aggressively and succeeds, it goes to state SA and
continues to send aggressively at the next time slot; otherwise
it goes back to state 0. The probability that transmitter stays
in state SA is λ1. The transmitter has to wait K time slots
before sending aggressively again, so the probabilities from
state i to state i+ 1 is always 1 when 0 ≤ i < K.

There are K + 2 states, each state corresponds to a belief
and an action; belief and action determine the expected total-
discounted reward. Thus given K, there are K + 2 different
expected total-discounted rewards.

Theorem 4.1: The threshold ρ policy structure is equivalent
to a Kopt-Conservative policy structure, where Kopt is the
number of time slots that a transmitter sends conservatively
after a failure before sending aggressively again. If λS > ρ,
Kopt = dlogα(1− ρ(1−α)

λ0
)e − 1, otherwise Kopt =∞.

Proof: Whenever the transmitter sends aggressively but
fails, it goes back to sending conservatively stage. The belief
after a failure is λ0, and it changes with time according to
formula: Tn(λ0) = T (Tn−1(λ0)) = λ0( 1−αn+1

1−α ), where
n is the number of time slots that the transmitter has sent
conservatively since last time failure.

If λS ≤ ρ, Tn(λ0) increases when n increases, when
n→∞, Tn(λ0)→ λS . The optimal policy is always sending
conservatively, Kopt =∞.

If λS > ρ, then there exists a finite integer Kopt which
makes TKopt−1(λ0) < ρ and TKopt(λ0) ≥ ρ,

Kopt = dlogα(1− ρ(1− α)

λ0
)e − 1. (19)

V. ONLINE LEARNING FOR UNKNOWN CHANNEL

In this section, we will discuss how to find the optimal
policy if the underlying channel’s transition probabilities are



ρ =
(1− βλ1)R1 + λ0βR2 + (1− αβ)(1− β)C + β(β − 1)(1− αβ)V (λ0)

(1− αβ)(R2 + (1− β)C + β(β − 1)V (λ0))
. (13)

unknown. To find Kopt, we use the idea of mapping each
K-conservative policy to a countable multi-armed bandits of
countable time horizon. Now there are two challenges: (1).
The number of arms can be infinite. (2). To get the true total
discounted reward, each arm requires to be continuing played
until time goes to infinity. To address these two challenges, we
weaken our objective to find a suboptimal which is an (OPT−
(ε + δ)) approximation of the optimal arm instead. Theorem
5.1 and theorem 5.2 address the two challenges respectively.

We define (OPT − ε) arm as the arm which gives (OPT −
ε)-approximation of the optimal arm no matter what the initial
belief is.

Let arm SC correspond to the always sending conservatively
policy, or Kopt =∞.

Theorem 5.1: Given an ε and bound B on α, there exists
a Kmax, such that ∀ K ≥ Kmax, the best arm in the arm set
C = {0, 1, ...K, SC} is an (OPT − ε) arm.

Proof: If K > Kopt or Kopt = ∞, the optimal arm is
already included in the arm sets.

If K < Kopt < ∞, suppose that transmitter has already
sent conservatively for n time slots, let kopt = Kopt − n,
k = K − n, and C ′ = R2 + C + β

1−β (R2 −R1),

V πkopt (p)− V πk(p) (20)

= [R1
1− βkopt

1− β
+ βkoptVSA(T kopt(p))]

−[R1
1− βk

1− β
+ βkVSA(T k(p))]

= βk[
R1

1− β
(1− βkopt−k)

+βkopt−kVSA(T kopt(p))− VSA(T k(p))]

< βk[VSA(T kopt(p))− VSA(T k(p))]

= βk(T kopt(p)− T k(p))(R2 + C + β(V (λ1)− V (λ0)))

< βk(TKopt(λ0)− TK(λ0))(R2 + C + β(
R2

1− β
− R1

1− β
))

= βkαK+1(1− αKopt−K)λSC
′

< αK+1C ′ < BK+1C ′.

Let Kmax = logB
ε
C′ − 1,

when K ≥ Kmax, V πkopt (p)− V πk(p) < ε.

Theorem 5.2: Given an δ, there exists a Tmax such that
∀T ≥ Tmax, an arm for the finite horizon total discounted
reward up to time T is at most δ away from the infinite horizon
total discounted reward.

Proof:

E[

∞∑
t=0

βtRi(t)|b0 = p]− E[

Tmax∑
t=0

βtRi(t)|b0 = p](21)

= E[

∞∑
t=Tmax+1

βtRi(t)|b0 = p]

< βTmax+1 R2

1− β
.

When T ≥ dlogβ
δ(1−β)
R2 e − 1,

E[
∑∞
t=0 β

tRi(t)|b0 = p]−E[
∑Tmax

t=0 βtRi(t)|b0 = p] < δ.
We define period as time interval between arm switches, A-

reward as the average (OPT−δ)-finite horizon approximation
total discounted reward at one period, regret as the number of
time slots during which the transmitter uses policies which are
more than (ε + δ) away from the optimal policy. We design
the UCB-Period (UCB-P) algorithm as shown in Algorithm 1.
It is similar to UCB1 algorithm, but the time unit is period
and the A-rewards are accumulated for each period.

Algorithm 1 Deterministic policy: UCB-P
Initialization: L(≥ Kmax+2) arms: arm 0, · · · , arm (L−2)
and the SC arm. Play each arm for T (≥ Tmax) time slots,
then keep playing the arm until the arm hits arm state 0. Get
initial A-reward of state 0 for each arm. Let Ā = A(i), (i =
0, 1, · · ·L−2, SC) as initial average A-reward for state 0 of
each arm; ni = 1(i = 0, 1, · · ·L− 2, SC) as initial number
of periods arm i has been played, and n = L as initial
number of periods played so far.
for period n = 1, 2, · · · do

Select the arm with highest value of (1−β)Āi+C
R2+C +√

2ln(n)
nj

. Play the selected arm for a period. Update the
average A-reward for state 0, ni of the selected arm and n.
end for

Theorem 5.3: The regret of Algorithm UCB-P is bounded
by O(L(L + T )ln(t)), where t is the number of time slots
passed so far.

Proof: The procedure is similar to UCB1, [4, Thm.1 ]
can be adapted.

A-reward is within the range of [ −C1−β ,
R2

1−β ], where the left
boundary corresponds to the transmitter sending aggressively
but failing every time slot, and the right boundary corresponds
to the transmitter sending aggressively and succeeding every
time slot. We normalize the A-reward to be in the range of
[0, 1], UCB1 algorithm shows that the number of time slots
that selects non-optimal arm is bounded by O((L− 1)ln(n)),
where L is the number of arms and n the overall number of
plays done so far.



The best arm is an (OPT − (ε+ δ)) arm. If any other non-
best arm K̃ hits SA states at the T th time slots, the transmitter
keeps playing that arm until sending fails, and the time playing
the arm can be larger than T. Since the reward R2 is the
best reward the transmitter can get, these time slots do not
count towards the regret. However, if such a K̃th arm hits
state 0 just before T th time slot, the transmitter needs to send
conservatively for K̃ time slots. Since K̃ ≤ L, the arm can
contribute regret for at most (L + T ) time slots. Thus, we
will use (L+ T ) to bound time slots generating regret in one
period.

The number of plays selecting non-optimal arms in UCB1
is bounded by O((L−1)ln(n)). In our problem, the number of
periods playing non-best arm is bounded by O((L−1)ln(n)),
where n is the number of periods, n < t

T . In total, the number
of time slots playing non-best arms is bounded by O((L −
1)(L + T )ln( tT )) = O(L(L + T )ln(t)). Note that besides
the best arm, some of the non-best arm in the arm sets may
also give (OPT − (ε+ δ)) approximation of the real expected
total discounted reward, this only makes the regret smaller.
O(L(L+T )ln(n)) is still an upper bound of the regret. More
specifically, taking L = Kmax + 2 and T = Tmax, the regret
can be bounded by O(Kmax(Kmax + Tmax)ln(n)).

VI. SIMULATIONS

We start by analyzing the known underlying transition
matrix case. We select 5 groups of transition probabilities,
each corresponding to a different threshold, or equivalently,
a different Kopt-conservative policy. The first corresponds
to a scenario that the optimal policy is always sending
conservatively. The other 4 correspond to different Kopt-
conservative policies. In Fig. 2, the x axis represents different
K-conservative policies and the y axis represents expected
total discounted rewards. 5 curves correspond to different
transition probabilities. The expected total discounted rewards
get maximum when K = Kopt. Take the Kopt = 4 curve
as an example,when K < 4, the total discounted reward
increases when K increases and when K > 4, the total
discounted reward decreases when K increase. The expected
total discounted rewards get maximum when K = 4.

R1 = 1; R2 = 2; C = 0.5; β = 0.75
λ0 λ1 ρ Kopt

0.36 0.91 0.5446 1
0.26 0.86 0.5060 2
0.16 0.96 0.4597 3
0.16 0.91 0.4553 4
0.01 0.61 0.5918 ∞

TABLE I
THE OPTIMAL STRATEGY TABLE

Next, we consider the unknown transition probability matrix
case. For K 6= ∞ scenarios, if α is bounded by 0.8, taking
ε = 0.02 and δ = 0.02, we get Kmax = 26 and Tmax = 20.
For the simulations, we take L = 30, T = 100. We run
the simulations with different λ0 and λ1 and measure the

Fig. 2. Expected total discounted reward for K-conservative policies

percentage of time playing the (OPT − (ε + δ)) arm. Fig.3
is the simulation results running UCB-P algorithm. We can
see when time goes to infinity, the percentage of time playing
(OPT − (ε+ δ)) arms approaches 100%.

Fig. 3. Percentage of time that OPT − (ε+ δ) arms are selected by UCB-P
algorithm

UCB-P algorithm, although mathematically proven to have
logarithmic regret when T → ∞, doesn’t work that well in
practice since it convergence slowly when the differences
between arms are small. Thus, we use UCBP-TUNED
algorithm, which the bound of UCB-P algorithm is tuned
more finely. UCB1-TUNED [4] is adapted in our UCBP-
TUNED algorithm. We use

Vk(s)
def
= (

1

s
Σsτ=1(

(1− β)Ak,τ + C

R2 + C
)2) (22)

− (1− β)Āk + C

R2 + C
+

√
2 lnn

s
,



as an upper confidence bound for the variance of arm k, in
which k is the arm index, and s is the number of periods that
arm k is played during the first n periods, Ak,τ is the A-reward
that arm k played the τ th time.

We replace the upper confidence bound
√

2 ln(n)/nj of
policy UCB-P with√

ln(n)

nj
min{1/4, Vj(nj)}, (23)

and rerun the simulations. From Fig. 4, we can see that
UCBP-TUNED algorithm converges much faster than UCB-P
algorithm.

Fig. 4. Percentage of time that OPT − (ε+ δ) arms are selected by UCBP-
TUNED algorithm

VII. CONCLUSION

This paper discusses the optimal policy of transmitting
over a Gilbert Elliott Channel to maximize the expected
total discounted rewards. If the underlying channel transition
probabilities are known, the optimal policy has a single
threshold. The threshold determines a K-conservative policy.
If the underlying channel transition probabilities are unknown
but a bound on α is known, we relax the requirement and show
how to learn (OPT − (ε + δ)) policies. We designed UCB-
P algorithm and the simulation results have shown that the
percentage of selecting the (OPT − (ε+ δ)) arms approaches
100% when n → ∞. For future work, we plan to relax the
assumption of known bound on α and consider ways to speed
up the learning further.
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