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Abstract—We introduce a novel sequence-based localization technique for wireless sensor networks. We show that the localization

space can be divided into distinct regions that can each be uniquely identified by sequences that represent the ranking of distances

from the reference nodes to that region. For n reference nodes in the localization space, combinatorially, OðnnÞ sequences are

possible, but we show that, due to geometric constraints, the actual number of feasible location sequences is much lower: only Oðn4Þ.
Using these location sequences, we develop a localization technique that is robust to random errors due to the multipath and

shadowing effects of wireless channels. Through extensive systematic simulations and a representative set of real mote experiments,

we show that our lightweight localization technique provides comparable or better accuracy than other state-of-the-art radio signal

strength-based localization techniques over a range of wireless channel and node deployment conditions.

Index Terms—Wireless sensor networks, localization, location sequence, arrangement of lines.

Ç

1 INTRODUCTION

ACCURATE localization is an essential part of many
wireless sensor network applications. Over the years,

many researchers have proposed many different solutions
for this problem (for example, [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], and [11]). In these techniques, there is a trade-off
between the accuracy of localization and the complexity of
implementation. For instance, least squares estimation
techniques (see [1]) require accurate radio frequency (RF)
channel parameters such as the radio path loss exponent.
Fingerprinting-based techniques (such as [8]) require
extensive preconfiguration studies that depend on the
features of the localization space. Other techniques require
specialized hardware (see [5]) or a complex configuration
procedure (see [11]). On the other extreme, really simple
techniques such as computing the centroid of nearby
beacons (see [7]) provide low accuracy. In this paper, we
present a novel sequence-based RF localization technique
that is lightweight, works with any hardware, and provides
accurate localization without requiring accurate channel
parameters or any preconfiguration.

At the heart of our proposed technique is the division of
a 2D localization space into distinct regions by the
perpendicular bisectors of lines joining pairs of reference
nodes (nodes with known locations). We show that each
distinct region formed in this manner can be uniquely
identified by a location sequence that represents the distance
ranks of reference nodes to that region. We present an
algorithm to construct the location sequence table that maps
all these feasible location sequences to the corresponding

regions by using the locations of the reference nodes. This
table is used to localize an unknown node (that is, the node
whose location has to be determined) as follows.

The unknown node first determines its own location
sequence based on the measured strength of signals
between itself and the reference nodes. It then searches
through the location sequence table to determine the
“nearest” feasible sequence to its own measured sequence.
The centroid of the corresponding region is taken to be its
location.

In this paper, we focus only on RF-signal-based localiza-
tion since radios are used for the essential task of
communication and are therefore freely available on all
devices in a wireless network. Ideally, the measured
distance order of the reference nodes should be identical
to the distance order based on true euclidean distances.
However, this is not true in the real world, as the RF signals
are subjected to multipath fading and noise. These nonideal
effects corrupt the location sequence measured by the
unknown node. For n reference nodes in the localization
space, the possible number of combinations of distance rank
sequences is OðnnÞ. However, we prove in this paper that
the actual number of feasible location sequences is much
lower due to geometric constraints, that is, only Oðn4Þ. The
lower dimensionality of the sequence table enables the
correction of errors in the measured sequence. This is one of
the reasons that our proposed sequence-based localization
(SBL) technique performs well despite channel errors.

The rest of the paper is organized as follows: We
formally define location sequences in Section 2 and describe
the procedure of localization using them in Section 3. In the
same section, we derive the maximum number of feasible
location sequences, illustrate the construction of the location
sequence table, discuss the effect of RF channel nonideal-
ities on unknown node location sequences, and describe
metrics to measure the “distance” between sequences. In
Section 4, we describe localization procedures for two
different application scenarios and show their robustness to
RF channel random errors through examples. In Section 5,
we present an exhaustive systematic performance study of
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our localization technique, in addition to conducting a
comparative study with state-of-the-art localization techni-
ques. We present the evaluation of our technique in real
mote experiments in Section 6 and discuss related work in
Section 7. We conclude and discuss our future work in
Section 8.

2 LOCATION SEQUENCES

In this section, we define location sequences and illustrate

them through examples.
Assume that a 2D localization space consists of

n reference nodes. Consider any two reference nodes and
draw a perpendicular bisector to the line joining their
locations. This perpendicular bisector divides the localiza-
tion space into three different regions that are distinguished
by their proximity to either reference nodes, as illustrated in
Fig. 1a. Similarly, if perpendicular bisectors are drawn for
all nðn�1Þ

2 pairs of reference nodes, they divide the localiza-
tion space in to many regions of three different types:
vertices, edges, and faces, as shown in Fig. 1b. This
subdivision of a 2D space into vertices, edges, and faces
by a set of lines is an arrangement induced by that set [12].

Now, for each region created by the arrangement
induced by the set of perpendicular bisectors, determine
the ordered sequence of the reference nodes’ ranks based on
their distances from them. We define this ordered sequence
of distance ranks as the location sequence.

Proposition 1. The location sequence of a given region is unique

to that region.

Proof. The proof is by contradiction. Assume that two
different regions in the arrangement have the same
location sequence. This implies that the distance ranks of
reference nodes are the same for both regions. This
further implies that there is no bisector line that
separates the two regions. The implication applies to
all possible combinations of regions such as two faces,
two edges, two vertices, a face and an edge, an edge and
a vertex, and a face and a vertex in their own different
ways. Otherwise, if there was a bisector line of two
arbitrary reference nodes that separated the two regions,
then it would rank those reference nodes differently for
the two regions. However, this is a contradiction as, by
definition, two different regions in the arrangement are
separated by at least a single bisector line. tu

Therefore, each region created by the arrangement has a
unique location sequence. Further, we make the following
observations:

. All locations inside a region have the same location
sequence.

. If each region in the arrangement is represented by
its centroid, then there is a one-to-one mapping
between a location sequence and the centroid of the
region that it represents. For a vertex, the centroid is
the vertex itself. For an edge, the centroid is its
midpoint, and for a face, the centroid is the centroid
of the polygon that bounds it.

. The total number of unique location sequences is
equal to the sum of the number of vertices, the
number of edges, and the number of faces created by
the arrangement in the localization space.

The order in which the ranks of reference nodes are
written in a location sequence is determined by a
predefined order of reference node IDs. We illustrate the
above ideas through examples. Fig. 1c shows the location
sequences of four different regions. In the example, the
predefined order of reference node IDs is ABCD. Region 1
is a face, and its location sequence is 1234, since the
distance rank of A from it is 1 (A is the closest), and the
respective distance ranks of B,C and D are 2,3 and 4 (D is
the farthest). Similarly, for Region 3, the location sequence
is 4321, as the distance rank of A is the farthest (distance
rank 4), D is the closest (distance rank 1), and B is closer
than C and A. For Region 4, which is a vertex, the distance
ranks of A,B and C,D are equal in pairs as it lies on the
intersection of perpendicular bisectors of those pairs of
reference nodes. Also, the pair C,D is closer to it than the
pair A,B. Therefore, its location sequence is 3311. Similarly,
for Region 2, which is an edge, the distance ranks of A and
B are the same, and the location sequence is 1134. Fig. 1d
shows all feasible location sequences for the topology of the
reference nodes in Fig. 1c.

Next, we describe how location sequences can be used
for localization.

3 LOCALIZATION USING LOCATION SEQUENCES

The procedure for localization of unknown nodes using
location sequences is given as follows:

1. Determine all feasible location sequences in the
localization space and list them in a location sequence
table.
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Fig. 1. (a) The perpendicular bisector of the line joining two reference nodes divides the localization space into three distinct regions. (b) Illustration of
arrangement of six bisector lines for four reference nodes placed uniformly and randomly in a square localization space. (c) Examples of location
sequences for a four-reference-node topology. (d) All feasible location sequences for the topology in (c).



2. Determine the location sequence of the unknown
node location by using received signal strength (RSS)
measurements of localization packets exchanged
between itself and the reference nodes. The RSS-
based location sequence will be a corrupted version
of the original location sequence.

3. Search in the location sequence table for the
“nearest” location sequence to the unknown node
location sequence. The centroid mapped to by that
sequence is the location estimate of the unknown
node.

The above procedure opens itself to the following
questions: How many feasible location sequences are there
in a 2D localization space? How can we get them? How do
random errors in RSS measurements affect the unknown
node location sequence? What is the meaning of “nearest”
location sequence and how do we measure distances
between location sequences?

In the rest of this section, we answer the above questions.
We begin by determining the maximum number of feasible
location sequences in the localization space.

3.1 Maximum Number of Location Sequences

For n reference nodes in the localization space, the number
of possible combination sequences of distance ranks is
OðnnÞ. However, we show that the actual number of feasible
location sequences is much lower, which is in the order of
Oðn4Þ at worst.

As stated previously, the number of feasible location
sequences is equal to the sum of the number of vertices,
edges, and faces created by the arrangement induced by the
perpendicular bisectors of reference nodes. Therefore, its
upper bound can be obtained by determining the maximum
number of such vertices, edges, and faces, given the
locations of the reference nodes. In [12], the authors show
that the maximum number of vertices, edges, and faces for
an arrangement induced by n lines is nðn�1Þ

2 , n2, and
n2

2 þ n
2 þ 1, respectively. Using these results, for nðn�1Þ

2
perpendicular bisectors of n reference nodes,

1. the number of vertices is at most n4

8 � n3

4 � n2

8 þ n
4 ,

2. the number of edges is at most n4

4 � n3

2 þ n2

4 , and
3. the number of faces is at most n4

8 � n3

4 þ 3n2

8 � n
4 þ 1.

Owing to the properties of perpendicular bisectors, it is

possible to derive tighter upper bounds on the number of

vertices, edges, and faces.

Theorem 1. Let L be the set of bisector lines for n reference nodes

jLj ¼ nðn�1Þ
2 . Let AðLÞ be the arrangement induced by L.

Then,

1. the number of vertices of AðLÞ is at most n4

8 �
7n3

12 þ 7n2

8 � 5n
12 ,

2. the number of edges of AðLÞ is at most n4

4 � n3 þ
7n2

4 � n, and
3. the number of faces of AðLÞ is at most n4

8 � 5n3

12 þ
7n2

8 � 7n
12 þ 1.

Proof. We make use of the property that the perpendicular

bisectors of the sides of a triangle intersect at a single

point. Assume that ði� 1Þ reference nodes have already

been added, implying that the localization space already

has ði�1Þði�2Þ
2 bisector lines. When the ith reference node is

added, ði� 1Þ new bisector lines are added to the

localization space.

Vertices. The first of the ði� 1Þ bisector lines intersects

the already present lines in at most ði�1Þði�2Þ
2 new vertices.

The second new line is the perpendicular bisector of a

side of the triangle in which the first new line is also a

perpendicular bisector. Therefore, the second new line

has to pass through at least one of the vertices created by

the first new line, thus creating at most ði�1Þði�2Þ
2 � 1 new

vertices. Similarly, the third new line creates at most
ði�1Þði�2Þ

2 � 2 new vertices. This is illustrated in Fig. 2 for

n ¼ 4. Finally, the ði� 1Þth new line creates at most
ði�1Þði�2Þ

2 � ði� 2Þ new vertices. Therefore, the total

number of new vertices added by the ith reference node

is at most

ði� 1Þði� 2Þ
2

þ ði� 1Þði� 2Þ
2

� 1þ ði� 1Þði� 2Þ
2

� 2þ � � �

þ ði� 1Þði� 2Þ
2

� ði� 2Þ ¼ ði� 1Þði� 2Þ2

2
:

ð1Þ
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Fig. 2. Addition of the fourth reference node D adds three new bisector lines to the localization space. (a) The first of the three new bisector lines, that
is, line 1, which is the perpendicular bisector of CD, creates three new vertices (equal to the number of preexisting lines in the localization space),
four new faces, and seven new edges at most. (b) The second line, line 2, which is the perpendicular bisector of BD, has to pass through the
intersection point of the bisectors of CD and BC because fBD;CD;BCg form a triangle, and the perpendicular bisectors of the three sides of a
triangle intersect at a single point. Therefore, line 2 creates two new vertices, four new faces, and six new edges at most. (c) Similarly, line 3, which is
the perpendicular bisector of AD, has to pass through the intersection points of the perpendicular bisectors of AB, BD, AC, and CD, as
fAD;AB;BDg and fAD;AC;CDg are two triangles with a common side AD. Therefore, line 3 creates one new vertex, four new faces, and five new
edges at most.



The maximum number of vertices for n ¼ 3 is 1.
Therefore, for n reference nodes, the maximum number
of vertices is

1þ
Xn
i¼4

ði� 1Þði� 2Þ2

2
¼ n

4

8
� 7n3

12
þ 7n2

8
� 5n

12
: ð2Þ

Edges. As explained previously, the first new line

intersects the already present lines in at most ði�1Þði�2Þ
2

vertices and creates at most ði�1Þði�2Þ
2 þ 1 new edges on the

new line and at most ði�1Þði�2Þ
2 new edges on the old lines,

which add up to ði�1Þði�2Þ
2 � 2þ 1 new edges at most. Since

the second new line passes through at least one of

the vertices created by the first new line, it creates at

most ði�1Þði�2Þ
2 þ 1 new edges on the second new line, and it

creates at most ði�1Þði�2Þ
2 � 1 new edges on the old lines,

including the first new line. This adds up to at most
ði�1Þði�2Þ

2 � 2 new edges in the localization space. This trend

is again illustrated in Fig. 2 for four reference nodes in the

localization space. Finally, the ði� 1Þth new line adds
ði�1Þði�2Þ

2 � 2� ði� 3Þ new edges to the localization space.

Therefore, the total number of new edges added by the

ith reference node is at most

ði� 1Þði� 2Þ
2

� 2þ 1þði� 1Þði� 2Þ
2

� 2þði� 1Þði� 2Þ
2

� 2� 1

þ � � � þ ði� 1Þði� 2Þ
2

� 2�ði� 3Þ ¼ i3� 9i2

2
þ 15i

2
� 4:

ð3Þ

The maximum number of edges for n ¼ 3 is 6.
Therefore, for n reference nodes, the maximum number
of edges is

6þ
Xn
i¼4

i3 � 9i2

2
þ 15i

2
� 4

� �
¼ n

4

4
� n3 þ 7n2

4
� n: ð4Þ

Faces. The number of new faces created by a new line

is equal to the number of edges on the new line.

Therefore, the number of new faces created by the first

new line among the ði� 1Þ new lines is at most
ði�1Þði�2Þ

2 þ 1. Since the second new line has to pass

through one of the intersection points of the first line, it

would also create ði�1Þði�2Þ
2 þ 1 new faces and this trend

continues for all the ði� 1Þ new lines as illustrated in

Fig. 2. Therefore, the total number of new faces added by

the ith reference node is at most

ði� 1Þ ði� 1Þði� 2Þ
2

þ 1

� �
: ð5Þ

The localization space has one face when n ¼ 1.
Therefore, for n reference nodes, the maximum number
of faces in the localization space is given by

1þ
Xn
i¼2

ði� 1Þ ði� 1Þði� 2Þ
2

þ 1

� �

¼ n
4

8
� 5n3

12
þ 7n2

8
� 7n

12
þ 1: ð6Þ

tu

Corollary 1. The maximum number of unique location sequences
due to n reference nodes is n4

2 � 2n3 þ 7n2

2 � 2nþ 1.

Proof. The maximum number of unique location sequences
is the sum of the maximum number of vertices, edges,
and faces due to n reference nodes, as derived in
Theorem 1:

n4

8
� 7n3

12
þ 7n2

8
� 5n

12

� �
þ n4

4
� n3 þ 7n2

4
� n

� �
þ

n4

8
� 5n3

12
þ 7n2

8
� 7n

12
þ 1

� �
¼ n4

2
� 2n3þ 7n2

2
� 2nþ 1:

ð7Þ

tu

Next, we illustrate how we can obtain all these feasible
location sequences in the localization space and store them
in the location sequence table.

3.2 Location Sequence Table Construction

Below, we present the pseudocode for an algorithm that
constructs the location sequence table, given the locations of
the reference nodes and the boundaries of the localization
space:1

Algorithm 1: CONSTRUCTLOCATIONSEQUENCETABLE.

Input:

1) Location coordinates of reference nodes

fðaxi; ayiÞji ¼ 0! n� 1g.
2) Boundaries of the localization space B.

Output: Location Sequence Table.

0 L ¼ fliji ¼ 0! ðnðn�1Þ
2 � 1Þg  

BISECTORLINES(fðaxi; ayiÞji ¼ 0! n� 1g; B)

1 ðFL;EL; V LÞ  CONSTRUCTARRANGEMENTðLÞ
.Get vertex sequences.

2 for i 0 to ðjV Lj � 1Þ
3 Centroid½i�  V L½i�
4 Sequence½i�  GETSEQUENCEðCentroid½i�Þ
5 end for

.Get edge sequences.

6 for i jV Lj to ðjV Lj þ jELj � 1Þ
7 Centroid½i�  GETEDGECENTROIDðEL½i�Þ
8 Sequence½i�  GETSEQUENCEðCentroid½i�Þ
9 end for

.Get face sequences.

10 for i ðjV Lj þ jELjÞ to ðjV Lj þ jELj þ jFLj � 1Þ
11 Centroid½i�  GETFACECENTROIDðFL½i�Þ
12 Sequence½i�  GETSEQUENCEðCentroid½i�Þ
13 end for

.Return the location sequence table

14 return {Sequence, Centroid}

. BISECTORLINES takes in the locations of the refer-
ence nodes and the boundaries of the localization
space as input and returns the set L of all pairwise
perpendicular bisector lines within the boundaries of
the localization space. Each line is represented by the
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1. C++ code files that construct the arrangement of lines and the
location sequence table are available for download at http://anrg.usc.edu/
downloads.html.



intersection points on the left and right boundaries
of the localization space.

. CONSTRUCTARRANGEMENT constructs the arrange-
ment, given a set of lines as input, and returns a
doubly connected edge list (EL) that consists of a
vertex list ðV LÞ, an EL, and a face list ðFLÞ. Please
refer to [12] (Section 8.3) for a detailed description of
this algorithm.

. VL contains pointers to all vertices of the arrange-
ment induced by the set L.

. EL contains pointers to all edges of the arrangement
induced by the set L.

. FL contains pointers to all faces of the arrangement
induced by the set L.

. GETEDGECENTROID takes in an edge pointer as the
input and returns the centroid of the edge. The
centroid of an edge ðcx; cyÞ is its midpoint, given by

ðcx; cyÞ  
ox þ dx

2
;
oy þ dy

2

� �
; ð8Þ

where ðox; oyÞ and ðdx; dyÞ are the origin and

destination vertices of the edge.
. GETFACECENTROID takes in a face pointer as

the input and returns the centroid of the face.
The centroid of a face ðcx; cyÞ, given its vertices
fðxi; yiÞj0 � i � p� 1g, is calculated as follows:

cx  
1

6A

Xp�1

i¼0

ðxi þ xiþ1Þðxiyiþ1 � xiþ1yiÞ; ð9Þ

cy  
1

6A

Xp�1

i¼0

ðyi þ yiþ1Þðxiyiþ1 � xiþ1yiÞ; ð10Þ

where p is the number of vertices that bound a given

face and A is its area given by

A 1

2

Xp�1

i¼0

ðxiyiþ1 � xiþ1yiÞ ; ðxp; ypÞ ¼ ðx0; y0Þ: ð11Þ

. GETSEQUENCE takes in the coordinates of a point in
the localization space and returns the location
sequence for that point with respect to the locations
of the reference nodes.

Theorem 2. Algorithm 1 takes Oðn5 logðnÞÞ worst case time and

Oðn5Þ worst case space to construct the location sequence

table.

Proof. The function BISECTORLINES in line 0 takes Oðn2Þ
time and space. The algorithm CONSTRUCTARRANGE-

MENT that constructs the arrangement of lines
takes Oðn4Þ time, which is optimal, as proven in [12,
Theorems 8.5 and 8.6]. Since this algorithm returns the
VL, the EL, and the FL, it requires Oðn4Þ space to store
all the three lists. The functions GETFACECENTROID

and GETEDGECENTROID in lines 3 and 7, respectively,
take Oð1Þ time and space each. The function GET-

SEQUENCE involves sorting n reference nodes based
on their distances from the centroid of the region in

consideration. This takes Oðn lognÞ time and OðnÞ
space. Since the number of faces, edges, and vertices
is Oðn4Þ, the worst case time requirement for lines 2-13
in the above algorithm is Oðn5 log ðnÞÞ and the worst
case space requirement is Oðn5Þ. Therefore, in total,
Algorithm 1 takes Oðn5 logðnÞÞ worst case time and
Oðn5Þ worst case space to construct the location
sequence table. tu
Next, we discuss the effect of RF channel random errors

on the unknown node location sequence.

3.3 Unknown Node Location Sequence

The unknown node determines its location sequence by
using RSS measurements of RF localization packets ex-
changed between itself and the reference nodes. The RSS
measurements are subjected to random errors due to RF
channel nonidealities such as multipath and shadowing. In
the absence of such nonidealities, the RSS measurements
accurately represent the distances between the unknown
node and the reference nodes. If the reference nodes are
ranked in a decreasing order of these RSS values, then this
order represents the increasing order of their separation
from the unknown node.

This is not true in reality. Reference nodes that are
farther from the unknown node might measure higher RSS
values than reference nodes that are closer. If the reference
nodes are ranked on their respective RSS measurements,
then the location sequence formed by these ranks will be a
corrupted version of the original sequence. Corruption in an
unknown node location sequence results in an erroneous
estimation of its location. In the ideal case, when there is no
corruption, the unknown node location would be the
centroid of the region represented by its location sequence.
However, corruption in its location sequence could erro-
neously estimate its location to be the centroid of some
other region.

For example, if the ranks of reference nodes C and D are
interchanged because of corruption due to RF channel
nonidealities for Region 1 in Fig. 1c, then the new location
sequence would be 1243 instead of 1234. Moreover, 1243
represents a region that is adjacent to the original region, as
shown in Fig. 1d.

3.4 Feasible and Infeasible Sequences

As discussed previously, combinatorially, n reference nodes
produce OðnnÞ location sequences. However, as shown in
the previous section, a localization space with n reference
nodes has only Oðn4Þ distinct regions and, consequently,
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Fig. 3. RF channel nonidealities could corrupt a location sequence from

the feasible space either to another sequence in the feasible space or to

a sequence in the infeasible space.



only Oðn4Þ feasible location sequences in the worst case. For
given reference node locations, the location sequence table
includes all feasible location sequences. All other sequences
are infeasible. The nonidealities of the RF channel could
corrupt a feasible location sequence either to another
feasible sequence or to an infeasible sequence, as illustrated
in Fig. 3. If the corrupted sequence is infeasible, then it
would be possible to detect the corruption in the sequence,
whereas, if the corrupted sequence is feasible, then
corruption detection is not possible.

Here, we would like to emphasize the importance of low
density of location sequences compared to the full sequence
space. The low density of location sequences implies that
many infeasible sequences are mapped to a single feasible
sequence, and this, in turn, could provide robustness to
location estimation against RF channel nonidealities.

Next, we present metrics to measure the distance
between two location sequences.

3.5 Distance Metrics

The distance between two location sequences is essentially
the difference in rank orders of different reference nodes.
Fortunately, statistics [13] offers two metrics that capture
this difference in rank orders: Spearman’s Rank Order
Correlation Coefficient and Kendall’s Tau.

Given two location sequences U ¼ fuig and V ¼ fvig,
1 � i � n, where ui and vi are the ranks of reference nodes,
the above two metrics are defined as follows:

1. Spearman’s Rank Order Correlation Coefficient [13]. It is
defined as the linear correlation coefficient of the
ranks and is given by

� ¼ 1� 6
Pn

i¼1ðui � viÞ
2

nðn2 � 1Þ : ð12Þ

2. Kendall’s Tau [13]. In contrast to Spearman’s coeffi-
cient, in which the correlation of exact ranks is
calculated, this metric calculates the correlation
between the relative ordering of ranks of the two
sequences. It compares all the nðn�1Þ

2 possible pairs of
ranks ðui; viÞ and ðuj; vjÞ to determine the number of
matching and nonmatching pairs. A pair is matching
or concordant if ui > uj ) vi > vj or ui < uj ) vi <
vj and nonmatching or discordant if ui > uj ) vi <
vj or ui < uj ) vi > vj. The correlation between the
two sequences is calculated as follows:

� ¼ ðnc � ndÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc þ nd þ ntu
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nc þ nd þ ntv
p ; ð13Þ

where nc is the number of concordant pairs, nd is the
number of discordant pairs, ntu is the number of ties
in u, and ntv is the number of ties in v.

The range of both � and � is [�1, 1]. Next, we describe the
procedure to determine the locations of unknown nodes by
using their location sequences.

3.6 Location Determination

The location of the unknown node is determined as follows:

1. Calculate distances between the unknown node
location sequence and all location sequences in the

location sequence table by using the above distance
metrics.

2. Choose the centroid represented by the location
sequence that is closest to the unknown node
location sequence as its location estimate.

Mathematically,

LocationEstimate ¼ Centroidðarg min
1�i�Oðn4Þ

�iÞ; ð14Þ

where �i is the Kendall’s Tau or Spearman’s correlation
between the unknown node location sequence and the
ith location sequence in the location sequence table.

Due to RF channel nonidealities, the unknown node
location sequence could be a feasible sequence different
from its uncorrupted version or an infeasible sequence. In
any case, the above procedure maps it to the centroid of the
nearest feasible location sequence in the location sequence
table that represents a different region in the arrangement
than the original uncorrupted version.

We measure the amount of corruption in the unknown
node location sequence by calculating its distance from the
uncorrupted version, using the above metrics, and denote it
by T . We denote the distance between the corrupted
unknown node location sequence and the nearest feasible
sequence in the location sequence table by � .

Calculating the Spearman’s coefficient and Kendall’s Tau
between two sequences are OðnÞ and Oðn2Þ operations,
respectively. Since the location sequence table is of size
Oðn4Þ, searching through it takes Oðn5Þ and Oðn6Þ opera-
tions, respectively, for the above two metrics. Later in the
paper, in Section 5, we compare the performance of the two
distance metrics in terms of error in the unknown node
location estimate.

4 LOCALIZATION SCENARIOS

In this section, we illustrate two localization procedures for
two different scenarios that are determined by the localiza-
tion space size:

1. The entire localization space is within the radio range of
the unknown node. In this case, the location sequence
table remains constant for all locations of the
unknown node in the localization space. Therefore,
the localization procedure is given as follows:

. Preconstruct and store the location sequence
table by using the locations of the reference
nodes.

. When the unknown node initiates the localiza-
tion process by broadcasting a localization
packet, provide the stored location sequence
table along with the RSS measurements from
the reference nodes.

. The unknown node determines its location
sequence by using the RSS measurements and
determines its location by searching through the
provided location sequence table for the nearest
feasible location sequence.

Here, the time cost incurred by the unknown node to
estimate its location is equal to the sum of the time to
determine its location sequence, which is an
Oðn lognÞ operation, and the time to search through
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the location sequence table, which is a Oðn6Þ
operation. The amount of memory space required
is on the order of Oðn5Þ bytes.

2. The localization space is much larger than the radio range
of the unknown node. In this case, the location
sequence table changes with the location of the
unknown node as a different set of reference nodes
are encountered at each location. Therefore, the
localization procedure is given as follows:

. The unknown node collects the locations and
RSS measurements of the reference nodes in its
radio range.

. It constructs the location sequence table by
using Algorithm 1 and the locations of the
reference nodes and calculates its location
sequence by using the RSS measurements.

. It determines its location by searching for the
nearest sequence in the location sequence table.

In this case, the time cost incurred by the unknown
node to estimate its location is equal to the sum of
the time to calculate its location sequence, which is
an Oðn lognÞ operation, the time to construct the
location sequence table, which is an Oðn5 lognÞ
operation, and the time to search through it, which
is a Oðn6Þ operation. The memory requirement is
Oðn5Þ in this case also.

A wireless device that is typically used as an unknown
node is of the form factor of an iPAQ [14] (that can
communicate with the reference node devices, usually of
the form factor of Berkeley MICA 2 motes [15]) which
typically has a 300-MHz processor and 128-Mbyte RAM. In
real-application scenarios, a typical value for the number of
reference nodes ðnÞ is less than 15, after which there is only
a very marginal gain in location accuracy of the unknown
node. Therefore, for a typical value of n ¼ 10 reference
nodes, the time and space requirements for the unknown
node to construct the location sequence table are approxi-
mately 0.3 ms and 32 Kbytes, respectively. Also, the time
required to search through it is approximately 0.45 ms.
Thus, including the associated overhead, the total localiza-
tion time taken by SBL is in milliseconds in typical
application scenarios, which is very efficient. Next, we

illustrate the robustness of our localization technique to
RF channel nonidealities through some examples.

4.1 Examples

Fig. 4 shows a sample layout of nine reference nodes placed
in a grid and a single unknown node (P). Fig. 4a plots the
location estimate (E) for the ideal case when there are no
erroneous ranks; that is, the location sequence is uncor-
rupted, or T ¼ 1. In these examples, we use Kendall’s Tau
to measure the distance between sequences. Figs. 4b, 4c, and
4d show the location estimates for increasing corruption in
unknown node location sequences. The location estimate
error increases with increasing corruption or decreasing
correlation T between the RSS location sequence and the
true location sequence of P. These examples suggest that
SBL is robust to multipath and shadowing effects of the RF
channel up to some level. Intuitively, the three main reasons
to which this robustness can be attributed to are

1. the low density Oðn4Þ of the location sequence
space relative to the entire sequence space of OðnnÞ,

2. the inherent redundancy of comparing nðn�1Þ
2 rank

pairs in calculating the distance between two
sequences by using Kendall’s Tau, and

3. the rank order in the location sequence of the
unknown node due to two reference nodes with
path losses PLi and PLj, which is robust to random
errors in them up to a tolerance level of jPLi � PLjj.

5 EVALUATION

In this section, we present a complete performance
evaluation of SBL. First, we discuss its inherent location
error characteristics, and then, by using simulations, we
study its performance as a function of the RF channel and
node deployment parameters. We also present a compara-
tive study with three other state-of-the-art localization
techniques.

5.1 Location Error Characteristics

In the location sequence table, each location sequence maps
to the centroid of the region that it represents. Representing
all locations in a region by its centroid comes at the cost of

YEDAVALLI AND KRISHNAMACHARI: SEQUENCE-BASED LOCALIZATION IN WIRELESS SENSOR NETWORKS 7

Fig. 4. Robustness examples: location estimate (E) for the unknown node (P) at (1,3) for a grid layout of nine reference nodes. The number adjacent
to a reference node is its corresponding rank. The location error is expressed in meters, where the side length of the square localization area is 12 m.
(a) ðT ¼ 1; � ¼ 1Þ, Estimate (E): (1.33, 1.33), and Location Error: 0.46 m. (b) ðT ¼ 0:722; � ¼ 0:783Þ, Estimate (E): (2.0, 2.0), and Location Error:
1.4 m. (c) ðT ¼ 0:556; � ¼ 0:667Þ, Estimate (E): (2.0, 2.0), and Location Error: 1.4 m. (d) ðT ¼ 0:111; � ¼ 0:278Þ, Estimate (E): (2.0, 1.33), and
Location Error: 1.94 m.



error in the location estimate of the location sequence. For
face regions (in which the unknown node is more likely to
be located), the location error is of the order of the square
root of the area of the face. Since the number of faces for
n reference nodes is Oðn4Þ, the average face area varies,
which is proportional to 1

n4 . Therefore, the average location
estimate error for locations in a face region reduces, which
is proportional to n2.

Apart from the above location errors, the performance of
SBL is affected by random errors in RSS measurements due
to multipath and shadowing effects of the RF channel. In
the rest of this section, we present results from simulation
studies that capture the effect of these random errors on the
performance of SBL.

5.2 Simulation Model

The most widely used simulation model to generate RSS
samples as a function of distance in RF channels is the log-
normal shadowing model [16]:

PRðdÞ ¼ PT � PLðd0Þ � 10� log10

d

d0 þX�
; ð15Þ

where PR is the received signal power, PT is the transmit
power, and PLðd0Þ is the path loss for a reference distance
of d0. � is the path loss exponent, and the random variation
in RSS is expressed as a Gaussian random variable of zero
mean and �2 variance X� ¼ Nð0; �2Þ. All powers are in
dBm, and all distances are in meters. In this model, we do
not provision separately for any obstructions like walls. If
obstructions are to be considered, then an extra constant
needs to be subtracted from the right-hand side of the above
equation to account for the attenuation in them (the
constant depends on the type and number of obstructions).

5.3 Simulation Parameters

The accuracy of RF-based localization techniques depends
on a number of parameters. Chief among these is the
accuracy of RSS measurements. In an ideal world, in which
RSS values are not affected by multipath fading effects, they
represent true distances between nodes, which can lead to
very accurate localization of unknown nodes. The ideal
world is represented by � ¼ 0 in (15). However, in the real
world, RSS values are corrupted by multipath fading
effects. This has a profound influence on the accuracy of
RF localization techniques. According to the above propa-
gation model, RSS values are defined by � and � values for
the given environment. Since every RF environment can be
characterized by � and � values (see [17] and [18]), it is
necessary to study the accuracy of RF localization techni-
ques as a function of these two parameters.

In addition, the density and number of reference nodes
available to the unknown node has a significant influence
on the number of reference nodes (see [2], [6], and so forth).
Thus, the location estimate of any RF-based localization
technique depends on a fundamental set of parameters,
which can be broadly categorized as follows:

1. RF Channel Characteristics [17], [16]:

. Path loss exponent ð�Þ: measures the power
attenuation of RF signals relative to distance.

. Standard deviation ð�Þ: measures the standard
deviation in RSS measurements due to log-
normal shadowing.

The values of � and � change with the frequency of
operation and the obstructions and disturbance in
the environment.

2. Node Deployment Parameters:

. Number of reference nodes ðnÞ and

. Reference node density ð�Þ.
Table 1 lists the typical values and ranges for different

parameters used in our simulations.

5.4 Simulation Procedure

We assume that all reference nodes are in the radio range of
each other and also that of the unknown node. A 48-bit
arithmetic linear congruential pseudorandom number gen-
erator was used, and results were averaged over 100 ran-
dom trials. In each trial, n reference nodes were placed
uniformly and randomly in a square localization space of
size S � S square meters, and the unknown node was
placed at 100 different locations on a grid of S

10 separation.
In total, the results presented are averaged over 10,000
different scenarios. In our simulations, we use S ¼ 100 m.

The performance of SBL is measured in terms of location
error for a wide range of RF channel conditions and node
deployment parameters. Location error is defined as the
euclidean distance between the location estimate and the
actual location of the unknown node. The location error is
averaged over 100 random trials, as described previously.

Fig. 5 plots the two distance metrics described in the
previous section as a function of the number of reference
nodes ðnÞ or, in other words, the length of the location
sequence. There is a growing difference, however small,
between the two metrics with increasing length of the
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TABLE 1
Typical Values and Ranges for Different Simulation Parameters

Fig. 5. Average location error as measured using Spearman’s
correlation and Kendall’s Tau as a function of the number of reference
nodes.



sequence, with Kendall’s Tau performing increasingly

better than Spearman’s correlation in terms of the location
estimate error.

5.5 Simulation Results: Sequence Corruption

Fig. 6 plots the corruption in location sequences, repre-

sented by T , due to RF channel and node deployment

parameters. According to these results, the corruption in

location sequences

. increases with increasing randomness in the RF
channel represented by standard deviation in RSS �
(Fig. 6a),

. decreases with increasing path loss exponent �
(Fig. 6b), and

. is independent of the number of reference nodes in
the localization space n (Fig. 6c).

5.6 Simulation Results: Performance Study

Fig. 7 plots the average location error due to SBL as a

function of RF channel and node deployment parameters.
The main results are as follows:

. Location error due to SBL is higher for RF channels
with higher standard deviation ð�Þ values (Fig. 7a).
This is due to higher levels of corruption in location
sequences at higher values of �.

. Location error due to SBL is lower for RF channels
with higher path loss exponent ð�Þ values (Fig. 7b).
This is due to lower levels of corruption in location
sequences at higher � values.

. Location error due to SBL reduces with increasing
number of reference nodes ðnÞ, suggesting that
longer sequences are more robust to RF channel
nonidealities than shorter sequences (Fig. 7b).

. Location error due to SBL reduces with increasing
reference node density �, as shown in Fig. 7b.

. Location error due to SBL depends on the location of
the unknown node. Fig. 7c plots the average location
error for all possible unknown node locations in the
localization space. It shows that unknown node
locations that are closer to the center of the
localization space have lower location error than
unknown node locations closer to the boundaries of
the localization space. This can be verified from the
observation (for example, Fig. 1b) that, for any
arrangement of bisector lines, the faces and edges
toward the center of the localization space have
smaller areas and lengths, respectively, compared to
that of at its boundaries. Consequently, for unknown
node locations toward the center of the localization
space, the location to which the nearest feasible
sequence of the corrupted sequence maps will be
closer to the true location of the unknown node than
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Fig. 6. Sequence corruption: cumulative distribution function of Kendall’s Tau T between the RSS location sequence and the true location sequence
for varying (a) standard deviation ð�Þ, (b) path loss exponent ð�Þ, and (c) number of reference nodes ðnÞ.

Fig. 7. Performance. (a) Average location error as a function of RF channel parameters: standard deviation ð�Þ and path loss exponent ð�Þ.
(b) Average location error as a function of node deployment parameters: number of reference nodes ðnÞ and reference node density ð�Þ. (c) Average
location error as a function of the location of the unknown node.



for locations toward the boundaries. This results in
lower location errors for unknown node locations
toward the center of the localization space than for
locations toward its boundaries.

. Fig. 8a plots the average location error as a function
of Kendall’s Tau values T and � , and Fig. 8b plots �
as a function of T . The figures suggest the following:

– The location error is correlated to T , which is the
corruption due to RF channel.

– The location error is correlated to � , which is the
distance between the corrupted sequence and
the nearest feasible sequence.

– A correlation exists between � and T .

This suggests that � , which is a measurable quantity,

as opposed to T , could be used as a quantitative

indicator of the location error due to SBL. Also,

owing to its correlation to T , it could also be used as

an approximate indicator of the state of the RF

channel.

5.7 Simulation Results: Comparative Study

We compare SBL with three other comparable (see [19])

state-of-the-art localization techniques: least squares estimator

(LSE), proximity localization, and three centroid.

. LSE. It is identical to the maximum likelihood
location estimator [1], [2] and works as follows:

– Measure the distance between each of the
reference nodes and the unknown node by
using

dmi ¼ 10
PT�PLðd0Þ�PRi

10� ; ð16Þ

where dmi is the measured distance and PRi is

the mean received signal power between a given

reference node i and the unknown node.

Accurate distance measurement requires accu-

rate estimation of the path loss exponent ð�Þ of

the environment. This requires expensive ran-

ging techniques and/or extensive preconfigura-

tion surveys of the localization space.
– For each grid point location in the localization

space, determine the sum of the squares of
differences in the measured distances and the

true euclidean distances of all the reference
nodes from the grid point:

�ðx;yÞ ¼
Xn�1

i¼0

ðdðx;yÞi � dmiÞ2; ð17Þ

where d
ðx;yÞ
i is the euclidean distance between

the grid location ðx; yÞ and the reference node i.
– Choose the grid point location with the least

value of the above sum �ðx;yÞ as the location of

the unknown node. In our study, we consider a

grid resolution ðrÞ that is 100 times higher than

the dimensions of the localization space; that is,
for a localization space of S � S square meters,

we search r2 ¼ 10; 000 grid points, with a

separation of S
100 meters between them, to

determine the location of the unknown node.
. Proximity localization. The location of the closest

reference node by RSS value is chosen as the location
of the unknown node. This is an extreme special case
of SBL, in which the sequence is of length 1.

. Three centroid. The centroid of all the reference nodes
in the radio range of the unknown node is chosen as
its location [7]. Since, in our case, all reference nodes
are in the radio range of the unknown node, the
location error would be independent of the RF
channel characteristics. In order to measure the
effect of these characteristics on the centroid techni-
que, we choose the centroid of the closest three
reference nodes by RSS values as the location of the
unknown node.

Fig. 9 plots the average location error due to SBL, LSE,
proximity localization, and three centroid as a function of
the standard deviation in RSS log-normal distribution � for
different values of path loss exponents � and for different
values of number of reference nodes n. The main results of
the comparison are the following:

. SBL performs better than proximity localization and
three centroid over a range of RF channel and node
deployment parameters.

. SBL performs better than LSE for higher values of �,
whereas LSE performs better than SBL for lower
values of �. There is a crossover value of � between
the error due to SBL and LSE, and this value of � is
higher for environments that have more attenuation,
that is, higher values of path loss exponent �. There
is no significant change in the value of crossover �
with changing number of reference nodes n.

. For lower values of �, the location error due to SBL
decreases faster than location error due to LSE for
increasing values of n. This can be seen in Figs. 9a,
9b, and 9c, in which the difference between the
location error due to SBL and LSE reduces with
increasing values of n.

. LSE is outperformed by all other localization
techniques after some value of �, and this value is
the lowest for SBL.

It should be noted that, in the above simulations, LSE
operates at a considerable advantage over other techniques
as the exact value of the path loss exponent � is known. This
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Fig. 8. (a) Average location error as a function of the sequence
corruption ðT Þ and as a function of the distance ð�Þ between the
corrupted sequence and its nearest feasible sequence in the location
sequence table. (b) Correlation between � and T .



advantage vanishes in real-world scenarios, where the
value of � is very difficult to estimate accurately, owing to
its dependence on the area features such as walls, furniture,
and so forth. Thus, LSE may not perform as well in real-
world scenarios. Table 2 compares the time and space
complexities of SBL with that of the other three localization
techniques. We believe that the efficiency of SBL can be
increased significantly by using more efficient location
sequence table search algorithms as opposed to a naive
search.

6 REAL-WORLD EXPERIMENTS

The performance of SBL in real systems is studied through

two experiments, representing different RF channel and

node deployment parameters, and conducted using Berke-

ley MICA 2 motes [15]. The first experiment was conducted

in a parking lot, which represents a relatively obstruction-

free RF channel, and the second experiment was conducted

in an office building with many rooms and furniture, which

represents a typical indoor environment. For comparison,

the locations of the unknown nodes were also estimated

using the three localization techniques—LSE, proximity

localization, and three centroid—described in the previous

section.

6.1 Outdoor Experiment: Parking Lot

The RF channel in an outdoor parking lot represents a class
of relatively obstruction-free channels. As shown in Fig. 10,
11 MICA 2 motes were placed randomly on the ground. All
motes were in the line of sight of each other, and all of them
were programmed to broadcast a single packet without
interfering with each other.2 The motes recorded the RSS
values of the received packets and stored them in their
electrically erasable programmable read-only memory
(Eeprom), which were later used offline for location
estimation.

The locations of all the motes were estimated and
compared with their true locations. Since all motes were
in the radio range of each other, each mote had 10 reference
nodes. For the LSE method, to estimate the distances
between the motes, the RSS model described by (15) in
Section 5.2 was used, as there were no obstructions between
the motes in this experiment. The performance of the LSE
technique depends on the value of the path loss exponent �
for the area in which the experiment was conducted. For
this experiment, we used the true distances and the
corresponding RSS values between the reference nodes
and the unknown node to estimate the value of �. Fig. 10a
plots the RSS values as a function of distance. Linear
regression analysis applied to the RSS versus distance data
gives its slope as �2.9, implying that � ¼ 2:9. We used this
value of � to evaluate the LSE technique.

Fig. 10b compares the true mote locations with SBL
location estimates for all the motes. The figure also shows
the arrangement induced by the perpendicular bisectors

YEDAVALLI AND KRISHNAMACHARI: SEQUENCE-BASED LOCALIZATION IN WIRELESS SENSOR NETWORKS 11

2. We had actually measured the RSS of 100 packets in 1 minute and
observed that their standard deviation was less than 0.5 dBm. Therefore, we
decided to use only a single packet for localization. In real-application
scenarios, this would help in conserving energy at the mote and reducing
the delay in localization without affecting its accuracy.

Fig. 9. Comparison: average location error due to SBL, LSE, proximity localization, and three centroid as a function of the standard deviation of RSS

log-normal distribution � for different values of path loss exponent � ((a) � ¼ 2, and n ¼ 10, (b) � ¼ 4, and n ¼ 10, and (c) � ¼ 6, and n ¼ 10) and for

different values of number of reference nodes n ((a) n ¼ 4, and � ¼ 4, (b) n ¼ 7, and � ¼ 4, and (c) n ¼ 10, and � ¼ 4).

TABLE 2
Comparison of Worst Case Computational Complexities
of SBL, LSE, Proximity Localization, and Three Centroid



between all pairs of reference nodes. Fig. 10c plots the
absolute error in meters at each mote location due to all the
four techniques. Evidently, SBL performs better than
proximity localization and three centroid in 10 out of
11 cases, and it performs better than LSE in all the 11 cases.

Fig. 10d plots the sequence corruption ðT Þ at each mote
location and the distance ð�Þ between the corrupted
sequence and the nearest feasible sequence in the location
sequence table for all the 11 nodes. The correlation between
T and � can be clearly seen in the figure. Comparing Fig. 10c
and Fig. 10d, broad correlations between T and the location
error and between � and the location error can be observed
for SBL. For example, the location error is the highest for
node IDs 1 and 9, in that order, and � is the lowest for the
same node IDs in the same order. Also, the location error is
almost equal for nodes 8, 2, 7 and 10. This trend is also
reflected in the values of � for those nodes.

Table 3 shows the average absolute location error in
meters, with varying numbers of reference nodes consid-
ered by the unknown node. For each node in the
experiment, n reference nodes were chosen in turn from
the 10 available reference nodes. Thus, for n reference
nodes, the location error is averaged over 10

n

� �
values. The

table shows that, in an outdoor environment, SBL performs
better than the other three localization techniques, irrespec-
tive of the number of reference nodes.

6.2 Indoor Experiment: Office Building

Office buildings with features such as rooms, corridors,
furniture, and other obstructions represent a distinct class
of RF channels. We placed 12 MICA 2 motes (reference
nodes) on the ground randomly in a corner of the Electrical
Engineering building at the University of Southern Cali-
fornia (USC), spanning different rooms and corridors.
Fig. 11 shows a schematic of the experimental setup. In
this experiment, an unknown node was placed at five

different locations, and these locations were estimated
using all the 12 motes as reference nodes. As in the outdoor
experiment, the unknown node was programmed to
broadcast a single packet from each location, and the
reference nodes recorded the RSS values of this packet in
their respective Eeprom, which were later used offline for
location estimation.

Unlike in the outdoor experiment, not all motes were in
the line of sight of each other, even though they were in
each other’s radio range. A subset of the motes had
obstructions in between them in the form of walls. As for
the outdoor experiment, for the LSE method, the value of �
was calculated using linear regression analysis for RSS
versus distance values between the reference nodes and the
unknown node. Fig. 11a shows the data. In this case, the
value of � is 2.2.

Fig. 11b compares the SBL location estimates of the five
unknown node locations with their true locations. It can be
seen that the path of the location estimates closely follows
the true path of the unknown node. Fig. 11c plots the
location estimate error due to SBL, LSE, proximity localiza-
tion, and three-centroid techniques for each unknown node
location. It can be observed that SBL performs better than
LSE and three centroid in four out of five cases and better
than proximity localization in two out of five cases. The
reason that proximity localization is performing well is the
presence of reference nodes in close proximity to each
location of the unknown node.

Fig. 11d plots the sequence corruption ðT Þ at each mote
location and the distance ð�Þ between the corrupted
sequence and the nearest feasible sequence in the location
sequence table for all the five unknown node locations.
Comparing this figure and Fig. 10d shows that sequences
are more corrupted in the indoor experiment than the
outdoor experiment, which was expected. Also, as in the
outdoor experiment, there is a clear correlation between T
and � for the indoor experiment. However, the correlations
between T and location error and between � and location
error are not as clear as that in the outdoor experiment.

Table 4 shows the average absolute location error in
meters, with varying numbers of reference nodes consid-
ered by the unknown node. Similar to the outdoor
experiment, for each node in the experiment, n reference
nodes were chosen in turn from the 12 available reference
nodes and, thus, for n reference nodes, the location error is
averaged over 12

n

� �
values. The table shows that, in this
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Fig. 10. Outdoor experiment: 11 MICA 2 motes placed randomly in an area of 144 square meters were used as reference nodes and unknown

nodes. Consequently, each unknown node had 10 reference nodes. (a) Path loss exponent calculation � ¼ 2:9. (b) Comparison between true

locations and SBL location estimates. (c) Location error due to SBL, LSE, proximity localization, and three centroid (the nodes are ordered in

increasing error of SBL). (d) Corruption measure T and error indicator � .

TABLE 3
Comparison of Average Location Error
in Meters for the Outdoor Experiment



scenario, SBL outperforms LSE for all the cases and that
proximity localization (which is an extreme special case of
SBL) performs better than SBL. As mentioned previously,
the reason for this is that the choice of unknown node
locations is such that there is a reference node in close
proximity to each such location.

6.3 Discussion

Experimental results show that localization techniques are
more accurate for relatively clutter-free RF channel envir-
onments (outdoors with line of sight) than RF channels with
many obstructions (indoor environment). Also, the perfor-
mance of LSE in real-world scenarios is worse than in
simulations, as conjectured in Section 5.7. This is mainly
because the radio propagation model of (15) is an
approximate model, and the location estimate accuracy for
the LSE technique depends heavily on the accuracy of the
� estimate. The RSS measurements in the experiments
depend on antenna orientations, antenna height, and
transmitter/receiver nondeterminism. For simulations,
these issues can be captured within the log-normal random
term in (15).

7 RELATED WORK

In an earlier work [19], we presented a novel localization
algorithm called Ecolocation that uses location constraints for
robust localization. A location constraint is a relationship
between the distances of two reference nodes from the
unknown node that determines its proximity to either
reference nodes, as shown in Fig. 1a. Location constraints
can be graphically represented by perpendicular bisectors
between reference nodes (Section 2), and each location
sequence can be written as a set of location constraints.
Thus, the location constraint set is also unique to each
region in the arrangement.

In this localization algorithm, the unknown node
determines its set of location constraints by using RSS
measurements and estimates its location by searching
through grid points in the localization space to determine
the grid point with the highest number of matched location
constraints. In [19], we show that this is an Oðn2S2

r2 Þ time
operation, where S is the side of the square localization
space and r is the resolution of grid points. Thus, the
localization algorithm using location constraints is depen-
dent on the localization space size, the resolution of the
grid points, and the number of reference nodes. In contrast,
the localization algorithm using location sequences de-
pends only on the number of reference nodes, albeit
at higher time cost of Oðn6Þ. In fact, constraint-based
localization results tend to SBL ones for very high values of
grid point resolution r. The cost differences suggest that,
for smaller localization spaces and lower location accuracy
requirements, a constraint-based localization is better
compared to a sequence-based one, whereas the reverse
is true for bigger localization spaces and higher location
accuracy requirements.

In related works, Chakrabarty et al. [9] and Ray et al. [10]
use identity codes to determine the location of sensor nodes
in grid and nongrid sensor fields, respectively. Here, each
grid point or region in the localization space is identified by
a unique set of reference node IDs whose signals can reach
the point or region, and this unique set is an identity code
for that point or region. The two main drawbacks of this
approach are that 1) in order to uniquely identify all
unknown node locations in the localization space, the
reference nodes need to be placed carefully according to
rules determined by an optimization algorithm, and
that 2) for acceptable location accuracies, the number of
reference nodes required is prohibitively expensive, and for
sparse networks of reference nodes, the accuracy is coarse
grained in the order of radio range. For example, the
number of reference nodes required to uniquely identify the
location of an unknown node using identity codes is OðpmÞ,
where m is the number of dimensions of the localization
space, and p is the number of grid points per dimension [9].

In another related work, He et al. [6] propose an RF-
based localization technique in which the unknown node
location is determined by the intersection of all triangles,
formed by reference nodes, that are likely to bound it. The
unknown node determines its existence inside a triangle by
comparing its measured RSS values to that of its neighbors
to detect a trend in RSS values in any particular direction.
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Fig. 11. Indoor experiment: 12 MICA 2 motes placed randomly in an area of 120 square meters were used as reference nodes. The location of the

unknown node was estimated for five different locations using the 12 reference nodes. (a) Path loss exponent calculation � ¼ 2:2. (b) Comparison

between true path and SBL estimated path. (c) Location error due to SBL, LSE, proximity localization, and three centroid (the nodes are ordered in

increasing error of SBL). (d) Corruption measure T and error indicator � .

TABLE 4
Comparison of Average Location Error

in Meters for the Indoor Experiment



This technique depends on the weak assumption that signal
strength decreases monotonically with distance, which is
not true in real-world scenarios.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented a simple and novel localization
technique based on location sequences called SBL. In SBL,
location sequences are used to uniquely identify distinct
regions in the localization space. The location of the
unknown node is estimated by first determining its location
sequence using RSS measurements of RF signals between
the unknown node and the reference nodes and then
searching through a predetermined list of all feasible
location sequences in the localization space, called the
location sequence table, to find the region represented by
the “nearest” one. In this chapter, we derived expressions
for the maximum number of location sequences and
presented an algorithm to construct the location sequence
table. We described distance metrics that measure the
distance between location sequences and used them to
determine the corruption in location sequences due to RF
channel nonidealities. We identified an approximate in-
dicator of the extent of location estimation error by using
the same distance metrics. Through examples, we demon-
strated the robustness of SBL to RF channel nonidealities.
Through exhaustive simulations and systematic real mote
experiments, we evaluated the performance of our localiza-
tion system and presented a comparison with other state-of-
the-art localization techniques for different RF channel and
node deployment parameters. Results showed that SBL
performs well and better than other state-of-the-art localiza-
tion techniques in both indoor and outdoor environments.

As part of future work, we would like to incorporate
location probability into the location sequence table. Owing
to the features and topology of objects and obstructions in
the localization space, unknown nodes are more likely to be
in some locations than others. This could be incorporated
into SBL by weighing feasible location sequences in the
location sequence table in proportion to the location
likelihoods of the regions that they represent.
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