Optimizing Mobile Computational Offloading
with Delay Constraints

Yi-Hsuan Kao
Department of Electrical Engineering
University of Southern California
Los Angeles, California 90089, USA
Email: yihsuank @usc.edu

Abstract—Computation Offloading—sending computational
tasks to more resourceful servers, is becoming a widely-used
approach to save limited resources on mobile devices like
battery life, storage, processor, etc. Given an application that
is partitioned into multiple tasks, the offloading decisions can
be made on each of them. However, considering the delay
constraint and the extra costs on data transmission and remote
computation, it is not trivial to make optimized decisions. Existing
works have formulated offloading decision problems as either
graph-partitioning or binary integer programming problems.
The first approach can solve the problem in polynomial time
but is not applicable to delay constraints. The second approach
relies on an integer programming solver without a polynomial
time guarantee. We provide an algorithm, DTP (Deterministic
delay constrained Task Partitioning), to solve the offloading
decision problem with delay constraints. DTP uses quantization
and runs in polynomial time in the number of tasks. Going
beyond prior work on linear delay constraints that apply only
to serial tasks, we generalize the delay constraints to settings
where the dependency between tasks can be described by a tree.
Furthermore, we provide another algorithm, PTP (Probabilistic
delay constrained Task Partitioning), which gives stronger QoS
guarantees. Simulation results show that our algorithms are
accurate and robust, and scale well with the number of tasks.

I. INTRODUCTION

Mobile devices have become the primary computing plat-
forms for millions of people. Due to the rapid growth of
high-volume multimedia data like video and audio, there will
be an increasing need for data processing and data manage-
ment [1]. Hence, mobile devices are supposed to not only
perform heavier computation but also do it more frequently.
A hardware-based approach is to enhance both the clock
speed and the battery capacity. However, doubling the clock
speed approximately octuples the power consumption [2].
Hence, given the state of the art of battery technology, it is
clear that the rate of battery improvement will not support
a processor that matches the growth of data and correspond-
ing application-specific computational requirements. On the
other hand, software-based technology for reducing program
power consumption offers alternative approaches [3]. One
way is called computation offloading: sending resource-hungry
computations to more resourceful servers. By doing so, we
can extend the battery life of mobile device and shorten the
response time in some cases [1], [4], [5].

Bhaskar Krishnamachari
Department of Electrical Engineering
University of Southern California
Los Angeles, California 90089, USA
Email: bkrishna@usc.edu

However, it is not trivial to implement offloading. Offload-
ing a task saves mobile battery and expedites the execution,
while the system must pay extra prices in the form of increased
data communication cost, task scheduling cost, etc [6]. Hence,
to find an optimal decision relies on globally identifying tasks
that are worth offloading. That is, to carefully determine the
optimal offloading decision that balances the system’s benefits
and costs.

In this paper, our goal is to find the optimal offloading
decision from a software provider’s point of view. Offering
an application service to users, a software provider makes
offloading decisions by considering both remote computational
cost and mobile energy consumption and a reasonable delay
(system response time). To achieve our goal, we formulate
an optimization problem subject to delay constraints, which
specifies quality of service (QoS) guarantee. Then, we design
a customized algorithm to solve our problem and provide its
complexity analysis. Furthermore, we present another algo-
rithm to solve the problems with stronger QoS constraints.

Existing works have been formulating optimization prob-
lems to solve for the optimal offloading decision [7], [8].
Suppose an application program is represented by a directed
graph, called task graph, where the vertices represent tasks
and the edges specify the data dependency between two tasks
[9]. The nodes in the graph are functions of the application
and the edges specify the data communication between them.
Given such a task graph, an offloading decision is represented
by a cut of the graph, which separates the vertices into
two disjoint sets, one representing tasks that are executed at
the mobile device and the other representing tasks that are
offloaded to the remote server. Hence, finding the optimal
offloading decision is equivalent to partitioning the graph
such that the objective function is minimized [10]. However,
this method does not consider delay constraints at all. Prior
work [7] on offloading with delay constraints has relied on a
general purpose integer linear programming (ILP) formulation
without polynomial run-time guarantees. Instead of solving the
optimization problem by either graph partitioning or an ILP
formulation, we present customized dynamic programming
algorithms that are proved to be running in polynomial time
and can also handle more sophisticated delay constraints.

We summarize our contribution as follows.

TABLE I
NOTATIONS
| Notation || Description |
An measure of complexity of task n
B channel bandwidth
C (n) set of children of node n
D) delay up to when task n finishes
I, offloading decision of task n
K number of quantization levels
A quantization step size
TLITY mobile / remote execution delay of task n
cr remote clock rate to which task n is sent
c mobile clock rate
dn, succeeding data of task n
d_np preceding data of task n (leaf only)
g(-) remote computational cost function
p° mobile computation power
plF mobile power consumption of RF components
tmazx maximum tolerable delay
R expectation of random variable R

Contribution 1: A customized and polynomial-time
algorithm to solve the optimization problem with
deterministic delay constraint. Cuervo et al. [7] formulate
their optimization problem with deterministic delay constraint
and solve it by a standard ILP solver without polynomial
run-time guarantee. We present a customized algorithm, DTP
(Deterministic delay constrained Task Partitioning), which is
applicable to tree structure task graph. Further, we prove that
DTP runs in polynomial time in the number of tasks.

Contribution 2: A stochastic analysis that is applicable to
probabilistic delay constraint. The variation of channel states
and user actions suggests that probabilistic delay guarantee
is more desirable than deterministic delay guarantee. In
this paper, we formulate a stochastic optimization problem
and present another algorithm, PTP (Probabilistic delay
constrained Task Partitioning), to solve it.

II. MODELS AND NOTATIONS

Consider an application that is separated into N tasks and
the corresponding task graph is a rooted tree as shown in Fig.
1. We assume that task 1 initializes the application and task
N, which is the rooted task, is executed in the end. The edge
(m,n) on the graph specifies that task n relies on the result
of task m. That is, task n can not start before task m finishes.

Let the binary variable I,, denote the offloading decision of
task n. That is, I,, = 1 implies that task n is offloaded to the
remote server. Our goal is to find these offloading decisions
{In}g:1 that minimizes the cost function subject to the total
delay constraints. Table I lists the notations in this paper.

From a software provider’s point of view, the cost function
consists of the remote computational cost and the mobile
energk; consumption. Given a series of offloading decisions,
{I,},_,, we calculate the cost as follows.

Cost = Zlng n,cn

TS S

n=1meC(n)

dm
Im) 5

N
|0
()]

In this equation, — denotes NOT operator and & denotes XOR
operator. The remote computational cost of task n is a function
of task complexity A,, and the remote clock rate c]. On the
other hand, the mobile energy consumption consists of the
costs of computation and RF components. When task n is
executed at mobile that induces the delay 7, the computation
energy is simply p°T. While before executing task 7, data
transmission is necessary if task n and the preceding task m
are executed at different places, which induces the delay ‘%’”.
Hence, the total RF energy consumption before executing task
n is the summation over all transmissions of its preceding
tasks m € C(n). For illustrative purpose, we assume that
the transmitting power and the receiving power are the same.
Finally, we use a positive weight w to represent for the desired
balance. For example, when the remaining battery is low, one
might want to increase w to bias the offloading decisions.

The total delay depends on the topology of the task graph.
For a rooted tree, we recursively define the accumulated delay
when task n finishes as

D™ = max

{D(m) _,_(Im@]n)dﬁ
meC(n)

- }+(ﬁfn)Té+1nT,:. ©)

It consists of the execution delay of task n and data transmis-
sion delay between task n and its preceding tasks. The delay
D) is dominated by the slowest branch. If the task graph is
a chain, the total delay, D&), can be further simplified as

N
(N) _ E l T z : dn
Dserial - nZI((_'In) Tn + InT L n+1 ¥ I §7

which is the same delay constraint considered in [7]. In the
following sections, we provide efficient algorithms to solve the
optimal offloading strategies for our optimization problems.

III. DETERMINISTIC DELAY CONSTRAINED TASK
PARTITIONING

In this section we formulate our deterministic optimization
problem and present an algorithm, DTP (Deterministic delay
constrained Task Partitioning) that runs in © (NMK) time,
where NNV is the number of tasks, M is the maximum in-degree
of the task graph and K is the number of quantization levels
in time domain. We will further bound K by a polynomial
of N. Given a task graph with nodes representing tasks from

Algorithm 1 Deterministic delay constrained Task Partitioning (DTP)

1: procedure DTP(V, t),42)
2: q + BFS (G, N)

> min. cost from root N with delay less than t,,,,

> run BES of G from node N and store visited nodes in order in ¢

> start from the last element in ¢
> initialize O PT values of leaves

VE St > qup (T,; + d;;)

3: for n < g.end, g.start do
4: if n is a leaf then l l
5: OPT' [n, t}] + {WP T kSt 2 qun(Tn)

00 otherwise

T RFd—n

. OPT" [n, 1] < {9 (An,c) +wP =

00 otherwise
7: else
8: for £k < 1, K do

: Calculate OPT" [n, ;] and OPT" [n, ;] from (4) and (5)

10: end for
11: end if
12: end for

13: Trace back the optimal decision from OPT! [N, t,,42]
14: end procedure

Fig. 1. A tree-structured task graph.

1,---, N, we formulate the optimization problem as
min Cost
st. [y =Iy=0, I, €{0,1} Vn e {2,--- N — 1},
D) <t

The cost function and the total delay are defined in (1) and
(2), respectively. To solve this problem, we exploit the fact that
the tasks at the same depth can be viewed as independent sub-
problems. For example, Fig. 1 shows a task graph with 6 tasks.
To find the minimum cost when finishing task 6 subject to the
delay constraint, we can define the sub-problem as follows:
to find the minimum cost when finishing task 4 subject to the
delay that excludes the execution delay of task 6 and possible
data transmission delay between task 4 and 6 (depends on
the offloading decisions). Similarly, we can define the sub-
problem of which task 5 is the root. Since the task graph is a
tree, these two sub-problems can be solved independently.

In the following, we present our algorithm, DTP, based on
dynamic programming. Let OPT" [n,t] denote the minimum
cost when finishing task n at mobile (i.e. the local device)
with the delay less than ¢. Similarly, OPT" [n,t] denotes the
minimum cost when finishing task n remotely. To find out
the optimal solution, it is suffice to solve OPT" [n,t] and

OPT" [n,t] for all n € {1,--- N} and all ¢ € [0, tmaz].
However, since the time domain is continuous, quantization
is necessary when we run dynamic programming algorithms.
We uniformly partition the interval [0, ¢,,4,] into K intervals

and define the quantizer as follows.
qup(x):tk, Vo € (tp—1,tx), VE € {1,--- ,K}. (3)

We can solve OPT! [n,t;] and OPT" [n, t;] for all n and all
ke {l,---, K} by the following update equations.

OPT' [n,t}] = wP°T}

+ Z min {OPTZ [m,tk — Qup (Trllﬂ)

meC(n)

oPT" [m7 Uk — Qup (Tf, + df’”)] + wPRF%”}
4)

OPT" [n,tx] = g (An,cp)
+ > min{OPT" [m,ty — qup (T7)]

meC(n)

OPT! [m, tr = qup (T7, + %)) +wP"" %2 |
(5)

We summarize our algorithm, DTP, as shown in Alg. 1. We
first perform breadth-first search on the task graph from the
root with every edges reversed and put every visited nodes in
order in a queue. By traversing back from the end of the queue,
we guarantee that all the sub-problems of node n have been
solved when solving node n. For the leaf nodes, we initialize
the values as described in Alg. 1. Especially, we define the
preceding data d_,, for leaf tasks such that executing them
remotely will induce extra cost and delay. As we assume that
task 1 and N can only be executed at the mobile device, we
set d_1 to be infinity to rule out the decision I; = 1. In the
end, we trace back from OPT"' [N, t,,4.] to get the optimal
offloading decisions.

It can be shown that DTP runs in © (NMK) time. First,
running breadth-first search on a tree takes linear time with N.
Second, from (4) and (5), each OPT value involves at most
M comparisons. In total, our algorithm solves for 2N K OPT
values. Hence, it completes in ©(NMK) time. Similarly, it
needs ©(NMK) storage to store these OPT values.

We further investigate the value of K to guarantee that DTP
always provides the optimal solution under quantization loss.
For real applications, there exists a smallest precision of delay
measurement €. That is, the system is no longer sensitive to any
delay less than e. For example, e = 1 ms is precise enough for
most mobile applications. Hence, the fractions below 1 ms are
negligible. Let A be the quantization step size, i.e. K = t"ﬁ” .
Suppose tq: grows with O (d), where d is the depth of the
task graph. That is, as N grows, t,,4, grows linearly with the
longest path of the task graph. Since the quantizer defined in
(3) always overestimates the delay, the solution error happens
when the quantization error is large enough so that DTP judges
the optimal solution as a non-feasible one. From (4) and (5),
quantization error accumulates over tasks on each path. Hence,
the maximum quantization error is at most dA. As the delay
constraint in our optimization problem is a strict inequality,
the delay of the optimal solution is at least e away from
tmas if we neglect the fractions below €. Hence, we choose
the quantization step size to be § to guarantee that given
any instance, the optimal solution is always considered as a
feasible solution by DTP. In other words, K can be bounded

by O (%) For the worst case when the task graph is a chain
(d= N), DTP runs in © (N3M%) time.

IV. PROBABILISTIC DELAY CONSTRAINED TASK
PARTITIONING

In this section, we perform stochastic analysis of the offload-
ing decision problem subject to a probabilistic delay constraint.
Let A, be the random variable representing the measure of
complexity of task n. The execution delay can be specified as

T = 0~
where § is a constant and ¢! is the local clock rate. For
the remote server, 7, can be defined in a similar way. The
randomness of task complexity comes from different user
interactions. Hence, the task execution delay is now a random
variable with distribution that depends on task complexity.
Our goal becomes to minimize the average cost subject to
a probabilistic delay constraint. That is,

min Cost
st. 1 =Iy=0, I, €{0,1} Vi€ {2,--- ,N — 1},

P {D(N) < tm,(m?} > Povj -

We define OPT" [n, py] as the minimum cost when finishing
task n at mobile under the constraint

Qiow (IE” {D(") < tmaz}) = Dk,

where py, is the k*? quantization step between [pop;, 1] and the
quantizer is defined as

Qlow (ZL’) = Pk, Va € (pk'vpk—‘rl]v Vk € {17 e 7K} (6)

Since the delay is increasing as we solve the sub-problems
from leaves to root, it is sufficient to just deal with the interval
[Pobj, 1]. However, instead of simply excluding the delays
induced after node m as the case in deterministic analysis,
the links between OPT* [m, p,,] and OPT* [n, p,] (* could
be [or r) are not obvious for arbitrary p,,, and p,,. For a node n
that has two children, say m; and msy, suppose we want to find
out OPT" [n, pi]. For illustrative purpose, we only consider
the case when task m; and mso are executed at the mobile
device. In this example, we have to identify all possible cases
(OPT! [my, pr,], OPT" [m3, pi,]) satisfying

Pki = diow (]PJ {D(ml) < tmaz}) ;
Pky = iow (P {D(mg) < tmax}) s

Pk = Qlow (P {max {D(77L1)7D(m2)} + T’rlz S tmam}) .
(7)

The delay D(™1) depends on the offloading decisions that have
been made up to task m; and these decisions are related to
the probabilistic constraint pg,. Hence, we have to find the
appropriate (p, , pr,) such that the delays D(™1) and D("2)
satisfy (7). Since D) and D(™2) are independent random
variables, we can equivalently write (7) as

tmaw
o (L o O oo) 1y (s =1 dt) ~ i,
0
(8)

where F, represents for cumulative distribution function
(CDF) and f, represents for probability density function
(PDF). We calculate these integrals and create links from
child nodes to node n associated with the resulting probability
values. If the result of (8) is less than p.,;, we discard the
corresponding combination. When we make decision on node
n with the constraint pg, we compare the cost of all possible
offloading decisions up to node n based on these links.

For a general case, by performing channel estimation, we
assume the channel bandwidth B remains constant over its
coherence time. Hence, Eq. (8) will also involve some shifts of
CDFs if constant data transmission delay is induced. Suppose
node n has M children, we have to consider all possible
offloading decisions on its children and all possible p;’s. We
can write the set of all possible combinations as

(OPT* []-7pk1] vOPT* [valm})" aOPT* [MvpkMD'

Each * can be independently chosen from {l,r} and k,,
can be independently chosen from {1,--- K} for all m in
{1,---, M}. Hence, creating links for a node n, at the worst
case, involves (2K)M integrals with the form as shown in (8).

We summarize our algorithm, PTP in Alg. 2. PTP runs in
© (N K M) time. By the similar analysis in Sec. III, K can
be further bounded by O (£), as now the interval [p,y;, 1]
remains constant as [N grows.

Algorithm 2 Probabilistic delay constrained Task Partitioning (PTP)

1: procedure PTP(N, poy;, tmax)
2 q <+ BFS (G, N)

3: for n < g.end, g.start do
4 if n is a leaf then

> min. cost from root N s.t. P{DW) < t,,0.} > pob,

> run BFS of G from node N and store visited nodes in order in ¢

> start from the last element in ¢
> initialize OPT values of leaves

5. OPT! [n,py) < {WPCTTZL if Pk = diow (Fr (tma))
o0 otherwise
6 OPTT [n7pk] « {g (Alu n) + wPRFd » if Pk = Qlow (FTﬁ (tma:z - dé"))
o0 otherwise
7: else
8: for all possible combinations (OPT™ [1, pkl} OPT* [2,pk,] - - OPT [M,pg,,]) do
9. link to OPT! [n, p*] if p* = qiow (S L o Fpom (t) fri (tmaw —) dt)
10: link to OPT" [n,p*] if p* = Qrow (fo Ween) Fpom (t I, fm) frr (tmaz — 1) dt)
11: end for
12: for £k <+ 1, K do
13: Calculate OPT" [n,p;.] and OPT™ [n, pi] by choosing the minimum from their links
14: end for
15: end if
16: end for
17: Trace back the optimal decision from minge(y,... k3 OPT' [N, py]

18: end procedure

TABLE 11
SIMULATION PROFILE

Notation H Value H Description
p¢ 0.3 W local computation power
pBF 0.7 W local RF power
c 1 Hz local clock rate
B 10 MB/s channel bandwidth

V. SIMULATION RESULTS

In this section, we first verify the accuracy of DTP and PTP
and then design an iterative algorithm (IDTP) that iteratively
runs DTP as a baseline for comparison with PTP. From the
simulation results, we show that both of DTP and PTP achieve
high accuracy with tractable complexity. On the other hand,
IDTP can provide a suboptimal solution that are close to the
optimal one given by PTP within fixed number of iterations.

Our simulation is done as follows. For every sample, we
fix the task graph as a perfect binary tree while the simulation
profile is varying. We first uniformly choose a profile from a
pool. Then we solve the offloading strategies by our algorithms
and finally compare the solution with the one given by brute
force algorithm, which simply checks over all offloading
decisions and chooses the optimal solution from the feasible
ones. A profiling pool is defined as follows.

Py ={(A,c".d) € [1,10]" x [100,1000]" x [0.1,10]V "}

The n'" element of vector A denotes the complexity of task
n. Similarly, c¢” denotes the remote clock rates in Hz and
d denotes the succeeding data in MB of each task except

for the final task. The rest parameters remain constants as
shown in table II. For the stochastic case, we assume that
the task complexities are independent exponential random
variables with expectations chosen from the pool. Further, we
assume that the system performs channel estimation so that the
bandwidth B remaining constant within the coherence time.

A. The Performance of Proposed Algorithms

Fig. 2 shows the performance of DTP that solves the
deterministic optimization problem. In general, we classify
the solution errors into three types: first, DTP may provide
a feasible solution which is not the optimal one; second, DTP
may not find any feasible solution but there exists at least
one; third, DTP may provide a non-feasible solution. By the
definition of the quantizer in (3), DTP always overestimates
the delay. That is, to some extent DTP may miss some feasible
solutions while it will never provide a non-feasible one. Fig.
2 shows both the solution error and the missing probability
(type 2) with different values of K. We can see that the error
probabilities decrease as K grows. Moreover, K falls in the
order of tens to provide good performance for a binary tree
with depth less than 4.

Fig. 3 shows the performance of PTP that solves the
stochastic optimization problem for a task graph with depth 3.
Similar to the deterministic case, the quantizer in (6) under-
estimates the probability that the total delay is less than ¢,,,4,-
Hence, PTP will never give a non-feasible solution but may
miss some feasible solutions for small K. For probabilistic
delay constraints, K is related to the interval size [pog,j, 1]. In
general applications, the probabilistic delay constraints provide
more sophisticated QoS, in which pey; is chosen to be close

3, wrong solution
3, missing solution
4, wrong solution
4, missing solution |4

el

d=
d=
d=
d=

probability
probability

e

x 10 %)
- - - 520
—3¥— d = 3, wrong solution =1
—¥— d = 3, missing solution s = ¥*
B0 == *
* _——
L ‘
s 3 4 5
o 1 T —— =
s ! m=m——
5 B
5 05 -
o - -
S ¢
o 0 N
5 3 4 5
84 .
g %=
5° - ==
-— —~—
kS] 2) - Ei
-
X
. . o1
10 15 20 25 30 35 40 45 50 E 4 5
K depth

Fig. 2. Error probability of DTP

to 1. Hence, from our simulation result, KX = 10 (with
corresponding step size 0.01 and po,; = 0.9) provides a good
performance with error probability 0.009.

B. An Iterative Alternative to Compare with PTP

We design a simple algorithm, IDTP, as an iterative alter-
native to PTP. At every step we get a solution from DTP and
simulate the corresponding probability that the delay is less
than t,,,,. Based on the result, we update the deterministic
delay constraint and run DTP for another iteration. To make
the running time reasonable, we run DTP for at most 100
iterations. Fig. 4 shows the performance of IDTP. We record
the average number of iterations that IDTP takes when it finds
the optimal solution. When it runs out of iterations but fails to
find the optimum, we do not count in the statistics but record
as an error instead. When a suboptimal solution is provided,
we define the extra cost percentage as

(Cost — CoStyin)

ExtraCost % =
Costyin

x 100,

where Cost,,;,, denotes the cost of optimal solution. Further,
we take the average over the samples at which our algorithm
provides suboptimal solutions. From Fig. 4, the average num-
ber of iterations grows linearly with the depth of the task
graph. Although IDTP fails to find the optimal solution most
of the time as the depth of the task graph grows, the suboptimal
solution it provides shows that the average extra cost does not
exceed 4% in all cases.

VI. CONCLUSION

We formulated two computational offloading decision prob-
lems, Deterministic delay constrained Task Partitioning and
Probabilistic delay constrained Task Partitioning, and provided
respective algorithms, DTP and PTP, to solve them. Compar-
ing with linear delay constraints that are limited to a chain
of tasks, our algorithms are applicable to more generalized
schemes, in which the dependency between tasks can be
described by a tree. Instead of relying on an integer program-
ming formulation without a polynomial time guarantee, we
showed that our algorithms run in polynomial time with the
problem size. In addition to deterministic delay constraints,
we performed stochastic analysis to settle problems with

Fig. 3. Error probability of PTP

Fig. 4. The performance of IDTP

probabilistic delay constraints. DTP runs in © (N 3) time,
where N is the number of tasks. On the other hand, PTP
runs in © (N*) time, where M is the maximum in-degree
of the task graph. Furthermore, by running DTP iteratively
as an alternative to PTP, we showed that it provides robust
suboptimal solutions in all cases we considered.

Our formulations and algorithms are generally applica-
ble to mobile applications. More comprehensive costs can
be taken into consideration without modifying the solution
scheme. More importantly, the efficiency of our algorithms
can potentially operate tasks partitioning on finer granularity.
Implementation on real systems will be a stronger evidence to
identify potential applications. Furthermore, instead of binary
decisions, solving for multiple offloading decisions on an
intermittent network will be an interesting problem that can
support a wilder range of applications.

REFERENCES

[1] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129-140, 2013.

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51—
56, 2010.

[3] S. Gurun and C. Krintz, “Addressing the energy crisis in mobile
computing with developing power aware software,” Memory, vol. 8, no.
64MB, p. 512MB, 2003.

[4] D. Shivarudrappa, M. Chen, and S. Bharadwaj, “Cofa: Automatic and
dynamic code offload for android,” University of Colorado, Boulder.

[5] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in ACM MobiSys. ACM, 2011, pp. 43-56.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in [EEE INFOCOM. IEEE, 2013, pp. 1285-1293.

[7]1 E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in ACM MobiSys. ACM, 2010, pp. 49-62.

[8] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in ACM Computer
systems. ACM, 2011, pp. 301-314.

[9] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks

onto arbitrary target machines,” Journal of parallel and Distributed

Computing, vol. 9, no. 2, pp. 138-153, 1990.

C. Wang and Z. Li, “Parametric analysis for adaptive computation

offloading,” ACM SIGPLAN, vol. 39, no. 6, pp. 119-130, 2004.

[10]

