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Abstract—A fundamental theoretical problem in opportunistic
spectrum access is the following: a single secondary user must
choose a channel to sense and access at each time, with the
availability of each channel (due to primary user behavior)
described by a Markov Chain. The problem of maximizing the
expected channel usage can be formulated as a restless multi-
armed bandit. We present in this paper an online learning
algorithm with the best known results to date for this problem
in the case when channels are homogeneous and the channel
statistics are unknown a priori. Specifically, we show that this
policy, that we refer to as CSE, achieves a regret (the gap between
the rewards accumulated by a model-aware Genie and the policy)
that is bounded in finite time by a function that scales as O(log t).
By explicitly learning the underlying statistics over time, this
novel policy outperforms a previously proposed scheme shown
to provide near-logarithmic regret.

Index Terms—Restless Multi-Armed Bandit; Logarithmic Re-
gret; Online Learning

I. INTRODUCTION

One of the fundamental problems in overlay-based oppor-
tunistic spectrum access is sequential channel selection by
secondary users for sensing and access. In this problem, orig-
inally formulated as a Partially Observable Markov Decision
Process (POMDP) [1], time is slotted and it is assumed that
the secondary user is limited to selecting one channel at a time.
It then senses if the channel is free, and if free, may access it
for transmissions (see Fig. 1). It is assumed that the primary
user behavior on the channels can be modelled as independent
two-state Markov Chains (free/busy).

The sequential selection process by the secondary user
serves two purposes: on the one hand, it aims to maintain
fresh observations of each channel in order to improve its
estimates of their condition, and on the other, it tries to select
free channels as often as possible to maximize throughput.
This problem can be formulated as a restless multi-armed
bandit [2], which are highly challenging and known to be
computationally intractable in general, specifically they are
known to be PSPACE-hard [3].

Bayesian Non-Homogeneous case: If the transition matrices
are known, then after each observation any prior distribution
of channel availability can be updated to a posterior; for this
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Fig. 1: Sequential selection process: the user selects one channel at
a time to sense if it is free. If it is free (blue block), the user may
access it for transmissions; otherwise the channel is busy (red block).
Only one channel can be sensed each time and other channels are
unobserved (grey block).

reason the problem under known transition matrix is referred
to as the Bayesian problem. Researchers have also explored
the non-homogeneous case (when the transition matrices are
different for each channel). For this case, the problem can
always be solved using a POMDP solver, however it requires
exponential space and time complexity. It has been shown that
the famous Whittle’s Index [2] can be computed in closed
form [4]. This index-based policy, however, is still suboptimal
in general, though it can be shown to be asymptotically optimal
as the number of channels goes to infinity, under specific
regimes (such as scaling the fraction of sampled channels as
a constant).

Bayesian Homogeneous case: To gain a deeper theoretical
understanding of this problem, researchers have focused on
the special case when the channels are homogeneous [5]–[7],
i.e. when all channels have identical transition matrices. It
was first shown for the case of two homogeneous channels
that the tractable Myopic policy (which aims to maximize the
immediate rewards at each step) is optimal [7]. Moreover, it
was found that the Myopic policy has a simple, semi-universal
structure. It suffices to know whether the Markov chains are
positively or negatively correlated to implement the Myopic
policy; it does not require the full knowledge of the transition
matrix beyond this [7]. This has been generalized in subse-
quent work to the following statement: when the homogeneous
channels are positively correlated, then the Myopic policy is
optimal for any number of channels. For negatively correlated978-1-4799-4657-0/14/$31.00 © 2014 IEEE



channels, the Myopic policy is optimal for 2 and 3 channels,
but there is a counter-example showing its sub-optimality for
4 channels [5].

Non-Bayesian Non-Homogeneous Case: When the transi-
tion matrices are a priori unknown, then we have a non-
Bayesian formulation, as it is no longer possible to update
prior channel distributions to posterior distributions after each
observation. In this case, the problem becomes harder as
the secondary user must use an online learning policy that
periodically explores channels in order the learn their statistics,
while continuing to balance exploration and exploitation for
keeping fresh observations and getting enough free channel
selections to maximize throughput.

It is clear that in the absence of knowledge of the underlying
statistics, the secondary user cannot hope to achieve the
same performance as a genie that is aware of the underlying
statistics (as in the Bayesian case). The only hope is that
through learning it is able to achieve the same performance
asymptotically. Specifically, the measure for performance of
an online-learning policy used is regret, defined as the gap
in expected reward obtained a genie and the given policy. A
sublinear regret is desirable as it implies that the time-averaged
regret goes to zero, i.e. asymptotically the policy achieves the
same time-averaged reward as the genie under consideration.

Because of the challenging nature of this problem, a number
of papers have focused on what has been called weak regret

[8]–[10], where the genie being compared with is weaker in
the sense that it is aware only of the steady state distribution
for each channel, and not the full transition matrices. In
these papers, the authors have presented policies for which
bounds on weak regret can be shown to grow as a logarithmic
function of time, i.e. O(log t). However, weak regret results
are unsatisfactory because the genie is so constrained that
it picks the same channel over time, whereas the optimal
Bayesian solution would be to switch channels dynamically
based on observations. The weaker genie may thus perform
quite poorly in practice. In this case, the policies with sub-
linear weak regret may even potentially outperform the genie,
but their performance with respect to the true optimum remains
unclear.

Thus far general results on strict regret (comparing the
performance of a policy to the genie that knows the probability
transition matrices for each channel and can thus perform
optimally) have been sparse. Just a few months ago, Ortner et

al. [11] have provided the first strict-regret result that is ap-
plicable to the non-homogeneous non-Bayesian opportunistic
spectrum access problem (in fact, their result is aimed more
generally at any non-Bayesian restless multi-armed bandit, but
they explicitly point out this very problem as a motivating
example). They present a policy based on upper-confidence
bound methods for reinforcement learning, which is shown to
achieve O(

√
t) regret. Moreover, they show that for general

non-Bayesian RMAB, index-based policies are suboptimal.
Non-Bayesian Homogeneous Case: Preceding the recent

Ortner et al. result, two years ago, we provided the first
strict-regret results for case of the non-Bayesian problem with

homogeneous channels [12]. Specifically, a meta policy that
treats the two structures of the myopic policy for the positive
and negatively correlated cases as two arms and learns by
exploring and exploiting between these two arms is shown to
yield near-logarithmic regret with respect to time whenever
the Myopic policy is optimal (this is always true for 2 or
3 homogenous channels, for any number of homogeneous
channels when positively correlated, and depending on the
transition matrix for more than 3 negatively correlated chan-
nels). However, the policy presented in that paper does not
attempt to explicitly learn the elements of the transition matrix
and therefore there has been room for improvement.

Contribution: We are now in position to describe the nature
and contribution of this work:

• We propose an online-learning policy for the non-
Bayesian homogeneous channels problem.

• Unlike our prior work on this problem [12], the policy
proposed in this paper explicitly estimates (in an iter-
atively improving fashion) elements of the underlying
unknown transition probability matrix.

• We prove that this new policy achieves exactly loga-
rithmic strict regret with respect to time, whenever the
Myopic policy is optimal. This is an improvement over
the result in [12] which provides near-logarithmic regret.

• Since even the optimal policy must know whether the un-
derlying statistics are positively or negatively correlated,
and in the absence of prior knowledge this can only be in-
ferred through statistical observations, we conjecture that
the lower bound on regret for this problem is Ω(log t). If
so, the policy in this paper would be order-optimal, the
first such algorithm for this problem.

• Because we restrict our attention to a tractable but impor-
tant special case of homogeneous channels, we are able
to obtain a lower strict-regret of O(log t) compared to the
O(
√
t) regret bound for the policy provided by Ortner et

al. [11]1.

II. SYSTEM MODEL

This section introduces the system model for this problem
and describes the myopic policy which achieves the optimal
performance when the system parameters are known.

A. Two-State RMAB Problem

Consider a time-slotted system with one user and N inde-
pendent arms. Each arm has two states (0 or 1), evolving as a
Markov chain over time. All arms have an identical transition
probability matrix P, which is unknown to the user and given
by

P =

[
p00 p01
p10 p11

]

1One point bears clarification. The study by Ortner et al. [11] explicitly
notes that index-based policies are suboptimal for online-learning of restless
multi-armed bandits. However the policy proposed in this paper is an index-
based policy and is shown to achieve sublinear regret, approaching optimal
performance asymptotically over time. The apparent contradiction is resolved
by noting that the claim in [11] is for a general restless multi-armed bandit, and
clearly does not apply to the special case of homogeneous channels considered
here



The arms are assumed to be restless, i.e., the arms’ states
evolve each time independent of the user’s action. At each time
slot, the user selects one arm and receives a reward depending
on the arm’s state. For simplicity, we assume the reward is 1
if the arm is in state 1 and the reward is 0 otherwise. The user
can sense only the state of selected arm at each time slot.

The goal is to design an arm selection policy that maximizes
the expected total reward over some time horizon. Equiva-
lently, we try to design a policy π that performs well with
respect to regret, which is the difference between the expected
reward obtained by π∗ and that obtained π, where π∗ is the
omniscient optimal policy that knows the transition probability
matrix P.

Let Si(t) ∈ {0, 1} denote the state of channel i at time t
and Ω(t) ! [ω1(t), . . . ,ωN (t)] denote the belief vector, where
ωi(t) is the probability that Si(t) = 1. The regret obtained by
policy π with the initial belief vector Ω(1) at time n is then
given as follows.

rπ(Ω(1), n) = E

{
n∑

t=1

Rπ∗

(Ω(1), t)−
n∑

t=1

Rπ(Ω(1), t)

}

where Rπ∗

(Ω(1), t) and Rπ(Ω(1), t) denote the reward ob-
tained at time t (provided the initial belief vector is Ω(1)) by
applying policy π∗ and π, respectively.

B. Myopic Policy

The myopic policy πMyopic, proposed by Zhao et al [7], is a
solution for the Bayesian RMAB problem. It has a simple
structure and depends only on the correlation sign of the
transition probability matrix P (i.e., whether p11 > p01),
therefore can be used as a starting point to design a meta-
policy for non-Bayesian restless multi-armed bandit (RMAB)
problems.

The structure of the myopic policy uses the concept of
circular order. For a circular order κ, the starting point
is irrelevant, i.e., κ = (n1, n2, · · · , nN ) is equivalent to
(ni, ni+1, · · · , nN , n1, n2, · · · , ni−1). Moreover, let −κ de-
note the reverse circular order of κ. For arm i, let i+κ denote
its next arm in the circular order κ. With these notations, the
structure of the myopic policy is presented as follows.

Let κ(t) denote the circular ordering of all arms at time t.
The circular order κ(1) in time 1 depends on the order of Ω(1):
κ(1) = (n1, n2, · · · , nN ) implies that ωn1

(1) ≤ ωn2
(1) ≤

· · · ≤ ωnN
(1). Let â(t) denote the arm selected by the myopic

policy in time t. Then â(1) = argmaxi=1,2,··· ,N ωi(1). For
t > 1, the myopic action â(t) is given as follows [7].

• Policy π1 (if p11 > p01):

â(t) =

{
â(t− 1), if Sâ(t−1)(t− 1) = 1

â(t− 1)+κ(t), if Sâ(t−1)(t− 1) = 0

where κ(t) ≡ κ(1).
• Policy π2 (if p11 ≤ p01):

â(t) =

{
â(t− 1), if Sâ(t−1)(t− 1) = 0

â(t− 1)+κ(t), if Sâ(t−1)(t− 1) = 1

where κ(t) = κ(1) when t is odd and κ(t) = −κ(1)
when t is even.

Remark 1: Note that the structure of myopic policy is
simple: the only thing the user has to do is to maintain the
circular order κ(t). Therefore, it requires little computation
and memory. Moreover, the myopic policy is optimal in certain
scenarios, i.e., πMyopic = π∗, as shown in the following
proposition.

Proposition 1: If N ≤ 3 or p11 ≥ p01, the myopic policy
is optimal for all finite time horizon T .

Proof: See [5], [7].
Remark 2: Though the myopic policy has many favorable

properties, it requires the correlation sign of the system. When
the estimation of the correlation sign is incorrect, the myopic
policy will result in a large loss of reward. Therefore, it is
necessary to design a policy that performs well when no prior
parameter knowledge of the system is available.

III. SENSING POLICY FOR TWO-STATE RMAB

This section provides a sensing policy for the non-Bayesian
RMAB problem based on the myopic policy.

Time slots are divided into epochs where each epoch
contains L slots, in which L can be any positive integer greater
than three. During each epoch, the user applies π1 or π2 and
records the samples of p01 and p11; At the end of each epoch,
the user makes a decision about which policy (π1 or π2) to
apply in the next epoch based on previous sample results.

One key question is how to take samples of p01 or p11
when executing the π1 and π2. According to the structure of
the myopic policy, one can estimate the system parameter, i.e.,
p11 and p01, by recording the sample mean of p01 and p11.
Note that when policy π1 is applied, if the current arm state
is 1, the user selects the same arm and can take a sample of
p11 based on the arm state in the next time slot. Similarly,
when policy π2 is applied, if the current arm state is 1, the
user selects the same arm and can take a sample of p01 in the
next time slot. We next provide an example of taking samples
of p11. A system composed of two arms is considered and
policy π1 is applied.

Table I: Example of Sampling p11

Time 1 2 3 4 5 6 7 8 9 · · ·

Arm 1 1 0 − − − − 1 1 1 · · ·

Arm 2 − − 1 1 1 0 − − − · · ·

Table I shows an example of taking samples of p11. In the
table, 1 and 0 represent the arm states and the notation “−”
represents the unobserved arm state. In this example, at time
9, the user has six samples of p1i (i ∈ {0, 1}), where two
of them are 0’s and four of them are 1’s. Hence, the sample
mean p11 is given by p̂11 = 4/(2+4) = 2/3. In this way, the
user can obtain samples of p11 when applying π1. Similarly,
the user can obtain samples of p01 when applying π2.



Another key question is how to decide the policy (π1 or π2)
at the end of an epoch. A desirable way is to treat the two
polices as arms in a classic non-Bayesian multi-armed bandit
problem. In [13], the UCB1 policy is proposed and achieves a
logarithmic regret over time. Based on this policy, we provide
a decision method with the goal of learning the correlation
sign.

Before the details of the sensing policy are provided, some
definitions and notations are given as follows. If the current
arm state is 1 and the user decides to select the same arm in
the next time slot, then the user obtains an effective sample of
p11. The definition of effective samples for p01 is analogous.
Let s1(t) and s2(t) denote the number of effective samples of
p11 and p01 up to time t, respectively. Moreover, let p̂11(s1(t))
denote the sample mean of p11 with s1(t) effective samples
and p̂01(s2(t)) denote the sample mean of p01 with s2(t)
effective samples. For example, in Table I, when time is 9,
s1(t) = 6, s2(t) = 0, p̂11(s1(t)) = 2/3. Note that if the
user applies π2 for one epoch, s2(t) can be positive and a
meaningful p̂01(s2(t)) can be obtained. With these notations,
the sensing policy is shown in Algorithm 1.

Algorithm 1 Continuous Sampling and Exploitation (CSE)

1: // INITIALIZATION

2: Choose an arbitrary positive integer L > 3; t = 1;
3: Play policy π1 until at least one effective sample of p11

is obtained, record s1(t) and p̂11(s1(t));
4: Play policy π2 until at least one effective sample of p01

is obtained, record s2(t) and p̂01(s2(t));
5: // MAIN LOOP: TIME ARE DIVIDED INTO EPOCHS

6: while 1 do
7: At the end of the epoch, time t, decide to apply π1 or

π2 as follows:

p̂11(s1(t)) +

√
2 ln t

s1(t)

π1

≷
π2

p̂01(s2(t)) +

√
2 ln t

s2(t)
(1)

8: Play π1 or π2 based on (1) for L time slots (one
epoch);

9: Update s1(t) or s2(t) and update the sample mean of
p̂11(s1(t)) or p̂01(s2(t));

10: t← t+ L;
11: end while

Remark 3: The policy CSE requires no knowledge of the
system parameters, which is favorable in practice. Moreover, it
achieves a logarithmic regret uniformly over time t, as shown
in the next section. The performance of CSE is robust to the
choice of L, which is validated in Section V.

IV. REGRET ANALYSIS

This section provides an upper bound of the regret that
grows logarithmically with time. The main theorem is as
follows.

Theorem 1: If N ≤ 3 or p11 ≥ p01, the regret achieved by
CSE in Algorithm 1 at time n is upper bounded by C1 lnn+

C0, where C0 and C1 are constants only dependent on system
parameters and k.

Before showing the proof of Theorem 1, we first provide
one fact and two lemmas.

Fact 1: (Chernoff-Hoeffding bound) Let X1, · · · , Xn be
random variables with common range [0, 1] such that
E [Xt|X1, · · · , Xt−1] = µ, ∀t. Let Sn = X1+ · · ·+Xn. Then
for all a ≥ 0,

P {Sn ≥ nµ+ a} ≤ e−2a2/n

P {Sn ≤ nµ− a} ≤ e−2a2/n

Proof: See [14].
Lemma 1: Let X1, · · · , Xn be random variables with range

[ 0, 1 ] and such that |E [Xt|X1, X2, · · · , Xt−1] − µ| ≤ ε, ∀t,
where ε is a constant number such that 0 < ε < µ. Let Sn =
X1 + · · ·+Xn. Then for all a ≥ 0,

P {Sn ≥ n(µ+ ε) + a} ≤ e−2(aµ−ε
µ+ε

)2/n

P {Sn ≤ n(µ− ε)− a} ≤ e−2a2/n.

Proof: See [15].
Remark 4: Lemma 1 is a generalization of the Chernoff-

Hoeffding bound, which allows for bounded differences be-
tween the conditional expectations of a sequence of random
variables that are revealed sequentially.

The second lemma explores the deviation of the rewards
from the steady throughput by the myopic policy. Let Ui(Ω(1))
denote the steady throughput achieved by policy πi with the
initial belief vector Ω(1), given by

Ui (Ω(1)) ! lim
T→∞

1

T
E

{
T∑

t=1

Rπi(Ω(1), t)

}

.

In [7], it shows that the limit above exists and is independent
of the initial belief vector Ω(1). Therefore, we can rewrite
Ui(Ω(1)) as Ui to denote the average expected reward using
policy πi(i = 1, 2). Lemma 2 is then provide as follows.

Lemma 2: For any initial belief vector Ω(1) and any posi-
tive integer M ,

|E
{

M∑

t=1

Rπi(Ω(1), t)

}

−M · Ui | < εi, i = 1, 2

where εi is a constant depending on P.
Proof: See [15].

Remark 5: Lemma 2 states that the expected loss of reward
for policy πi (starting with an arbitrary initial belief vector)
compared to the steady throughput Ui is bounded by a constant
εi depending only on the transition probability matrix P.

Now we provide the proof of Theorem 1 given the fact and
two lemmas.

Proof: Throughout the proof, policy π refers to the
sensing policy CSE. Let Ti(t) denote the number of epochs
that using policy πi up to time t. For simplicity, we prove
Theorem 1 for the case p11 ≥ p01 in this paper where the case
p11 < p01 can be proved analogously. In the case p11 ≥ p01,



policy π1 is the optimal policy, i.e., π1 = π∗, implying
U1 > U2.

Let r̃π(Ω(1), n) denote the equivalent regret, given by

r̃π(Ω(1), n) := n · U1 − E

{
n∑

t=1

Rπ(Ω(1), t)

}

Lemma 2 implies that there exist constant ε1 > 0 such that

E

{
n∑

t=1

Rπ∗

(Ω(1), t)

}

< n · U1 + ε1.

Therefore, to prove Theorem 1, it suffices to show that there
exist constants C1, C0 such that ∀n ∈ N,

r̃π(Ω(1), n) ≤ C1 lnn+ C0 − ε1

Note that the reward loss can be divided into two parts as
follows.

n · U1 −
n∑

t=1

Rπ(Ω(1), t)

=
∑

t:π1 is used

(U1 −Rπ(Ω(1), t))

︸ ︷︷ ︸
r1

+
∑

t:π2 is used

(U1 −Rπ(Ω(1), t))

︸ ︷︷ ︸
r2

According to Lemma 2, the expected reward loss is at most
ε1 each time π1 is switched to π2, hence E [r1] ≤ ε1 ·E [T2(n)].
On the other hand, let tINI denote the last time slot of
initialization process, then E[r2] can be bounded as follows.

E {r2} = E

{
∑

t:π2 is used

(U1 −Rπ(Ω(1), t) )

}

≤ E

{
∑

t:π2 is used

(U2 −Rπ(Ω(1), t) )

}

+ (U1 − U2) · (L · E {T2(n) + 1}+ E{tINI})
≤ ε2 · E {T2(n)}+ (U1 − U2) · E {L · T2(n) + L+ tINI}

where the first inequality is due to the definition of T2(·) and
the second inequality is due to Lemma 2.

Therefore, in order to prove Theorem 1, we only have to
show that E{tINI} ∼ O(lnn) and E{T2(n)} ∼ O(lnn). We
first bound the outage probability of tINI as follows.

Lemma 3: Let α = min{p01, p11, p10, p00}, then we have

P {tINI ≥ 2 lnn/ ln (1/α)} ≤ 1/n.

Proof: If tINI ≥ 2 lnn/ ln (1/α), then either π1 or π2 has
been played for at least lnn/ ln (1/α) time slots without one
effective sample. Either event has a probability no greater than
αlnn/ ln (1/α) = 1/n.

With Lemma 3, E{tINI} can be bounded as follows

E{tINI} =

∫ ∞

0
P {tINI > t} dt =

∞∑

t=0

P {tINI > t}

≤
∞∑

t=0

e · (
√
α)t =

e

1−
√
α

where the first equality is another representation of the ex-
pected value; the second equality is due to the fact that tINI is
an integer and the inequality is due to Lemma 3.

E{T2(n)} is bounded as follows.

E{T2(n)}

= E

{
T2(n)|tINI ≥

2 lnn

ln (1/α)

}
· P
{
tINI ≥

2 lnn

ln (1/α)

}

+ E

{
T2(n)|tINI ≤

2 lnn

ln (1/α)

}
· P
{
tINI ≤

2 lnn

ln (1/α)

}

≤ n · 1/n+ E

{
T2(n)|tINI ≤

2 lnn

ln (1/α)

}

We then bound E {T2(n)|tINI ≤ 2 lnn/ ln (1/α)}. Let N :=
{n : n is a time slot at the end of an epoch}. We have

E {T2(n)|tINI ≤ 2 lnn/ ln (1/α) }

≤ 2 lnn/ ln (1/α) +
∑

t∈N ,tINI≤t≤n

I

{

p̂11(s1(t)) +

√
2 ln t

s1(t)

≤ p̂01(s2(t)) +

√
2 ln t

s2(t)

}

≤ 2 lnn/ ln (1/α) + l +
∑

t∈N ,tINI≤t≤n

I

{

p̂11(s1(t)) +

√
2 ln t

s1(t)

≤ p̂01(s2(t)) +

√
2 ln t

s2(t)
, T2(t) ≥ l

}

≤ 2 lnn/ ln (1/α) + l +A+B

where I(·) is the indicator function and l can be any positive
integer, A and B are given by

A =
∑

t∈N ,tINI≤t≤n

I

{

p̂11(s1(t)) +

√
2 ln t

s1(t)
≤ p̂01(s2(t))

+

√
2 ln t

s2(t)
, T2(t) ≥ l, s2(t) ≥ γ · l

}

B =
∑

t∈N ,tINI≤t≤n

I

{

p̂11(s1(t)) +

√
2 ln t

s1(t)
≤ p̂01(s2(t))

+

√
2 ln t

s2(t)
, T2(t) ≥ l, s2(t) < γ · l

}

in which γ can be any real number in (0, 1). We next bound
E{A} and E{B}, respectively.

To bound E{A}, note that if

I

{

p̂11(s1(t)) +

√
2 ln t

s1(t)
≤ p̂01(s2(t)) +

√
2 ln t

s2(t)

}

= 1



then at least one of the following events must hold.

p̂11(s1(t)) ≤ p11 −

√
2 ln t

s1(t)
(2)

p̂01(s2(t)) ≥ p01 +

√
2 ln t

s2(t)
(3)

p11 < p01 + 2 ·

√
2 ln t

s2(t)
(4)

Fact 1 implies

P

{

p̂11(s1(t)) ≤ p11 −

√
2 ln t

s1(t)

}

≤ e−4 ln t = t−4

P

{

p̂01(s2(t)) ≥ p01 +

√
2 ln t

s2(t)

}

≤ e−4 ln t = t−4

For s2(t) ≥ γ · l and l ≥
⌈
8 lnn/(γ(p11 − p01)2)

⌉
,

p11 − p01 − 2 ·

√
2 ln t

s2(t)
≥ p11 − p01 − 2 ·

√
2 lnn

s2(t)

≥ p11 − p01 − 2 ·

√
2 lnn

γ · l ≥ 0

Therefore, (4) is false. Hence, if l ≥
⌈
8 lnn/(γ(p11 − p01)2)

⌉
,

E{A} can be bounded by

E{A} ≤
n∑

t=1

t∑

s1=1

t∑

s2=1

(

P

{

p̂11(s1) ≤ p11 −
√

2 ln t

s1

}

+ P

{

p̂01(s2) ≥ p01 +

√
2 ln t

s2

})

≤
n∑

t=1

t∑

s1=1

t∑

s2=1

2 · t−4 ≤ 2 ·
∞∑

t=1

t−2 ≤ π2/3

Next we bound E{B}. Note that

B ≤
n∑

t=1

t∑

s1=1

I {T2(t) ≥ l, s2(t) < γ · l}

When the user applies policy π2, the probability of obtaining
an effective sample of p01 between t + 1 and t + 2 is equal
to the probability the arm state at t + 1 is 0, which is no
less than α (recall that α = min{p01, p11, p10, p00}). Hence,
during an epoch that policy π2 is applied, the user obtains
at least one effective sample of p01 during that epoch with
probability no less than α, regardless of the arm state at the
beginning of the epoch. Let N1, N2, · · · , NT2(t) denote the
number of effective samples of p01 obtained in the epochs that
applies policy π2, then E{Nt|N1, N2, · · · , Nt−1} ≥ P{Nt ≥
1|N1, N2, · · · , Nt−1} ≥ α, ∀t. Therefore, for γ = α/2 and

l ≥ (4/α2) lnn, we have

P {T2(t) ≥ l, s2(t) < γ · l}
≤ P {T2(t) ≥ l, s2(t) < γ · T2(t)}

≤ P






T2(t)∑

i=1

Ni < α · T2(t)− α · T2(t)/2|T2(t) ≥ l






≤ exp

{
−α2

2
· l
}
≤ 1

n2

where the first inequality is due to T2(t) ≥ l, the second
inequality is because the conditional probability is no smaller
than the joint probability and s2(t) = N1+N2+ · · ·+NT2(t),
the third inequality is due to Lemma 1 and the last inequality
is because of the choice of γ and l. Consequently, if l ≥
(4/α2) lnn, we have

E{B} ≤
n∑

t=1

t∑

s1=1

P {T2(t) ≥ l, s2(t) < γ · l}

≤
n∑

t=1

t∑

s1=1

1

n2
=

n(n+ 1)

2n2
< 1

Finally, with the results above, we can bound the regret
rπ(Ω(1), n) as follows.

rπ(Ω(1), n) ≤ C1 lnn+ C0

where

C0 =
e|U1 − U2|
1−
√
α

+ (ε1 + ε2 + L|U1 − U2| )
(
3 +

π2

3

)

+ L|U1 − U2|+max{ε1, ε2}

C1 = ( ε1 + ε2 + L|U1 − U2| )
(

max

{
16

α(p11 − p01)2
,
4

α2

}

+
2

ln (1/α)

)

The proof for the case p11 ≤ p01 is analogous and is omitted
here.

Remark 6: Theorem 1 is stated for the cases where the
myopic policy is proved to be optimal. In fact, our proof shows
an even stronger result: policy CSE achieves the claimed
logarithm regret with respect to the myopic policy for any
time n. For those cases where the myopic policy is optimal,
policy CSE achieves a logarithmic regret with respect to the
optimal policy. It is conjectured that the logarithmic regret is
the best achievable order for this problem. If the conjecture is
true, policy CSE also obtains the lower bound with respect to
the order of time.

V. SIMULATION RESULTS

This section validates the efficiency and the robustness of
the proposed algorithm through simulation results. Consider an
opportunistic spectrum access problem, shown in Section II-A.
The simulations account for two settings, where the correlation
sign of P is positive and negative, respectively. For the former,



we set the transition probability p11 = 0.8 and p01 = 0.3, thus
the optimal policy π∗ = π1; for the latter, we set the transition
probability p11 = 0.3 and p01 = 0.8, thus the optimal policy
π∗ = π2.

Fig. 2 compares the regret achieved by CSE with different
values of L: L = 5, L = 50 and L = 200. The theoretical
bound for L = 5 is also computed for comparison. The
first observation is that the regret achieved by CSE is not
beyond the theoretical bound (for L = 5), which agrees
with the proof in Section IV. Moreover, the real regret is
far less than the theoretical bound, implying there is potential
to reduce the constant C1 in the bound. Though the regret
shows a slightly increasing tendency with L, the performance
differences among different L’s are not significant, showing
that CSE is robust to the choice of L. Hence when designing
the algorithm in practice, we can choose any integer L(> 3) as
the length of the epochs and the performance will not change
too much. Another observation is that the proposed algorithm
converges quickly to the limit. This property is also favorable
in practice, since policy CSE performs well with respect to the
regret even if it is played for a short period of time. Note that
the observations above stand for both cases when p11 > p01
and p11 < p01.

Fig. 3 compares CSE (with fixed L = 5) to a previously
proposed policy [15], denoted as πP. The design of πP requires
a predetermined sequence an that monotonically grows to in-
finity. The regret of πP is on the order of O(an log n). Consider
three choice of an: an = 20+ *log n+2, an = 20+ *

√
n+ and

an = 20 + *log n+. The first observation is that the regret
of CSE is significantly reduced compared to that of πP. The
term [regret/ log (time)] shows a divergent tendency for πP

but converges quickly for CSE. This observation agrees with
intuition since the upper bound of πP has an additional term
an, and therefore grows more quickly than that of policy CSE.
The underlying reason is that in policy CSE, p01 and p11 are
estimated based on the samples and these estimated parameter
are used for decision making directly. However in πP, the user
samples the average reward of π1 and π2 (i.e., U1 and U2); the
time slots are also divided into epochs, but the length of the
epoch has to diverge in order to ensure that the sample value
of U1 and U2 are accurate enough. Policy CSE has another
advantage that it does not need a predetermined sequence an.
For users applying πP, the user is required to make a tradeoff
between short-term and long-term performance: if an grows
fast, πP would perform poorly when played for a long time;
on the other hand, if an grows too slowly, πP would converge
very slowly and have a relatively large regret at the beginning
of the operation. This nuisance of selecting an is avoided when
applying CSE. As mentioned previously, the observation and
discussion above are valid for both cases when p11 > p01 and
p11 < p01.

VI. CONCLUSION

In this study, we have investigated a non-Bayesian RMAB
problem, arising in the context of opportunistic spectrum
access. Specifically, in this problem, there are N arms each of
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Fig. 2: Regret of policy CSE for different L’s. The theoretical bound
for L = 5 is also plotted for comparison. In (a), the channel is
positively related whereas in (b), the channel is negatively related.

which is described by an identical, and independent two-state
Markov Chain. For this problem we have shown a policy that
yields regret compared to the optimal model-aware genie that
is bounded by a logarithmic function of time, whenever the
Myopic policy is optimal. This is a significant result because
for homogeneous settings the myopic policy is known to be
optimal for a wide range of cases: always for 2 and 3 channels,
always if the chain is positively correlated, and depending
on the transition matrix if it is negatively correlated. The
presented policy and its analysis improves over prior results
in the literature that proved log weak-regret [8]–[10], and
most pertinently our own prior results yielding near-log strict
regret [12]. It also improves over the O(

√
t) regret for the

policy recently presented in [11], which, however, applies
more generally to other problems as well.

It is conjectured that the logarithmic regret is the best
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Fig. 3: Comparison between the regret of policy CSE and πP. For
πP, three different choices of an are considered. In (a), the channel
is positively related whereas in (b), the channel is negatively related.

achievable order for the homogeneous non-Bayesian problem.
If this is true, our algorithm achieves the lower bound with
respect to the order time. Simulation results validate the
efficiency and robustness of the proposed algorithm.

Our results not only provide a practical policy for a practical
RMAB problem with two states and identical arms, but
also suggest a promising approach to investigate other non-
Bayesian RMAB problems. It would be of interest to identify
other RMAB problems that have a similar structure in terms of
the optimal solution structure depending upon a finite number
of inequalities with respect to the underlying transitions, and
derive similar results accordingly.
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