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Abstract

In wireless sensor networks, fair and efficient rate
allocation is an essential mechanism to avoid conges-
tion collapse and system degradation. While most
prior work in this context has focused on a static tree,
we consider the joint optimization of routing and rate
allocation in this work. We formulate LP problems to
obtain max-min fairness and sum-rate efficiency. We
show the tradeoff between fairness and efficiency in
this setting, and develop distributed algorithms based
on Lagrange duality to achieve these objectives.

1 Introduction

Due to the unpredictable nature of wireless com-
munication, such as varying link quality and band-
width, congestion is a common problem in wireless
sensor networks. This is even true for small wireless
sensor networks with known periodic traffic. More-
over, for contention-based MAC protocols, like CSMA,
concurrent data transmissions over different links may
interfere with each other and aggravate congestion, fi-
nally causing congestion collapse [9]. In order to avoid
this, each sensor node must appropriately control its
own rate to improve channel utilization and per-node
end-to-end throughput, especially in a multi-hop net-
work. There have been many papers on rate alloca-
tion in wireless sensor networks to alleviate these prob-
lems [5, 6, 7, 8, 9, 10].

Intuitively, it is important to improve the effi-
ciency of data collection in terms of bandwidth and
also energy and lifetime [11]. However, for many ap-
plications, such as earthquake monitoring, it is more
important to collect data from all nodes in various ge-
ographical locations in a balanced manner rather than
just gathering a large amount of data from one loca-
tion. Therefore, fairness is key ( [9], [7], [8]). Not only
it might increase per-node based throughput, but also
imply a longer lifetime of a wireless sensor network.

In this paper, we consider a general network with
a single sink and multiple randomly distributed wire-

less sensors. A carrier sense multiple access (CSMA)
MAC is used. Assuming no data compression, each
sensor generates information data which should finally
reach the sink, possibly in multi-hop. In order to study
the tension between fairness and efficiency, we formu-
late two separate optimization problems. One of our
objective is to achieve a network-wide optimal rate al-
location in terms of fairness, while the other is for effi-
ciency, measured by the amount of data extracted from
the network with some minimal rate requirement.

There are different definitions of fairness [1, 12,
13] in the context of resource allocation. We iden-
tify max-min fairness as the most appropriate one for
our setting. The efficiency is defined as the network
throughput in terms of the sum rates of all nodes.
In wired networks, additive increase and multiplica-
tive decrease (AIMD) [17] rate adjustment strategy
is widely used for fair and efficient data transmis-
sion. However, due to the broadcast nature of wireless
medium, the bandwidth consumption consists both
useful data and interference. Furthermore, the in-
terference at each node highly depends on the topol-
ogy. Due to these enormous differences between wired
and wireless communication, the design of rate con-
trol mechanisms for wireless networks is not trivial.
We need to solve the following problems.

First of all, we need to appropriately capture the
interference model. In [1], Sridharan et al. propose
a receiver capacity model, which has been experimen-
tally proved accurate for a CSMA-based link layer.
Therefore, we also apply this model in our optimiza-
tion problem formulation. Also, in this problem do-
main (using IEEE 802.15.4), data rate is very low (
less than 250 kbps ). So, the radio communication
bandwidth is the key constraint.

The majority of previous work on fair rate alloca-
tion in wireless sensor network is based on a predefined
routing tree [5, 6, 9, 10]. By this means, rate alloca-
tion and routing are separated. However, we believe
that the selection of paths for routing can impact the
fairness or efficiency of rate allocation. Different from
previous work, we model networks as directed graphs.



We assume that a sensor can dynamically adjust its
data generation rate and data transmission rates on
all its outgoing links. We follow a cross-layer design
to explore how to determine routes (at the network
layer) and set rates for sources (at the transport layer)
to maximize network utilization in a fair manner.
The rest of the paper is organized as follows. In
Section 2, we present the network model and formu-
late the optimization problems into linear program-
ming (LP) problems. Then, in Section 3, the tradeoff
between fairness and efficiency has been studied. In
Section 4, we analyze the LP problems and propose
distributed algorithms for them. Further, we report
the simulation results of these algorithms. Finally in
Section 5, we give our conclusion and future work.

2 Network Model and Problem Formu-
lation

We model the topology of a wireless sensor net-
work as a directed graph G(V, E), where V is the set
of all nodes (including the sink), and E is the set of
links. An edge (i,7) € E represents a communication
link from sensor i to j. Let r;; represent the data
transmission rate on link (i, j) . We assume G is a
connected graph, i.e., every sensor has at least one
path to the sink. r¢ . is the data generation rate on
sensor i. We further define O’ as the set of sensors
having links outgoing from sensor i and I* as the set
of sensors having links incoming to i. N? is the set
of sensor i’s neighbors. For example, in Figure 1 (a),
N3 = {0,4,5}, I? = {4,5} and O3 = {0}. We con-
sider a wireless sensor network used for environment
monitoring. Each sensor node generates data and is
able to relay data for other nodes. All sensed data by
nodes are finally transmitted to the sink.

In many existing work, rate allocation and op-
timization are based on fixed routing trees, usually
generated by the SPT (Shortest Path Tree) method.
Here, by modeling the network as a graph, we can
select paths for routing and explore fairness and effi-
ciency in wireless networks. In Figure 1, we compare
the tree-based and non-tree-based routing. As we can
see, without the routing tree, a sensor may take dif-
ferent paths to transmit data to the sink. For a given
network, different routing paths may lead different net-
work utility and max-min fair rate. If we consider a
network as a graph instead of a tree, it can reduce the
impact of bottleneck and increase the fairness. How-
ever, the network utility may decrease. Thus, we be-
lieve that joint routing and rate allocation can improve
the fairness of networks.

As we earlier mentioned, to model the interfer-
ence we use the receiver capacity model [1]. In this

(a) Non-Tree-based routing (b) Tree-based routing

Figure 1: An example to compare the fairness and ef-
ficiency of networks with and without predefined rout-
ing tree. Sensor 4 and 5 can only send data to 3 in
(b), while in (a), they have multiple paths.

model, every node is considered as a receiver. Due to
the broadcast nature of the wireless medium, the band-
width of a receiver is consumed by both useful data
and “noise” (interference). Here, we use noise to refer
to the data received but not targeted to the receiver.
Let’s use Figure 1 (a) to explain the model. This fig-
ure shows a 6-node sensor network. A solid line rep-
resents a communication channel, which is half-duplex
and symmetric. For node 4, it has two communication
links. r? . is the data generation rate at node 4. When
node 4 sends its data, it takes either link 4 — 1 or 4
— 3 or both. r4; and r43 are respectively defined as
the allocated rates on these two outgoing links of node
4. And there is r4; + 743 = r2,.,.. Since node 4 does
not relay data for other node, only r%.. (or r4; and
r43) is its useful data. However, due to the symmetry
of the link, the bandwidth of node 4 is also consumed
by the “noise” from node 1 and 3. Therefore, we have
the following inequality, where B* is the bandwidth of
node 4.

4 1 3 4
Tsre + Tnoise + Tnoise S B (1)

In the above inequality (1), r} ... is the data sent

by node 1, but not targeting to node 4. As we can see,
the useful data of node 1, including its own sensed
data 7l . and the relayed data 745, is sent out to node
0 (the sink). Therefore, rl ... =7l .+ r4. Similarly,
we can obtain r3 .. = 73 +743 + 753, where the data

relayed by node 3 is r43 + 753-

As we can see, the receiver capacity model suc-
cessfully capture the feature of wireless communica-
tion. Also, it has been found empirically good in mod-
eling the interference for a CSMA MAC. Receivers in
the network are bandwidth constrained and have a fi-
nite receiver bandwidth capacity given by B , which
can be set as the saturation throughput of the CSMA
MAC [21]. We can obtain a general form of receiver



capacity constraint at node i as follows:

Zrij—’_z Z?‘jlﬁBi (2)
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where } . 145 is all the data sent out by node i
and considered as useful data. While > i >y 0s 71
is all the data listened by node ¢, including both useful
data and “noise”.

In order to prevent the loss of data during trans-
mission, flow conservation is needed. That is, the
amount of data transmitted by a sensor is equal to
the sum of all received data and new data generated
by the sensor. Flow conservation is modeled as follows:

Z Tij — Z i = rirc (3)

jEO? lert

To study the fairness and efficiency, we formu-
late two optimization problems. Max-Min fairness has
widely been accepted as a formulation of fairness in
many settings. We also identify it as the most ap-
propriate one in our problem domain. Thus, our first
optimization problem is to obtain the max-min fair-
ness in a wireless sensor network. Let O represent the
sink and V' =V — {0}. The problem is formulated as
follows:

(P1) max: Trmin
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For the second optimization problem, our goal is
to maximize the sum of rates generated by all nodes
(>;ey Tire), while maintaining a minimal required
rate (rpeq). The max-min rate can be used as the min-
imal required rate, but not necessarily. This problem
is formulated as follows:

(P2) max: Z rirc
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Figure 2: Average Max-Min rate of Tree-based routing
and Graph-based routing with different network sizes.

For the above formulation, we should note that we
ignore the overhead and quantization effects associated
with packetization of data. We compare the fairness
obtained by our proposed approach (as P1) and the
traditional tree-based routing ( with SPT ). Networks
with different sizes ( from 6 nodes to 25 nodes ) have
been evaluated. Figure 2 shows the result. In order
to avoid randomness, every point in the figure is the
average of max-min rates of 100 randomly generated
networks with same size. This figure proves that joint
routing and rate allocation can significantly improve
the fairness. In the following section, we discuss more
on the relationship between fairness and efficiency in
wireless sensor networks.

3 Tradeoff between Fairness and Effi-
ciency

There are many different definitions of fairness.
In the existing work, researchers use different flavors
of fairness for rate allocation. Kun et al.[18] propose
a congestion control algorithm for wireless sensor net-
works designed to obtain proportional fairness of flows
in the network. In [16], Tassuilas et al. use a central-
ized algorithm to obtain a stronger sense of fairness,
the lexicographic max-min fairness, in wireless ad hoc
networks. Other forms of fairness are also used. In our
paper, we aim to obtain the max-min fairness of rate
allocation. That it, the minimum data generation rate
allocated to any node is the maximum over all possible
allocations.

Efficiency also has many different definitions. A
widely used one is the network throughput measured
by the sum rate (3,. 7%,.). Obviously, this kind of



efficiency severely biases the rate allocation in large-
scale, multi-hop sensor networks. It favors the nodes
that can directly communicate with the sink and the
nodes with less interference. Especially, by only con-
sidering network throughput, under heavy traffic load,
it’s impossible to successfully deliver packets that tra-
verse many hops.

Fairness-efficiency tradeoffs are relatively well-
understood in wired networks [2]. Due to the inter-
ference inherent in wireless networks, this tension be-
tween efficiency and fairness is even stronger. How-
ever, this problem is not well studied in the area. Let
the MaX—MiIil rate be an indicator of fairness. We de-

icv! Tsre

fine N1 as the average data generation rate in
the network, which is used as the indicator of efficiency.
We combine the fairness and efficiency into one objec-
tive as follows:

Yoy
. cV'’ "src
max a*rmer(lfa)*}Vi_l
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By changing the value of a ( @ € [0,1] ), we as-
sign different weights to fairness and efficiency. We
choose network sizes ranging from 6 to 45. For each
network size, 100 instances of network deployment are
randomly generated. Then each node is randomly set
a bandwidth of either 100 or 200. Ten bandwidth dis-
tributions are generated for each network instance (for
networks with size less than 10, it’s possible to have
some duplicated instances.). We solve the above LP
problems and obtain the efficiency-fairness curve. Fig-
ure 3 and Figure 4, respectively, show the fairness and
efficiency with different « for different networks. It is
clear if we increase the weight to efficiency, fairness will
decrease. When « = 0, maximal efficiency is obtained
at the cost Max-Min rate 7,,q0zmin = 0. In Figure 3,
the Max-Min rates are very close when a = 0.9 and
a = 1. Figure 5 is the efficiency-fairness curve ( for
networks with 45 nodes ). It shows the possible region
of efficiency and fairness. The bold dot on the curve is
obtained by maximizing the network utilization after
obtaining the max-min rate. By this means, we can
obtain the maximal fairness and efficient network uti-
lization ( over 83% of the maximal possible network
throughput when @ = 0 ) at the same time.

Compared to lexicographic max-min, max-min is
a weaker kind of fairness. However, due to the trade-
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Figure 3: Average Max-Min rate (the fairness) vs. the
network size.
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Figure 4: Average Data generation rate (the efficiency)
vs. the network size.

off between fairness and efficiency, max-min fairness
is more suitable to obtain fair and efficient rate allo-
cation. In the next section, we analyze and propose
some distributed algorithms to achieve our goals.

4 Distributed Algorithms

In wireless sensor networks, after the deployment
of sensors, usually it is not easy to access sensors
again. Also, due to the autonomous property and un-
predictable channel, distributed algorithms are much
desirable in wireless environment. In this section,
we propose several distributed algorithms using the
shadow price interpretation to solve the optimization
problems we described in section 2. Especially, we fo-
cus on solving the optimization problem of fairness in
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Figure 5: Efficiency vs. Fairness. This plot is for a
network with 45 nodes.

a distributed manner. After obtaining the Max-Min
rate, the sum-rate maximization problem will become
easier. Since for the sum-rate optimization, it always
favors the nodes close to the sink.

In [12], Kelly et al. first applied optimization
theory to rate control algorithms. This method was
quickly accepted by researchers. Later, more ap-
proaches of optimization have been introduced into
this area, such as duality and sub-gradient methods.
The dual-based method and sub-gradient methods are
rapidly used to analyze and design distributed algo-
rithms, especially for the emerging world of wireless
sensor networks. Particularly, due to the dynamical
and unpredictable feature of wireless networks, an op-
timization problem usually involves different elements
and different stack layers. Therefore, Chiang et al.
[19] and Johansson et al. [20] proposed cross-layer
optimization and introduced the dual decomposition
techniques. These works establish the basis of our fol-
lowing algorithms. In section 4.1 and 4.2, we elucidate
these algorithms in detail.

4.1 Partially Distributed Algorithms for
Fairness

Define X = {0 <7 < B Vie V' 0<r;<
B® Y(i,j) € E} as the domain and relax the flow con-
servation and bandwidth constraints. We applied the
sub-gradient method to solve the dual problem and
obtained the optimal dual variables. However, this so-
lution may not be primal feasible. For example, flow
conservation and bandwidth constraint could not be
satisfied. This is a typical phenomenon for problems
with non-strictly convex primal objective functions.
By adding a small strictly convex regularization term
to the primal objective function, the problem can be

solved [4]. Thus, we add a quadratic regularization
term € (77 qumin + 2. jyer Tij) to the objective with
e>0.

First, we rewrite the optimization problem for
fairness (P1) as follows:

man : —Tmin
s.t. Z?‘ij-FZZT‘leBi VieV
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Introduce dual variables A; and p; for the constraints,
the Lagrange function of the primal P1 is:

L(Tmina T, )‘a M)
_ 2 2
= —Tmin T €X Ty, +€x* T
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with 7, > O,X > 0, and 7 € X. Primal variables
Tmin, and 7 can be separated in above Lagrange func-
tion. To obtain the optimal value at iteration k, for
each primal variable, we solve the following problem:

rg;)n = arg min {ex72,, +(—1— Z ,uz(.k)

Tmin = iEV/
+ (N = 1) % i) 5 i}

k . k k

rB = argrf?ér)l({e*rfj + ()\E )4 Z )\l( )
leN?
+ " =) )

€ can impact the final result of Max-Min rate and the
speed of convergence. If € is too large, it may change
the optimization problem. If € is too small, the conver-
gence speed will be slow. In order to calculate r,,p,
the value of [i is needed. Thus, this method cannot
provide a fully distributed way to calculate Max-Min
value for the network. There should be a centralized
server to collect the value of u on every sensor at each
iteration. In [3], Madan et al. propose a way to design
fully distributed algorithms in the context of optimiz-
ing network lifetime. By learning from their method,
we reformulate our problem as shown in the following
part.



4.2 Fully Distributed Algorithm for Fair- Step size a®¥) — 0 with k — co. The Lagrange
ness dual function is separable in 7. We have the sequence
of the primal iterations as follows:

In this new formulation, each sensor i solves the
following optimization problem:

(P1) min: —rl .
s.t. Zrij—kz ZTUSBi Vie V'
jeo? leN? jeO!
Z i = Zm +ri. VieV’
jeoi lert
Tire = Thre v € N’
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We also need to consider the bandwidth constraint on
the sink » ;om0 < BY. By adding the quadratic
regularization term ex (3, oy (ri,..)% + 2 oGl ;) to
make the objective function a strictly convex function.
Sum up all the optimization problems on all nodes in
the network, the Lagrange of the global optimization
problem is given by:

L(rae, 7\, i, 7)
+

= =) rhetex (D) D) )
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+ § : § : VU src src)
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with X > 0 and 7 € X. We apply sub-gradient
methods to solve the dual problem. For dual variables,
there are
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At each iteration k, dual variables are updated

by
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The fully distributed Algorithm 1 is described by

Algorithm 1 Fully Distributed Max-Min Algorithm

1: Initialization

2:  set the value of § and e, set the domain X

3. initialize  primal —and  dual  variables:
TsresTijs As fly U

4: k <« 1 and step size a <« (1, initialize

D(0), D(1)
5: while |D(k) —D(k—1)]>dand k<T do
6: Solve i) — arg min,: sofe* (rf,.)* + (=1 —
0, (k k
W+ 2 ) = A i)
7 solve rl(]k) = argmin, ecx{e * rfj + (N +

Dokeni Ak i = ) * 7“”}
8 compute Lagrange Dual D(k)
9:  compute sub-gradients of dual variables

_ oD _ B i
10: o, = 2jeoi Tij + 2ieni 2jeor T — B

) oD _ L g
11 o Zjem Tij Zlep‘ Tl = Tsre
oD __ 1
12: dvi; rerc - Tgrc
. (k) _ C1xCy
13:  update « PEEeA

14:  compute new prices according to (5)

5. k++

16: end while

17: if Flow conservation and bandwidth constraints
are satisfied then

18:  return 74,775

19: else

20:  modify €, goto line 3

21: end if

C1xCo
k4+C2?

Ci, Cy are constants and satisfying limj_,.. af =
0, Yooy af = co. When we generalize this algo-
rithm to different network instances, it is hard to find
a common €. Thus, we set an initial value to e and
check flow conservation and bandwidth constraints at
the end of the while-loop. If any of the constraints
is violated, e will be changed to scale down the flows.

By using the similar method, we also designed a
fully distributed algorithm for the sum-rate problem.

Step size is updated as a(®) = where



But as we mentioned before, the sum-rate problem be-
comes easier after the max-min rate problem is solved.
Also due to the space of the paper, we won’t repeat
the deduction of the algorithm for sum-rate here.

4.3 Performance Evaluation

We evaluate our algorithms for networks with 20
nodes. Figure 6 and Figure 7 shows the convergence
speed of partially distributed algorithm and fully dis-
tributed algorithm (Alg. 1). We find that the fully dis-
tributed algorithm can converge faster than the par-
tially distributed algorithm. Figure 8 compares the
max-min rate allocated for each sensor by different al-
gorithms. In the fully distributed algorithm, each sen-
sor computes a max-min rate by its local information.
These max-min values generated by Alg. 1 are very
close to the optimal Max-Min. Minimal additional re-
finements are required to scale the final solutions in
order to ensure that all constraints are satisfied feasi-
bly.

10 L —— Partially Distributed Algorithm with n=20

maxmin
0o
T
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Figure 6: Convergence speed of partially distributed
Max-Min Algorithm.

5 Conclusion and Future Work

In this paper, we formulate LP problems to ob-
tain max-min fairness and sum-rate efficiency. Then
we have studied the tradeoffs between fairness and ef-
ficiency in wireless sensor networks. In a large-scale
low-rate network, fairness exhibits great importance.
Our study shows that we can improve the fairness by
allowing freedom in routing path-selection. Therefore,
to achieve a fair rate allocation, we focus on design-
ing a pricing-based fully distributed algorithm for the
joint rate and routing control of a wireless network.

—e— network with 20 nodes, s = 0.18

maxmin

Minimal r
P
T

00 1 1 1 1 1 1 1 Il
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Figure 7: Convergence speed of fully distributed Max-
Min Algorithm.
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Figure 8: Compare the max-min rate obtained by dif-
ferent algorithms. This plot is for network with 20
nodes. We sort these nodes by the max-min values
they generated. x-axis shows the ranking.

We believe that these algorithms show great
promise for future development, and plan to work
on extending them towards implementing a proof-of-
concept on a real test-bed. In the future, we also want
to obtain a distributed algorithm for a general formu-
lation which combines fairness and efficiency together.
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