
1

Data Gathering with Tunable Compression in
Sensor Networks

Yang Yu, Member, IEEE, Bhaskar Krishnamachari, Member, IEEE
and Viktor K. Prasanna, Fellow, IEEE,

Abstract— We study the problem of constructing
a data gathering tree over a wireless sensor net-
work in order to minimize the total energy for
compressing and transporting information from a set
of source nodes to the sink. This problem is crucial for
advanced computation-intensive applications, where
traditional “maximum” in-network compression may
result in significant computation energy. We inves-
tigate a tunable data compression technique that
enables effective tradeoffs between the computation
and communication costs. We derive the optimal
compression strategy for a given data gathering tree
and then investigate the performance of different tree
structures for networks deployed on a grid topology
as well as general graphs. Our analytical results
pertaining to the grid topology and simulation results
pertaining to the general graphs indicate that the
performance of a simple greedy approximation to
the Minimal Steiner Tree (MST) provides a constant-
factor approximation for the grid topology and good
average performance on the general graphs. Although
theoretically, a more complicated randomized algo-
rithm offers a poly-logarithmic performance bound,
the simple greedy approximation of MST is attractive
for practical implementation.

I. INTRODUCTION

For wireless sensor networks, in-network data
compression is vital for reducing the communication
cost over the routing substrate (e.g., a data gath-
ering tree). State of the art techniques perform a
“maximum” in-network compression [1], [2], where
the output data is compressed as much as possible
from the input data (we consider lossless compres-
sion). Given that the computation energy of data

This work is supported by NSF under grants 0330445, 0325875,
and 0347621.

Y. Yu is with the Application Research Center, Motorola Labs,
Schaumburg, IL 60196 (e-mail: yang@motorola.com). The presented
work was performed when he was at the University of Southern
California.

V. K. Prasana and B. Krishnamachari are with the Department
of Electrical Engineering, University of Southern California, Los
Angeles, CA 90089-2562 (e-mail: {prasanna, bkrishna}@usc.edu).

compression is negligible for simple applications
(e.g., temperature sensing), to perform maximum
compression for energy saving is understandable.
However, for advanced applications with heavy data
flow, including structural health monitoring, video
surveillance, and image-based tracking, compres-
sion of complex data sets is envisioned to cost
energy comparable with wireless communication.
Similar situation arises for batch mode data gath-
ering, where a large volume of sensed data is
accumulated at source nodes over a long time period
before being transmitted to the sink node. It is
also shown that with short-range communication,
blindly applying maximum compression may lead
to extra energy cost compared to transmitting the
raw data [3]. This necessitates alternative meth-
ods instead of maximum compression for efficient
tradeoffs between computation and communication
costs [4].

Motivated by the above observation, we inves-
tigate the concept of tunable compression that
is capable of tuning the computation complexity
of lossless data compression based on the energy
availability. Such a concept is not new in itself.
For example, the well-known gzip program supports
up to ten levels of different compression ratio,
with larger compression ratio resulting in longer
compression time and hence higher energy cost [5],
[6]. However, prior works have not considered the
application of tunable compression together with
routing techniques for data gathering in sensor net-
works, which is the focus of this paper.

We consider the construction of a data gathering
tree spanning a set of source nodes and rooted
at a sink node. For this problem, two important
data compression schemes have been previously
investigated: distributed source coding [7] and com-
pression with explicit communication [8]. While
practical distributed source coding schemes for sen-
sor networks are being developed [9], most existing

Digital Object Indentifier 10.1109/TPDS.2007.70709 1045-9219/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

works for data compression schemes are based on
explicit communication [1], [2], [4], [8], [10], [11].
Thus, we also focus on joint data compression with
side information via explicit communication.

While most prior works on data gathering focus
on minimizing the communication cost only, our
goal is to minimize the sum of both computation
and communication costs using tunable compres-
sion. We refer to our problem as the Tunable
Compression-based Data Gathering (TCDG) prob-
lem. To tune data compression over the gathering
tree, we propose a flow based model where data
from each source is compressed and transmitted
as a data flow over the corresponding path from
the source to the sink. Since a special case of
TCDG reduces to the Minimal Steiner Tree (MST)
problem, TCDG is NP-Hard in general.

We solve TCDG by decoupling two subproblems:
tree construction and flow determination. We first
show how the optimal flow can be determined for
a given tree. By assuming a network deployed
on a grid topology, we then model and analyze
and performance of two existing tree structures,
MST and the Shortest Path Tree (SPT). The results
indicate that while SPT performs well when the
relative computation cost compared to communi-
cation cost is high, MST is preferred when the
relative computation cost is low and data correlation
is high. Moreover, MST provides a constant-factor
approximation for the grid deployment.

We also study the performance of an approxi-
mated MST (A-MST) and SPT for general graphs
through simulation. Our results further reveal the
tradeoffs between A-MST and SPT with respect to
variations in data correlation and relative computa-
tion cost. Moreover, A-MST demonstrates accept-
able average performance in the studied scenarios,
which leads to the conclusion that A-MST is suit-
able as a practical solution due to its simplicity. For
theoretical completeness, we also present a random-
ized tree construction methodology that achieves
poly-logarithmic approximation for general graphs.
Paper Organization: The related work is briefly
discussed in Section II. In Section III, we give
assumptions and models for the TCDG problem,
which is formally defined in Section IV. We then
show how to determine the optimal flow for a given
tree in Section V, which enables the performance
analysis of SPT and MST on a grid deployment in
Section VI. In Section VII, a randomized approx-

imation algorithm is described. Simulation results
are presented in Section VIII. Finally, concluding
remarks are given in Section IX.

II. RELATED WORK

The problem of constructing an energy-efficient
data gathering tree in sensor networks with data
compression has received increasing research at-
tention. The work by Pattem et. al. [2] investi-
gates several practical schemes for tree construc-
tion, including routing-driven compression (RDC),
compression-driven routing (CDR), and cluster
based routing. Essentially, RDC involves oppor-
tunistic data compression over an SPT; CDR per-
forms maximum possible compression using a
MST-like routing scheme; and cluster based routing
is a hybrid scheme of RDC and CDR. Empirical
results show that cluster based routing achieves
near-optimal performance for a wide range of spatial
correlations. By assuming the entropy conditioning
at nodes to be only depending on the availability
of side information, Cristescu et. al. also show that
a hybrid scheme of SPT and MST provides con-
stant performance approximation for minimizing the
overall communication cost [8]. For a very similar
problem, when the joint entropy being modeled as
a concave, but unknown function of the number
of sources, a randomized logarithmic approximation
algorithm is given in [10]. Also, Goel et. al. [10]
noticed that the data gathering problem is essentially
a single-source buy-at-bulk problem [12], where
the cost spent on each edge is a concave function
of the number of sources that use this edge to
communicate to the sink. Other related efforts can
be found in [11], [13]–[18].

The adaptation of compression has been widely
studied in video transmission to mobile, wireless
devices [19], [20]. With lossy video compression,
these papers focus on vary the fidelity of the trans-
mitted video in response to changing network condi-
tion [19] or wireless channel quality [20]. Our paper,
on the contrary, consider lossless compression and
emphasize the tradeoffs between computation and
communication costs. Also, the underlying data
gathering problem has the inherent feature of joint
compression for data from multiple sources, which
is not presented in case of video compression in
general mobile networks.

Very few prior papers have exploited the trade-
offs between computation and communication for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

TABLE I

TABLE OF NOTATIONS

G = the graph representing the sensor network
< V, with a set of sensor nodes V , a set of links,

E,w > E, and a set of weights on edges in E
R set of source nodes, R ⊆ V

sink the sink node in V
we the weight of edge e ∈ E
δv number of source nodes in a subtree

rooted at v ∈ V
p(v) the path from v ∈ R to sink in a given tree
z(v) the last edge on p(v), i.e., the edge to sink
γ relative computation cost for compressing
f v

e flow from node v on edge e
Hi joint entropy of i ≥ 1 unit data
ρ data entropy rate, i.e., ρ = H1

the lower bound of compression for one
Li unit data when jointly compressed with

i − 1 pieces of unit data, Li = Hi

i
ε energy costs

data gathering [4]. For data gathering over a one-
dimensional random Gaussian field, such tradeoffs
are enabled by adjusting the group size within
which data fusion is performed — large group
increases computation cost but decreases commu-
nication cost [4]. Simulation results indicate that
the optimal group size increases with its distance to
the sink. Our paper formally models and studies the
tradeoffs between computation and communication
costs for data gathering in sensor networks with a
general problem setting.

Although we model joint entropy to be a concave
function of number of sources, the results in [10]
and [12] cannot be directly applied to our problem.
This is because when the computation energy is
considered, the overall cost on each edge may not
be a concave function of the number of sources
using this edge to communicate to the sink. Our
work shows that by using the notion of probabilistic
metric approximation [21], a randomized algorithm
gives an expected O(log2 n) approximation solution.
It is worth noting that the approximation bound can
be further improved to O(log n) [22]. However here
we illustrate the tradeoffs between SPT and MST,
hence the results in [21] suffice.

III. MODELS AND ASSUMPTIONS

A. Network Model

A list of notations is given in Table I.

We assume a simplified communication mecha-
nism with a medium access control (MAC) protocol
that ensures no packet collisions or interference in
the network [23]. This assumption has also been
made in several prior papers on data gathering [2],
[8], [10]. Thus, the underlying wireless network is
modeled as a connected weighted graph G =<
V, E, w >, where the vertex set V represents the
set of n sensor nodes; the edge (link) set E rep-
resents the wireless connection between nodes; and
associated with each edge ei ∈ E, its weight wei

(or simply wi) abstracts the energy cost of sending
a data packet of unit size over ei. The edge weight is
determined by the distance between the two adjacent
nodes, the radio device, and the communication
environment. We also use (u, v) to denote an edge
connecting u and v.

Let sink ∈ V denote the sink node and R ⊆
V denote the set of source nodes. We consider an
epoch-based data gathering paradigm [24]. In each
epoch, each source node generates a raw data of
one unit size that needs to be transported to the
sink, possibly via multi-hop communication.

A data gathering tree is a subtree of G rooted at
sink and containing R, denoted as T =< V ′, E ′ >,
where R ⊆ V ′ ⊆ V and E ′ ⊆ E. Let δv denote the
number of source nodes in the subtree rooted at v.
Given a data gathering tree, let p(v) denote the path
in the tree that connects v to sink, with u ∈ p(v)
(e ∈ p(v)) signifying that node u (edge e) is along
the path p(v). Also, for two edges e1 , e2 on the
same path, let e1 ≺ e2 denote the fact that e1 is a
predecessor of e2.

B. Energy Model for Tunable Compression

Since it is difficult to define a general form to
characterize the energy costs of various compressing
schemes, we use a simple model that captures the
principle rationale: the computation time complex-
ity of compressing one unit of data is inversely
proportional to the output size. Further, the energy
cost is proportional to the time complexity [5]. We
illustrate the above rationale using the example of
gzip to compress the benchmark file “alice29.txt”
from the Canterbury Corpus [6] at 5 different levels
of compression ratio (by properly parameterizing
gzip). The curve of running time vs. the normalized
output size is shown in Figure 1(a). The results are
averaged over 20 runs on a SUN SPARC II machine.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

In fact, similar compression time vs. normalized
output size tradeoffs are observed for a collection
of various compression techniques [5].

0.35 0.4 0.45
0.15

0.2

0.25

0.3

0.35

normalized output size, f

co
m

pr
es

si
on

 ti
m

e
(S

ec
)

gzip−9

gzip−7

gzip−5
gzip−3

gzip−1

(a) Experimental results of
compression time vs. normal-
ized output f for gzip (the
curve is modeled as function
g(f) = γ

f
in this paper)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

flow size, f

no
rm

al
iz

ed
 e

ne
rg

y
co

st
s comp. energy

comm. energy
ε(f)

(b) Computation energy vs. com-
munication energy tradeoffs on a
single link (we = 1, γ = 0.1)

Fig. 1. Energy tradeoffs with tunable compression

We define a pre-specified system parameter, γ ≥
0, to abstract the energy cost of compressing one
unit of data normalized by the cost of communicat-
ing one unit of data. Following the above rationale
and for the purpose of illustration, the energy cost
of compressing a source information of size s to an
output of size f is modeled as function

g(f) = γs
s

f
. (1)

The intuition behind Eq. (1) is that the energy
cost is (1) proportional to the input size s since it
has to scan the whole input at least once, and (2)
proportional to the compression ratio given by s

f
.

We now illustrate the fundamental tradeoffs be-
tween computation and communication energy us-
ing the example of a one-hop link. Let e = (u, v)
denote the link, where u generates a data packet
of one unit size that needs to be transmitted to v
after appropriate compression by u. Let f denote the
output size of the compression by u, which is also
the size of the data flow over e. f is lower bounded
by the entropy of one unit of data, denoted as ρ.
Since s = 1, we simplify the energy function in
Eq. (1) to g(f) = γ

f
, which is also used throughout

this paper. Let we denote the cost of transmitting
one unit of data over e. The overall energy costs,
denoted as ε(f) can then be modeled as follows:

ε(f) =
γ

f
+ f · we . (2)

We plot ε(f) in Figure 1(b) with we = 1, γ =
0.1 and f ∈ [0.1, 1] (we omit the boundary effect

of ρ as for now). Intuitively, we = 1 means that
to transmit one unit of data costs one unit energy.
Since the energy of transmitting one bit is typically
around 500 - 1000 times greater than a single 32-
bit computation [25], the practical meaning behind
γ = 0.1 is that around 50 - 100 instructions need to
be executed for generating each bit in the output.

Clearly, ε(f) is convex and the minimum is
achieved when ε′(f) = 0, where ε′(f) is the first
derivative of ε(f). Let f0 denote the desired flow
with ε′(f0) = 0. We derive f0 =

√
γ

we
. Considering

the boundary effects of ρ, the optimal value of f
equals f0 if ε′(ρ) ≤ 0 and ε′(1) ≥ 0, or ρ if
ε′(ρ) ≥ 0, or 1 if ε′(1) ≤ 0.

C. Flow-Based Data Gathering

Given a data gathering tree over a sensor network,
we model data transmission over the tree as a
composition of different data flows from each source
node to sink. That is, each path from a source
node to sink in the tree corresponds to a data flow
over the path. The flow size may change along
its corresponding path due to data compression
performed by intermediate nodes. Also, the energy
cost of the system is the sum of the computation
and communication costs of all paths in the tree.

Consider an arbitrary path p(v) in the tree from a
source node v to sink. Let f v

e denote the flow over
e ∈ p(v) and z(v) denote the last edge in p(v), i.e,
the edge incident to sink in p(v). We assume that
the total energy spent on data compression over the
path p(v) is determined by the flow on z(v), i.e., the
total energy cost for data compression over p(v) is
calculated as γ

fv
z(v)

. We will discuss this assumption

in Section III-D.
Given a node in the tree, the number of incoming

flows equals the number of source nodes in its sub-
tree. The output size for compressing each incoming
packet is lower bounded by the joint entropy of
these source nodes. Following the entropy model
in [10] (which effectively abstracts the entropy
models in [2], [8]), we assume that the joint entropy
of any i source nodes, Hi is a non-decreasing and
concave function of i with H1 = ρ, where ρ ∈ (0, 1]
is the entropy of one unit of data. We assume that
the compression of i incoming data flows at node v
can be performed in such a way that the lower bound
for compressing each data flow equals Li = Hi

i
,

with L1 = H1 = ρ. In other words, we assume that

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

when maximal compression is performed on i pieces
of source information, the fraction of compressible
data of each piece is the same.

Thus, for any e = (a, b) ∈ p(v), we impose
the constraint on f v

e such that f v
e ≥ Lδa =

Hδa

δa

(recall that δa is the number of incoming data flows
to a). This constraint is further explained using
an example in Section III-E. We also assume that
Li decreases with i, i.e., Li ≥ Li+1 for i ≥ 1
(see footnote 1 in Section VI-B for a practical
example). Hence, when a data flow is compressed
and transmitted along a path, the lower bound on
the flow decreases as the packet approaches sink.

D. Discussion

First, our analysis is not restricted to the specific
g(f) in Eq. (1). In fact, while the energy char-
acteristics of various compression algorithms have
been studied [5], accurate models for abstracting the
energy cost of tunable compression are still open
problems. However, the tradeoffs between compu-
tation and communication costs essentially depend
on the convexity of the total energy cost function,
e.g., Eq. (2). The requirement that energy cost is
inversely proportional to compression ratio is one
nice example leading to such a convexity. We expect
other models to be investigated in this context.

Second, the above flow model naturally models
the data (information) streaming from sources to the
sink and facilitates the computation of energy cost
of compression. This paper considers only energy
cost under this flow model. Other performance
metrics such as delivery latency can be defined by
virtually combining different outgoing flows from
a node as a whole and assessing the resulting time
cost accordingly.

Also, this paper is based on the simplified as-
sumption that the joint entropy of any set of i
sources is Hi and the flow from any of the i sources
is lower bounded by Li after joint compression. To
incorporate other more sophisticated joint entropy
models is part of our future work.

Third, by determining the compression energy
over a path solely based on the output flow of
the last compression on the path, we abstract away
decompression and compressions at intermediate
nodes. Since techniques such as gzip consumes very
little time for decompression compared to compres-
sion [5], to ignore the decompression cost is accept-
able. However, this assumption under-estimates the

overall compression cost by ignoring the compres-
sions at intermediate nodes. This is tolerable if the
last compression along the path dominates the over-
all compression cost, which prefers the case where
few compressions are performed along the path and
the data correlation in the last compression is so
high that the energy cost for this particular com-
pression dominates previous compressions along the
path. Nevertheless, we hope this preliminary study
leads to more accurate model of compression cost
in the future.

Fourth, since our problem is to minimize the
overall energy cost, the energy for packet reception
can be easily incorporated into the TCDG problem
by adjusting the weight on edges.

E. An Example

We illustrate the flow model using the data gath-
ering tree in Figure 2, where nodes v1, v5, v6, and
v7 are source nodes, v2 and v3 are relaying nodes,
and v4 is sink. In total, we have 4 paths in this tree.

Fig. 2. An example data gathering tree and a path within it

Consider the path from v1, denoted as
{v1, v2, v3, v4}. Based on the structure of the
tree, there is 1 source node (v1 itself) in the subtree
rooted at v1, 2 source nodes (v1 and v5) in the
subtree rooted at v2 and 3 source nodes (v1, v5, and
v6) in the subtree rooted at v3. Hence, the lower
bound of flow on the path can be calculated as
Lδv1

= L1 = H1 on link (v1, v2), Lδv2
= L2 = H2

2

on link (v2, v3), and Lδv3
= L3 = H3

3
on link

(v3, v4). The path together with the lower bounds
of flow on each link are illustrated in Figure 2
(the superscription for f v

i is omitted in the figure).
Based on our model, we also have L1 ≥ L2 ≥ L3.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Similarly, the flow on the path from v5 to sink
is lower bounded by L1 on link (v5, v2), L2 on link
(v2, v3), and L3 on link (v3, v4). The flow on the
path from v6 is lower bounded by L1 on link (v6, v3)
and L3 on link (v3, v4), respectively. The flow on the
link (v7, sink) is lower bounded by L1.

IV. PROBLEM DEFINITION

We formally define the Tunable Compression-
based Data Gathering (TCDG) problem as:
Given:
(i) a weighted graph G =< V, E, w >, sink ∈ V ,
set of source nodes R ⊆ V ,
(ii) an energy function for data compression given
by Eq. (1) with a pre-specified parameter γ,
(iii) the joint entropy of i sources, Hi and Li = Hi

i
,

find a subtree T =< V ′, E ′ > that contains R and
sink, and flow from all v ∈ R to sink, so as to
minimize ∑

v∈R

(
γ

f v
z(v)

+
∑

e∈p(v)

f v
e wi) , (3)

where z(v) is the last edge on path p(v),
subject to

∀v ∈ R, ∀e = (a, b) ∈ p(v) ⇒ f v
e ≥ Lδa (4)

∀v ∈ R, ∀e1 ≺ e2 ∈ p(v) ⇒ f v
e1
≥ f v

e2
, (5)

where δa is the number of source nodes in the
subtree rooted at a. Note that in Eq. (3), when
f v

z(v) = 1, we still count γ as the computation
cost. Since γ is close to zero in most application
scenarios, this is acceptable.

We consider two interesting special cases of the
TCDG problem. In the first case, we assume γ = ∞
or Hi = i, i.e., computation energy is arbitrar-
ily high or data is uncorrelated. Either condition
leads to the solution that no compression shall be
performed. Thus, an SPT tree that combines the
shortest weighted path from every node in R to sink
is optimal. In the second case, we assume γ = 0 and
Hi = 1, i.e., computation energy is negligible and
the joint entropy of any arbitrary i source nodes
is always one. Thus, the desired flow on all edges
of the tree equals one. In this case, TCDG reduces
to the MST problem. Thus, TCDG is NP-Hard in
general. To cope with this NP-Hardness, we start
our study by decoupling the two subproblems of
selecting the tree construction and determining the
flow from each source node to the sink.

V. OPTIMAL FLOW ON A GIVEN TREE

Given a data gathering tree and an arbitrary
source node v ∈ R, consider the path from v
to sink. Without loss of generality, let p(v) =
{v1, v2, . . . , vk} denote the path, where v1 = v,
vk = sink, and k is the number of nodes along p(v).
We need to compress and transmit a packet of unit
size from v1 to sink with the minimal computation
and communication energy costs. Let �f denote a
vector of flow along p(v), i.e., �f = {f v

e1
, . . . , f v

ek−1
}.

Since we are considering the specific path p(v),
we omit the superscription of elements in vector
�f as well as e in the subscription. Hence, we use
�f = {f1, . . . , fk−1} to denote the flow vector.

To simplify the notation, let βi denote the lower
bound of fi, where i = 1, . . . , k− 1. Since the path
is extracted from a given tree, we can calculate βi

based on the structure of the tree (as shown by
the example in Section III-E). That is, βi = Lδvi

,
where δvi

is the number of source nodes in the
subtree rooted at vi. Also, we have βi ≥ βi+1, for
i = 1, . . . , k − 1.

Let wi denote the weight of ei = (vi, vi+1), where
i = 1, . . . , k − 1. Let Wi denote the sum of edge
weights from ei to ek−1, i.e., Wi =

∑k−1
j=i wj . We

slightly abuse the notation by letting β0 = 1, and
Wk = 0.

A. Example Revisited

Let �f = {f1, f2, f3} denote the optimal flow
on path v1 to v4 shown in Figure 2. For this
flow, we have β1 = L1, β2 = L2, and β3 =
L3. Intuitively, when the relative computation cost
increases, the optimal solution shall perform less
amount of compression. In the trivial case when
the computation cost is prohibitively high, i.e., γ ≥
W1, no compression is performed and we have the
optimal flow as f1 = f2 = f3 = 1. Otherwise,
the optimal flow can be obtained by examining the
following three cases, depending on the relative cost
of computation, which is abstracted by γ and wi’s.

1) The cost of compressing the input down to β1

at node v1 is more expensive than routing data
of size β1 along the path. Thus, we may reduce
the compression energy, and hence the overall
energy cost, by decreasing the compression
ratio. That is, the optimal solution is to let v1

compress the data to some x ∈ (β1, 1] and set
f1 = f2 = f3 = x.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

TABLE II

OPTIMAL FLOW FOR THE EXAMPLE PATH IN FIGURE 2

case conditions optimal flow
1 γ ≥ W1 f1 = f2 = f3 = 1
2 γ < W1 and γ

β1

≥ W2β1 f1 = f2 = f3 ∈ (β1, 1]

3 γ

β1

< W2β1 and γ

β2

≥ W3β2 f1 = β1,
f2 = f3 ∈ (β2, β1]

4 γ

β2

< W3β2 f1 = β1, f2 = β2,
f3 ∈ (β3, β2]

2) Otherwise, further compression at node v2 is
necessary for reducing the total cost. If the
cost of compressing the input at v2 to β2 is
more expensive than the communication cost of
routing β2 over e2 and e3, the optimal solution
is to set f1 = β1 and f2 = f3 ∈ (β2, β1].

3) Otherwise, the compression is so cheap that it
is also beneficial to perform one more com-
pression at node v3. In this case, the optimal
flow is f1 = β1, f2 = β2, and f3 ∈ (β3, β2].

The above description is summarized in Table II.

B. Determining the Optimal Flow

Based on the intuition of the previous example,
we derive the optimal �f as follows.

Lemma 1: For any optimal flow �f over a path
p(v) as previously described, if fi+1 < fi, we have
fi = βi.

Theorem 1: Given a path p(v) as previously de-
scribed, if γ ≥ W1, the optimal flow is of unit
size on all links. Otherwise, suppose that γ ∈
(Wi+1β

2
i , Wiβ

2
i−1] for some 1 ≤ i ≤ k − 1. Then,

the optimal flow �f is:

�f = {β1, β2, . . . , βi−2, βi−1, f
∗, . . . , f ∗︸ ︷︷ ︸

k−i

} , (6)

where f ∗ = max{βi,
√

γ

Wi
}.

The proofs of Lemma 1 and Theorem 1 are de-
tailed in Appendix I. From Theorem 1, the optimal
flow is trivial when γ ≥ W1. Thus, we focus on the
case γ < W1 in the following discussion.

Theorem 1 reveals the fact that for an optimal
flow from v to sink, if γ ∈ (Wi+1β

2
i , Wiβ

2
i−1] for

some 1 ≤ i ≤ k−1, the flow on the last k−i edges,
f ∗, remains the same. For a closer understanding of
f ∗, in Figure 3, we plot f ∗ as a function of γ for the
example path from v1 to v4 in Figure 2 by setting
w1 = w2 = w3 = 1, β1 = 0.7, β2 = 0.6, and

0 ab c d e W1
0.4

0.8

1

relative computation cost, γ

f*

β
3

β
2

β
1

Fig. 3. f∗ for the example path in Figure 2 as a function of γ

β3 = 0.5. The labels on the x-axis are a1 = W3β
2
3 ,

a2 = W3β
2
2 , a3 = W2β

2
2 , a4 = W2β

2
1 , and a5 =

W1β
2
1 . It can be observed, for example, that when

γ ∈ (a5, W1], f ∗ equals
√

γ

W1
. When γ is decreased

to be within (a4, a5], f ∗ is however lower bounded
by β1, as indicated by Theorem 1.

Moreover, let Diam(sink, R) denote the
weighted diameter of G with respect to R and
sink, i.e., the maximum among the shortest
weighted path from any node in R to sink. We
define γ∗ = Diam(sink, R) × L2

1 as the critical
point of the system. From Theorem 1, we have:

Corollary 1: Given G, if γ ≥ γ∗, SPT is the
optimal tree for the TCDG problem, with the flow
specified by Theorem 1.

VI. ANALYTICAL STUDY OF SPT AND MST

A. Analysis for Deployment on a Grid Topology

For analytical tractability, we assume a deploy-
ment of sensor nodes on a grid topology of size
r × 2r (referred to as grid deployment hereafter),
where r source nodes at the leftmost column need
to send information to the sink located at the
bottom right corner of the grid. Each sensor node
can communicate to its one hop neighbors, i.e., 8
neighbors when ignoring boundary effects. We also
assume wi = 1 for all ei ∈ E.

The routing constructed by SPT and MST are
illustrated in Figure 4. For illustrative purpose, we
choose the positions of the sink and source nodes
so as to simplify our analysis, while still effec-
tively demonstrating the tradeoffs between SPT and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

r

2r

sources

sink

routers
SPT

rMST

Fig. 4. SPT and MST routing schemes for a grid deployment

MST. Similar analysis could be performed for cases,
e.g., where sink is at the center of the network.
Moreover, our analytical results match well with
simulation results on general graphs.

Note that although to find an MST for a general
graph is NP-Hard, the MST for the specific grid
deployment in Figure 4 is trivial. From Corollary 1,
the SPT is optimal when γ ≥ γ∗ = (2r − 1)L2

1.
Hence, we are only interested in the performance
of the SPT and MST for γ ∈ [0, γ∗].

Let εSPT denote the energy cost for SPT and
εMST for MST. Using Theorem 1, εSPT can be
calculated as:

εSPT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(r − 1)L1

2
+ i(

γ

f∗ + f∗(2r − i)) +
i−1∑
j=1

jLj

+

2r−i−1∑
j=r

(
γ

f ′ + jf ′),

when γ ∈ [(2r − i − 1)L2
i , (2r − i)L2

i−1]

for some 1 ≤ i ≤ r (7a)

r(r − 1)L1

2
+

rγ

Lr
+ r2Lr +

r−1∑
j=1

jLj ,

when γ ∈ [0, (r − 1)L2
r] (7b)

where f ∗ = max{Li,
√

γ

2r−i
}, and f ′ =

min{L1,
γ

j
}. Note that for Eq. (7a), the upper bound

of γ equals (2r − 1) when i = 1, which is slightly
larger than γ∗. However, this does not affect our
further analysis.

We explain Eq. (7a) using Figure 5. The cost
r(r−1)L1

2
is for packet transmissions over edges in

A1. The term i γ

f∗
corresponds to the computation

cost of the i source nodes circled in A2, which have

r

2r

A1

A2 A3

A4

Vi

V1

Vr

Fig. 5. Decomposition of εSPT

an optimal flow on their paths to the sink. The cost
i(2r − i)f ∗ is for transmitting flow f ∗ from the i
source nodes in A2 over their last 2r − i hops in
A4. The cost

∑i−1
j=1 jLj is for packet transmission

from the i nodes in A2 over edges in A3. The term∑2r−i−1
j=r (γ

f ′
+ jf ′) is the compression cost for the

r− i source nodes not in A2 plus the cost of packet
transmission from these source nodes over edges in
A4. The min function in f ′ is due to constraint (5).

For Eq. (7b), maximum compression subject to
constraint (4) is performed on all paths. The cost
r(r−1)L1

2
is again for packet transmissions over edges

in triangle A1. The cost rγ

Lr
accounts for the com-

pression energy cost of r sources. The cost r2Lr +∑r−1
j=1 jLj is for packet transmissions over the edges

in A3 and A4.
Let q = 3r−1. Let i∗ be the smallest integer such

that (q− i∗)L2
i∗−1 ≥ γ∗. We also calculate εMST as:

εMST =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

γ

q−i−1∑
j=2r−1

√
j +

i−1∑
j=1

jLj

+i(
γ

f∗ + f∗(q − i)),

when γ ∈ [(q − i − 1)L2
i , (q − i)L2

i−1]

for some i∗ ≤ i ≤ r (8a)

rγ

Lr
+

r−1∑
j=1

jLj + r(2r − 1)Lr,

when γ ∈ [0, 2rL2
r] (8b)

where f ∗ = max{Li,
√

γ

q−i
}.

Also, the minimal cost of the TCDG problem
is lower bounded by replacing constraint (4) with
∀v ∈ R, ∀e ∈ p(v), f v

e ≥ L|R| with |R| = r in
this particular case. In other words, we assume that
distributed source coding among all source nodes is
available at no extra cost. It can be verified that the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

optimal routing for such an lower bound case forms
exactly a SPT. Hence, the energy costs for the lower
bound, εLB can be calculated as

εLB =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2r
√

γ(2r − 1),

for (2r − 1)L2
r ≤ γ ≤ γ∗ (9a)

rγ

Lr

+ r(2r − 1)Lr,

for 0 ≤ γ ≤ (2r − 1)L2
r (9b)

Due to space limitation, we leave the detailed
explanation of εMST and εLB in [26]. Based on the
above results, we make the following observation.

Observation 1: For the grid deployment in Fig-
ure 4, we have the following performance bound
regarding SPT and MST (refer to [26] for proof):

lim
γ→γ∗

εSPT

εLB

= O(1) (10)

lim
γ→0

εSPT

εLB

= O(
r

Hr

) (11)

lim
γ→γ∗

εMST

εLB

= O(1) (12)

lim
γ→0

εMST

εLB

= O(1) . (13)

where the critical point γ∗ equals (2r − 1)L2
1.

The main lesson from Observation 1 is that, for
this particular grid deployment, the energy cost of
MST is a constant approximation of the optimal
cost, regardless of Hi and γ. Although theoretically
the performance of MST for general graphs is un-
bounded in the worst case, it is natural to conjecture
that MST might also perform well on the average
case. In Section VIII, we show that our simulation
results on an approximated MST confirmed this
conjecture.

We also notice that when γ approaches 0, the ratio
of εSPT over εLB is O(r

Hr
), which indicates that

the performance of SPT improves when correlation
among sources decreases. In the special case when
Hr = Θ(r), SPT becomes the optimal structure.

We verify the above observation through numer-
ical results in the next section.

B. Tradeoffs Between SPT and MST

Using the grid-based analysis developed in Sec-
tion VI-A, we instantiate Hi using a set of practical
joint entropy models from [27]. Specifically, we
consider a stationary Gaussian random process with
a scalar quantizer with uniform step size and infinite
number of levels. Our entropy models are classified

into 3 classes as follows, where d is the distance
between source nodes:
E1: When the correlation coefficient is e−d2

, Hi

scales as O(log i) as i → ∞ [27].
E2: When the correlation coefficient is e−d, Hi

scales as O(
√

i log i) as i → ∞ [27].
E3: When all sources are independent to each other,

Hi scales as O(i) as i → ∞.
We set H1 = ρ, where ρ is the data entropy

rate. According to the compression ratio for 10
test images using CCITT G4 lossless compression
tools [28], we set ρ = 0.1 (We examine a wider
range of ρ via simulations). For i > 1, we set Hi

to ρ log i for E1, ρ
√

i log i for E2, and iρ for E31.
Intuitively, the correlation among sources is highest
in the case of E1, and lowest in the case of E3. We
shall see that this difference does affect the tradeoffs
between SPT and MST according to Observation 1.

1) Tradeoffs for Entropy Model E1: In Figure 6,
we plot εSPT , εMST , and εLB for E1 with r = 40
and γ varied between 0 and 0.4 (note that in this
case γ∗ = (2r − 1)ρ2 ≈ 0.8).

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

relative computation cost (γ)

en
er

gy
 c

os
ts

ε
SPT

ε
MST

ε
LB

0

0.2

0.4

0.6

0.8

1

1.2

ra
tio

 o
f ε

M
S

T
 o

ve
r ε

S
P

T

ε
MST

/ε
SPT

Fig. 6. Performance of SPT and MST for grid deployment with
entropy model E1

From Figure 6, we can clearly observe the trade-
offs between SPT and MST with respect to vari-
ations in γ. When γ is large, SPT outperforms
MST with εSPT approaching to εLB. This is because
large computation cost discourages data compres-
sion, hence shortest paths from source nodes to
sink are preferred for saving communication costs.

1While Hi is asymptotically bounded by these functions, we set
Li to Li+1 if Li < Li+1 for small i’s in our numerical calculation
to sustain our assumption that Li ≥ Li+1.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

However, the performance of MST is also quite
satisfactory when γ = 0.4, with no more than
10% increase over SPT. Although not shown in the
Figure, εMST is also within 15% off εSPT when
γ = γ∗ = 0.8.

On the other hand, when γ approaches to zero,
MST provides up to 60% energy reduction com-
pared to SPT. This is because when the computation
costs is low, compressing data from multiple sources
before routing to the sink provides higher gains by
reducing the flow on the tree. In the special case of
γ = 0, our problem becomes similar to the scenario
studied in [2], where tradeoffs between MST and
SPT exist due to variations in spatial correlation
among source nodes —- MST outperforms SPT
when the correlation is high and SPT outperforms
MST when the correlation is low. In our case,
the spatial correlation captured by Hi = O(log i)
determines that MST outperforms SPT, which is in
keeping with the results in [2].

2) Tradeoffs for Entropy Model E2: The trade-
offs between SPT and MST is more complicated
in the case of E2. Based on Observation 1, the
asymptotic ratio of εSPT

εLB
when γ → 0 approaches

r
Hr

, which is O(
√

r

log r
) in the case of E2. Compared

with the O(r
log r

) ratio in case of E1, there is an
improvement of factor O(

√
r), as shown by the

following numerical results. Moreover, r
Hr

increases
with r, which is also verified by our results.

0 0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

relative computation cost (γ)

en
er

gy
 c

os
ts

r=140

r=100

r=60

ε
SPT

ε
MST

ε
LB

Fig. 7. Performance of SPT and MST for grid deployment with
entropy model E2

In Figure 7, we illustrate the performance of SPT
and MST with respect to variations in both γ and
r. In this figure, we vary r from 60 to 140 in

increments of 40, and γ from 0 to 0.8. It can be
observed that when r = 60, both the performance
of SPT and MST is very close to εLB. However,
as r increases, we can see the degradation of the
performance of SPT. When r = 140, the tradeoffs
between SPT and MST is apparent and is similar to
that in Figure 6.

3) SPT is optimal for Entropy Model E3: It is
easy to understand that in the case of E3, SPT is the
optimal solution. This conclusion is true for not only
the analyzed grid deployment, but general graphs.

Similar performance tradeoffs are observed in
scenarios with r varied from 5 to 150. In short,
the above analysis and numerical results for a par-
ticular grid deployment clearly demonstrate (1) the
tradeoffs between SPT and MST with respect to
variations in Hi and γ, and (2) that MST delivers
constantly bounded performance compared to the
optimal. Another important insight is that when γ
varies, the optimal routing scheme shall explore
the tradeoffs between SPT and MST. Along this
direction, we exploit in next section a hierarchically
clustered tree structure to solve TCDG.

VII. A RANDOMIZED log2 n APPROXIMATION

For theoretical completeness, we present a ran-
domized algorithm that achieves poly-logarithmic
approximation for the TCDG problem for general
graphs. The key idea is to approximate the graph G
with a set of k-hierarchically well-separated trees
(k-HST’s) [21] such that the routing selected ac-
cording to a randomly chosen k-HST is expected to
have a cost at most O(log2 n) times the optimal. Due
to space limitation, we briefly present our results in
this section, details of the algorithm and the proof
can be found in [26].

Let G =< V, E, w > denote a weighted con-
nected graph and dG(u, v) denote the distance be-
tween u, v ∈ V . Given any G and a constant k,
Bartal defines a set of k-HST’s over G, denoted as
S, such that:

Theorem 2: [21] There exists a probability dis-
tribution over S such that for every M ∈ S and
every u, v ∈ V , E(dM(u, v)) ≤ α · dG(u, v), where
α = O(log2 n).

Using the above results, we can show:
Theorem 3: [26] Given a TCDG problem on

graph G with optimal cost equal to C, there is a
feasible solution on the set of k-HST’s over G with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

the expected cost (over the distribution on the k-
HST’s) to be at most αC.

We know that the optimal solution to a TCDG
problem over a tree M is simply the composition
of routes from each node in R to sink on M . Thus,
by randomly choosing a k-HST, M from S and then
map the routes from each v ∈ R to sink in M to a
path in G, we get a routing scheme over G with an
expected cost within O(log2 n) times the optimal.

However, the construction of k-HST requires the
knowledge of the entire network topology [21].
It is not clear how to construct a k-HST using
a distributed algorithm that is suitable for sensor
networks. On the contrary, SPT can be constructed
using distributed bellman ford algorithm, while
distributed approximated MST can be constructed
based on shortest path [29]. Hence, these simple
tree construction methods gain advantages if their
average performance for general graphs is reason-
ably good compared with that of k-HST, which will
be studied in the next section.

VIII. SIMULATION RESULTS

A. Simulation Setup

A sensor network was generated by randomly
scattering n sensors in a unit square. The sink node
was always fixed at the left-bottom corner of the
square, while the source nodes were randomly se-
lected from the rest n−1 nodes. The communication
range of the radios was set to μ. We set the weight
on each edge to be cd, where d was the distance
between the two incident nodes, and c was a scaling
factor. To correspond to the numerical results in
Section VI-B, we set c = 80 so that the critical point
γ∗ in our simulations was around 80ρ2. Also, by
using d as the basis of edge weight, we explore the
case sitting in between the fixed communication cost
(regardless to d) model and the d2 path loss model,
and hopefully our results imply the applicability of
the proposed techniques to both models.

The performance of 3 tree construction methods,
SPT, MST, and k-HST (or simply HST hereafter),
was studied by simulations. While SPT and HST
could be constructed based on polynomial time
algorithms, the construction of MST was NP-Hard
for general graphs. We used the Greedy Incre-
mental Tree (GIT) algorithm [1] that gave a 2-
approximation MST [29], with A-MST denoting the
resulting approximated MST. Moreover, the lower

bound of the TCDG problem was obtained using
the relaxation method described in Section VI.

All the data shown in this section is averaged over
at least 200 instances such that they have a 95%
confidence interval with a ≤ 2% precision. For each
instance, the sensor field was randomly generated
using the above procedure.

B. Results

0 0.05 0.1 0.15 0.2 0.24
0

100

200

300

400

500

relative computation cost (γ)

en
er

gy
 c

os
ts

SPT
A−MST
LB
HST

0.2

0.4

0.6

0.8

1

1.2

ra
tio

 o
f ε

A
−

M
S

T
 o

ve
r ε

S
P

T

ε
A−MST

/ε
SPT

(a) Entropy model E1 with 50 source nodes

0 0.05 0.1 0.15 0.2 0.24
0

1000

2000

3000

4000

relative computation cost (γ)

en
er

gy
 c

os
ts

|R|=400

|R|=100

SPT
A−MST
LB
HST

(b) Entropy model E2 with 200 and 400 source nodes

Fig. 8. Main simulation results (n = 600, μ = 0.2)

Main results: For the results shown in Figure 8,
we fixed n = 600, μ = 0.2, and ρ = 0.1, while
varying γ within [0, 0.24] so that we can focus on
the tradeoffs between A-MST and SPT. We ob-
served that the simulation results for general graphs
confirmed our analytical results in Section VI. In
the case of entropy model E1, the performance of
SPT approached the lower bound when γ increased,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

while A-MST outperformed SPT when γ tended
to zero. As expected, HST performed in between
SPT and A-MST throughout the variations in γ.
More importantly, A-MST demonstrated acceptable
performance throughout the variations in γ. The
curve of εMST/εSPT clearly showed that A-MST
offers 50% energy savings over SPT when γ = 0,
and ≤ 15% increase over SPT at high γ.

Compared to Figure 6, we observed a lower
threshold value of γ (around 0.1) for the crossover
of SPT and MST in our simulations. This was
mainly because even with the scaling factor c = 80,
the average distance from the source nodes to sink
was around 0.77c ≈ 60 [30], which was smaller
than the average distance, 80, in Figure 4.

In the case of entropy model E2, we observed the
expected performance improvement of SPT over the
case of E1. For the sub-case of 200 source nodes,
the performance of SPT and A-MST was very close
to the lower bound. When the number of sources
was increased to 400, the tradeoffs between SPT
and A-MST became observable. This confirmed
the analytical results for the grid deployment in
Figure 7, which indicated that the choice between
A-MST and SPT depended on the exact entropy
model as well as the number of sources.

Above simulation results indicate that when the
entropy model and relative computation cost γ is
known, either SPT or A-MST can be selected ac-
cordingly as a practical routing scheme. When γ
is unknown or demonstrates high spatio-temporal
variation, HST can be used to provide an approx-
imation with theoretically guaranteed performance
bound. Nevertheless, in practice, the simple A-MST
performs well on the average, with only slight
degradation compared to SPT when γ is large or
the correlation among sources is low.

We have also conducted simulations using other
values of n with similar performance trend ob-
served. Due to space limitation, these results are
omitted in this paper. Also, we focus on the results
for entropy model E1 in the following presentation.
Impact of the data entropy rate, ρ: Based on the
study of CCITT G4 lossless compression over 10
testing images, ρ vary from 0.02 to 0.27. Thus, we
set n = 600, μ = 0.2, |R| = 50, γ = 0.1 and 0.4,
while varying ρ between [0.02, 0.2]. We illustrate
the results in Figure 9.

We observed that for all cases of γ, the energy
costs of SPT, A-MST, and HST increased with ρ.

0.02 0.06 0.1 0.14 0.18 0.2
200

300

400

500

600

data entropy rate, ρ

en
er

gy
 c

os
ts

γ=0.1

γ=0.4SPT
A−MST
LB
HST

Fig. 9. Impact of the data entropy rate ρ (n = 600, |R| = 50,
μ = 0.2)

This was because a larger ρ meant larger lower
bound of data flow on all edges, thus increasing the
data volume for communication. However, the cost
of LB remained the same throughout variations in ρ.
This was because LB assumed a perfect distributed
source coding, which led to a smaller lower bound
of data flow and mitigated the impact of ρ.

Moreover, we observed tradeoffs between SPT
and A-MST when ρ increased. When ρ is smaller,
SPT outperformed A-MST since a sufficient com-
pression ratio was achieved without using join com-
pression, which favored a SPT routing structure.
When ρ increased, A-MST exhibited better per-
formance due to the need of joint compression
to further reduce the communication cost. Also,
joint compression became less necessary when γ
increased, since the higher computation cost dis-
couraged high compression ratio. This was reflected
by the fact that the crossover point of SPT and A-
MST moved right with γ. Moreover, HST behaved
in between SPT and A-MST as expected.

Further, the performance of A-MST was again
acceptable throughout variations in γ and ρ.
Impact of the number of source nodes |R|: For
the results shown in Figure 10, we fixed n = 600,
μ = 0.2, while setting |R| to 25 or 100 and varying
γ within [0, 0.24]. It was understandable that the
energy costs of all tree structures increased with |R|.
Nevertheless, the tradeoffs between SPT, A-MST,
and HST still held for different values of |R|.
Impact of the communication range μ: For the
results shown in Figure 11, we fixed n = 600,
|R| = 50, while setting μ to 0.1 or 0.3 and varying

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

0 0.05 0.1 0.15 0.2 0.24
0

50

100

150

200

250

relative computation cost (γ)

en
er

gy
 c

os
ts

SPT
A−MST
LB
HST

(a) |R| = 25

0 0.05 0.1 0.15 0.2 0.24
0

200

400

600

800

1000

relative computation cost (γ)

en
er

gy
 c

os
ts

SPT
A−MST
LB
HST

(b) |R| = 100

Fig. 10. Impact of the number of source nodes |R| (n = 600,
μ = 0.2)

0 0.05 0.1 0.15 0.2 0.24
0

100

200

300

400

500

relative computation cost (γ)

en
er

gy
 c

os
ts

SPT
A−MST
LB
HST

(a) μ = 0.1

0 0.05 0.1 0.15 0.2 0.24
0

100

200

300

400

500

relative computation cost (γ)

en
er

gy
 c

os
ts

SPT
A−MST
LB
HST

(b) μ = 0.3

Fig. 11. Impact of the communication range μ (n = 600, |R| = 50)

γ within [0, 0.24]. The tradeoffs between SPT, A-
MST, and HST were still apparent for different μ.
We observed that increasing μ had little impact on
the performance of A-MST and LB. However, since
SPT did not favor data aggregation, εSPT increased
with μ dramatically when γ was small.

IX. CONCLUDING REMARKS

We have presented results regarding data gather-
ing for computation-intensive applications in sen-
sor networks, where computation energy for data
compression needs to be carefully traded against
the communication energy in scenarios such as
streaming applications and video surveillance. Our
key contributions include (1) a suitable energy
model for tunable compression and a flow-based
model to facilitate the tuning of compression over a
data gathering tree, (2) techniques for determining
the optimal flow for a given tree structure, based
on which, the performance of SPT and MST in
a grid deployment has been analytically studied,
(3) extensive simulation results further revealing
the tradeoffs between SPT and A-MST in general
graphs, which satisfactorily confirm our analysis for
the grid deployment, and (4)a randomized algorithm
with poly-logarithmic performance bound.

The lessons from our study are (1) with the
knowledge of γ and Hi, either SPT or A-MST

can be appropriately chosen, and (2) when such
information is unknown or if it shows large spatio-
temporal variations, A-MST provides acceptable
average performance for general graphs. Due to its
simplicity in distributed implementation, A-MST is
preferred as a practical routing scheme in this case.

A future research direction is to identify suitable
techniques to realize tunable compression for data
gathering, e.g., adaptive multimedia processing. It is
also crucial to develop accurate energy models for
these techniques to apply the algorithms described
in this paper.

REFERENCES

[1] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of
data aggregation in wireless sensor networks,” in International
Workshop on Distributed Event-Based Systems, July 2002.

[2] S. Pattem, B. Krishnamachari, and R. Govindan, “The impact
of spatial correlation on routing with compression in wireless
sensor networks,” in ACM/IEEE IPSN, Apr. 2004.

[3] C. M. Sadler and M. Martonosi, “Data compression algorithms
for energy-constrained devices in delay tolerant networks,” in
ACM SenSys, Nov. 2006.

[4] J. Acimovic, B. Beferull-Lozano, and R. Cristescu, “Adaptive
distributed algorithms for power-effi cient data gathering in
sensor networks,” in IEEE International Symposium on Wireless
Sensor Networks, June 2005.

[5] K. Barr and K. Asanović, “Energy aware lossless data com-
pression,” in ACM MobiSys, May 2003.

[6] T. Bell, M. Powell, J. Horlor, and R. Arnold, “The Canterbury
Corpus.” [Online]. Available: http://www.cosc.canterbury.ac.nz

[7] D. Slepian and J. Wolf, “Noiseless coding of correlated infor-
mation sources,” IEEE Trans. on Information Theory, vol. 19,
no. 4, pp. 471–480, 1973.

[8] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “On network
correlated data gathering,” in IEEE InfoCom, Mar. 2004.

[9] A. Kashyap, L. A. Lastras-Montano, C. Xia, and Z. Liu,
“Distributed source coding in dense sensor networks,” in Data
Compression Conference, Mar. 2005, pp. 13–22.

[10] A. Goel and D. Estrin, “Simultaneous optimization for concave
costs: Single sink aggregation or single source buy-at-bulk,” in
ACM-SIAM SODA, Jan. 2003.

[11] R. Kanna and S. S. Iyengar, “Game-theoretic models for
reliable path-length and energy-constrained routing with data
aggregation in wireless sensor networks,” IEEE JSAC, vol. 22,
no. 6, pp. 1141–1150, Aug. 2004.

[12] B. Awerbuch and Y. Azar, “Buy-at-bulk network design,” in
FOCS, Oct. 1997, pp. 542–547.

[13] W. Choi and S. K. Das, “A framework for energy-saving
data gathering using two-phase clustering in wireless sensor
networks,” in ACM MobiQuitous, Aug. 2004, pp. 203–212.

[14] B. Hong and V. K. Prasanna, “Optimizing a class of in-network
processing applications in networked sensor systems,” in IEEE
MASS, Oct. 2004.

[15] W. Choi and S. K. Das, “A novel framework for energy-
conserving data gathering in wireless sensor networks,” in IEEE
InfoCom, Mar. 2005.

[16] P. Leone, S. E. Nikoletseas, and J. Rolim, “An adaptive blind
algorithm for energy balanced data propagation in wireless
sensors networks,” in IEEE DCOSS, June 2005.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

[17] A. Jarry, P. Leone, O. Powell, and J. Rolim, “An optimal data
propagation algorithm for maximizing the lifespan of sensor
networks,” in IEEE DCOSS, June 2006.

[18] H. Luo, J. Luo, Y. Liu, and S. K. Das, “Adaptive data fusion
for energy effi cient routing in wireless sensor networks,” IEEE
Trans. on Computers, vol. 55, no. 10, pp. 1286–1299, Oct. 2006.

[19] B. D. Nobel, M. satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker, “Agile application-aware adaptation
for mobility,” in ACM SOSP, Oct. 1997.

[20] M. D. Corner, B. D. Nobel, and K. M. Wasserman, “Fugue:
Time scales of adaptation in mobile video,” in the SPIE
Multimedia Computing and Networking Conference, Jan. 2001,
pp. 75–87.

[21] Y. Bartal, “Probabilistic approximations of metric spaces and
its algorithmic applications,” in FOCS, 1997.

[22] J. Fakcheroenphol, S. Rao, and K. Talwar, “A tight bound on
approximating arbitrary metrics by tree metrics,” in STOC, June
2003.

[23] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves,
“Energy-effi cient, collision-free medium access control for
wireless sensor networks,” in ACM SenSys, Nov. 2003.

[24] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency
tradeoffs for data gathering in wireless sensor networks,” in
IEEE InfoCom, Mar. 2004.

[25] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava,
“Energy-aware wireless microsensor networks,” IEEE Signal
Processing Magazine, vol. 19, no. 2, pp. 40–50, March 2002.

[26] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-
effi cient data gathering with tunable compression in wireless
sensor networks,” University of Southern California, Tech.
Rep. CENG-2004-15, 2004. [Online]. Available: http://halcyon.
usc.edu/∼yangyu/data/TR CENG200415.pdf

[27] D. Marco, E. J. Duarte-Melo, M. Liu, and D. L. Neuhoff, “On
the many-to-one transport capacity of a dense wireless sensor
network and the compressibility of its data,” in ACM/IEEE
IPSN, Apr. 2003, pp. 1–16.

[28] A. Knoll, “Compression of bi-level images: compressor
performance report,” in INFORUM 2000 Conference, May
2000, pp. 23–25. [Online]. Available: http://www.inforum.cz/
inforum2000/prednasky/kompresebitona.html

[29] H. Takahashi and A. Matsuyama, “An approximate solution for
the steiner problem in graphs,” Mach. Japonica, vol. 24, no. 6,
pp. 573–577, 1980.

[30] E. W. Weisstein, “Square point picking.” [Online]. Available:
http://mathworld.wolfram.com/SquarePointPicking.html

APPENDIX I
PROOFS

Proof of Lemma 1: Otherwise, decreasing fi to
βi does not change the cost for compression over
p(v), since the compression energy is determined
only by the flow on the last link in p(v). However,
this reduces the cost of communication over ei,
contradicting the optimality of the flow �f .

Proof of Theorem 1: If γ ≥ W1, it means that any
compression is more expensive than transmitting the
original data along the path. Hence the optimal so-
lution is to simply transmit the data packet without
any compression. Otherwise, the proof is as follows.

First, since both Wi and βi decreases with i, i.e.,
Wi+1 ≤ Wi and βi ≤ βi−1, the condition for γ is
valid. Also, since Wkβ

2
k−1 = 0 and W1β

2
0 = W1,

the range of γ is within [0, W1].
Suppose that γ ∈ [Wi+1β

2
i , Wiβ

2
i−1] for some

1 ≤ i ≤ k − 1. Suppose that �x = {x1, . . . , xk−1}
is the vector of the optimal flow with cost εx. Let
f ∗ denote max{βi,

√
γ

Wi
}. Let �f denote the flow

constructed by setting fj = xj for 1 ≤ j < i and
fj = f ∗ for i ≤ j ≤ k − 1. Let εf denote the cost
of �f . We have

εx − εf = (
γ

xk−1
+

k−1∑
j=1

xjwj)

−(
γ

f∗ +
i−1∑
j=1

xjwj + f∗
k−1∑
j=i

wj)

=
γ

xk−1
+

k−1∑
j=i

xjwj − (
γ

f∗ + f∗Wi)

≥ (
γ

xk−1
+ xk−1Wi) − (

γ

f∗ + f∗Wi) (14)

We define an optimization problem, P (y), as to:

min P (y) =
γ

y
+ yWi

subject to y ≥ βi .

Hence, Eq. (14) is actually P (xk−1) − P (f ∗). It is
easy to verify that P (y) is a convex function. We
consider two cases for γ ∈ [Wi+1β

2
i , Wiβ

2
i−1].

Case (i): When γ ∈ [Wiβ
2
i , Wiβ

2
i−1], we have√

γ

Wi
≥ βi, hence implying f ∗ =

√
γ

Wi
. For

the above optimization problem P (y), we have
P ′(βi) = − γ

β2
i

+ Wi ≤ 0 and P ′(βi−1) = − γ

β2
i−1

+

Wi ≥ 0, where P ′(y) is the first derivative of P (y).
Therefore, the optimal y that leads to P ′(y) = 0 lies
within [βi, βi−1]. By solving P ′(y) = 0, we know
that the optimal value of y actually equals f ∗. Thus,
εx − εf = P (xk−1)−P (f ∗) ≥ 0, implying that �f is
optimal. From Lemma 1 and the fact f ∗ ∈ [βi, βi−1],
we have fj = βj for 1 ≤ j < i.
Case (ii): When γ ∈ [Wi+1β

2
i , Wiβ

2
i], we have√

γ

Wi
≤ βi, implying f ∗ = βi. Also, we have

P ′(βi) = − γ

β2
i

+ Wi ≥ 0. This means that P (y)

is an increasing function when y ≥ βi. Thus, P (y)
is minimized when y = βi. Again in this case, we
have εx − εf ≥ 0, implying the optimality of �f .

Finally, we can combine the above two cases
using a max function for f ∗.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

