
1

Issues in Designing Middleware for Wireless Sensor
Networks

Yang Yu, Bhaskar Krishnamachari, and Viktor K. Prasanna
Department of EE-Systems

University of Southern California
Los Angeles, CA 90089-2562

�yangyu, bkrishna, prasanna�@usc.edu
http://ceng.usc.edu/˜prasanna, http://ceng.usc.edu/˜anrg

Abstract— Wireless sensor networks are being developed for a
variety of applications. With the continuing advances in network
and application design, appropriate middleware is needed to
provide both standardized and portable system abstractions and
the capability to support and coordinate concurrent applications
on sensor networks. In this paper, we first identify several design
principles for such a middleware. These principles motivate a
cluster-based lightweight middleware framework that separates
application semantics from the underlying hardware, operating
system, and network infrastructure. We propose a layered
architecture for each cluster that consists of a cluster control
layer and a resource management layer. Key design issues and
related challenges within this framework that deserve further
investigation are outlined. Finally, we discuss a technique for
energy-efficient resource allocation in a single-hop cluster, which
serves as the basic primitive for the development of the resource
management layer.

I. INTRODUCTION

Wireless sensor networks (WSNs) are a significant technol-
ogy attracting considerable research attention in recent years.
They are being developed for a wide range of civil and military
applications, such as object tracking, infrastructure monitoring,
habitat sensing, and battlefield surveillance. Typically, a WSN
consists of hundreds to thousands of tiny sensor nodes that
communicate over wireless channels and perform distributed
sensing and collaborative data processing.

State-of-the-art techniques for WSNs focus on simple data-
gathering style applications, and in most cases, support one
application per network. Therefore, the design of the network
protocols and applications are usually closely-coupled, or
even combined as a monolithic procedure. However, such
procedures are sometimes ad hoc and impose direct interaction
with the underlying embedded operating system, or even the
hardware components, of sensor nodes. We envision that
the development of WSNs will finally demand systematic
application design methods based on standard and portable
abstractions of the system. In addition, multiple applications
will be required to be concurrently executed over a single
WSN. For instance, a building monitoring system may need to
simultaneously monitor the temperature and luminance, check
cracks on the wall, track traversing persons, and even com-
municate with systems in nearby buildings. Thus, middleware

This work is supported by NSF grant number IIS-0330445 and by NSF
ITR medium grant, award number 0325875.

sitting between the network hardware, operating systems, and
network stacks and the application is required to provide (1)
standardized system services to diverse applications, (2) a
runtime environment that can support and coordinate multiple
applications, and (3) mechanisms to achieve adaptive and
efficient utilization of system resources. Such a middleware is
particularly useful for WSNs that host complex applications
with large amount of information processing and/or stringent
performance constraints.

While there have been numerous efforts at developing
routing and communication protocols for WSNs [1], the
fundamental problem of identifying and developing an ap-
propriate middleware for fully realizing the capability of
sensor technologies and applications remains to be addressed.
Traditional distributed middlewares (such as DCOM, CORBA,
PVM, MPI) are normally heavyweight in terms of memory
and computation requirements and therefore not suitable for
WSNs with scarce energy and processing resources. Instead,
simple, easily implementable, lightweight designs are desired.
Moreover, the middleware design needs to address the unique
operating modes of WSNs that are significantly different
from traditional networks, including the ad hoc deployment,
untethered operation, and dynamic operating environments.

In this article, we first identify several design principles for
WSN middleware. These principles motivate a cluster-based
middleware framework that provides a virtual machine ab-
straction to separate application semantics from the underlying
infrastructure. Each cluster contains a set of spatially adjacent
sensor nodes that cooperate as a basic functional unit of the
middleware. We then propose a simple and lightweight layered
infrastructure for each cluster that consists of a cluster control
layer and a resource management layer. Design issues and
related challenges within this framework that deserve further
investigation are outlined. Finally, we discuss a technique for
energy-efficient resource allocation in a single-hop cluster,
which serves as the basic primitive for the development of
the resource management layer.

A. Application Challenges

Although spreading over a broad spectrum, most appli-
cations on WSNs can be characterized by several common
features. Typically, sensor nodes are powered by batteries and



2

dispersed over an operational area where the phenomena of
interest may appear. To conserve energy, sensor nodes can
operate in several working modes with different functionalities
or processing speeds, and thus different power consumption.
Mechanisms for changing the working mode of a sensor node
are called system “knobs”. Examples of state-of-the-art system
knobs include dynamic power management [2], dynamic volt-
age scaling [3], and modulation scaling [4]. Initially, to save
energy, all sensor nodes may be switched into sleeping mode,
except for a few “guarding” ones. Once the guarding nodes
detect any signals that indicate the appearance of the target
phenomena, they would be responsible for activating (waking
up) other sleeping nodes. Ideally, enough number of nodes
should be woken up around the phenomena to temporarily
form a distributed subsystem that is capable of accomplishing
the desired mission.

Several challenges must be overcome for completing the
above procedure. First, efficient mechanisms are needed to
selectively activate sleeping nodes with appropriate positions
around the target and most remaining energy. Second, the
activated nodes need to cooperate together for distributing
the required signal processing tasks, aggregating the results,
and routing the final decision to the base station. Third,
in many cases, certain QoS requirements must be satisfied.
Specifically, the requirements on the processing latency and
fidelity of the decision determine the amount of needed com-
putation/communication/sensing (CCS) resources and energy.
Fourth, the network management can be complicated due to
sensor heterogeneity (i.e., when different nodes have varying
energy levels, processing capabilities and sensing modalities).

The above challenges are not trivial, considering the ad hoc
characteristics of the network, the limited energy and CCS
capabilities of sensors, the possible variations in the system
and environmental conditions, and the fact that sensor nodes
need to operate in an unattended manner. To relieve the burden
on application designers, middleware is needed to provide a
somewhat general runtime environment that stems from the
above common features while taking the above challenges into
account. To guarantee the proper functioning of concurrent
applications under stringent resource constraints and high
dynamics, the middleware is required to effect efficient trade-
offs between the multiple QoS dimensions of an individual
application as well as between multiple applications.

B. Related Efforts

A general description of the middleware challenges for
WSNs is presented in [5]. NEST [6] develops a real-time net-
work coordination and control middleware. The interface be-
tween the OS and the application programmer is abstracted as
so-called Microcells that can perform self-replication, migra-
tion, or grouping operations. The Smart Messages Project [7]
proposes a distributed computation model based on execution
migration. Smart Messages are migratory execution units that
contain both data and code. In [8], location-centric compu-
tation is proposed, where regions are used to accommodate
collaboration between sensor nodes around the target phenom-
ena. In some sense, regions bear resemblance to the cluster

concept in this paper. In [9], an adaptive middleware frame-
work is proposed to explore the resource/quality tradeoffs
during information collection. The main idea is to reduce the
communication frequency at sensor nodes by lowering the
sampling frequency without compromising the accuracy of
the results. In [10], MiLAN is developed to enable dynamic
network configuration (i.e., to identify and organize network
resources) to fulfill the performance requirements from the
applications. The design, algorithms, and implementations
of middleware components to support queries over sensor
database is investigated in [11]. Clustering techniques are used
in [11] for intelligent in-network aggregation to reduce the
amount of communication between sensor nodes.

The TinyOS [12] from Berkeley has recently become a
de facto choice for operating system on individual sensor
node, encouraging middleware components to be developed
on top of TinyOS. For example, Maté, a tiny communication-
centric component running on TinyOS is presented in [13]
to facilitate frequent reprogramming of sensor networks in
an energy-efficient style. However, while the goal of Maté
is to provide a high-level program interface for single sensor
node, our work focuses on providing a system-wide virtual
machine abstraction to facilitate localized cluster control and
resource management mechanisms, such that the performance
of multiple applications can be satisfied under the stringent
resource constraints and high dynamics of WSNs.

Lightweight variations of the traditional CORBA service are
also being developed for accommodate wireless applications,
such as in [14], [15]. However, CORBA is inherently based on
“request/response” synchronous communication model, which
is a misfit for the nature of WSNs, where the communication
is packet based, highly variable in speed, and error-prone [16].

II. DESIGN PRINCIPLES

As discussed in [17], the software design for WSNs should
follow several basic principles. We re-interpret those principles
for the design of middlewares as follows:

(1) The middleware should provide Data-centric mecha-
nisms for data processing and querying within the network.
Due to its simplicity, flexibility, and robustness, cluster-based
network architecture has been widely used in the design and
implementation of network protocols and collaborative signal
processing applications for WSNs, such as [11], [18]–[20].
Intuitively, cluster-based architecture is suitable for hosting the
data-centric processing paradigm from both geographical and
system design perspectives.

(2) Application knowledge can be used to tailor the design
and implementation of softwares. It is thus important to
integrate application knowledge into the services provided by
the middleware. However, due to the mission to support and
optimize for a broad class of applications, tradeoffs need to
be explored between the degree of application-specific and the
generality of the middleware. A practical policy is to embed
the unique features of an application into the application code
or specification, which can be interpreted by the middleware.
Such embedded information can then be used to direct the
operations of the middleware.



3

(3) Localized algorithms should be used to collectively
achieve a desired global objective while providing good system
scalability and robustness. Since the cluster-based architecture
localizes the interaction of sensor nodes and hence the coor-
dination and control overhead within a restricted vicinity, it is
reasonable to regard each cluster as a basic function unit of
the middleware. Consequently, the middleware performs as a
distributed software composed of multiple clusters.

We believe that it is necessary to respect two additional
principles as follows:

(4) Since the available resources of sensor nodes are low, the
middleware itself should be lightweight in terms of the com-
putation and communication requirements. The lightweight
requirement necessitates simple and efficient heuristics to be
used for suboptimal solutions.

(5) Due to the limited resources, it is very likely that the per-
formance requirements of all the running applications cannot
be simultaneously satisfied. Therefore, it’s necessary for the
middleware to smartly trade the QoS of various applications
against each other. Note that this is different from the concept
of adaptive fidelity algorithm [17] that trades the QoS of a
specific application against its resource usage. Accordingly, we
need mechanisms to specify and adapt the policy of tradeoffs
conducted by the middleware.

Both principles (1) and (3) strongly motivate cluster-based
architectures. In fact, such architectures have been widely
investigated in ad hoc networks since they “promote more
efficient use of resources in controlling large dynamic net-
works” [21]. Compared with mobile networks that incur a high
cost for maintaining clusters throughout the network, WSNs
usually consist of stationary sensor nodes with less dynamics.
Hence, the cost for superimposing cluster architecture over the
physical network is affordable, given the potential advantages
offered by clusters in designing scalable and localized data-
centric algorithms.

III. OVERVIEW OF A CLUSTER-BASED MIDDLEWARE

ARCHITECTURE

In general, a cluster is a set of spatially adjacent sensor
nodes that reside around the target phenomena and are capable
of detecting and/or processing the data of interest. Clusters
are dynamically formed during the lifetime of the system,
triggered by the changing conditions of the environment, data
source, and sensor nodes. Accordingly, the members of a
cluster are dynamically adjusted. Multiple clusters may co-
exist within the system and overlap with each other. During
the formation of a cluster, one node is elected as the cluster
head, which is responsible for the control and coordination of
sensor nodes within the cluster.

As shown in Figure 1, the middleware infrastructure is
divided into two layers. We call the abstraction provided by the
middleware a virtual machine, because of its similarity to the
virtual machine concept in traditional distributed systems in
terms of providing application semantic transparency from the
physical infrastructure. While the cluster forming and control
protocol is distributed among all sensor nodes, it is assumed
that the code for resource management layer resides at the

Sensor
Network

Cluster
Layer Cluster Forming and Control Protocol

Data Accessibility,
Node Capability,

Network Connectivity

Sensor State Control,
Knob Settings,

Code Allocation,
Cluster Control

Messages

Resource
Management

Layer Resource Description Cost Models
Resource Manager

QoS Intepreter

Cluster Information Resource Allocation
and Adaptation

Application Code,
Specification,

QoS Requirements,
Adaptation Policies

Application Results,
Resource Usage &

QoS Statistics

Applications

Fig. 1. Cluster-Based Middleware Architecture

cluster head. A multi-cluster hierarchical architecture can be
analogously developed, and is beyond the scope of this paper.
Also, the eventual form and modularization of the middleware
can be reasonably varied from the structure in Figure 1.
Cluster Layer: The cluster layer is responsible for forming
a cluster from a pool of sensor nodes that are around the
target phenomena. Typically, the data accessibility, node ca-
pability (including remaining energy and CCS capabilities),
and network connectivity are the criteria for determining the
membership of a sensor node. Obviously, the gathering and
exchanging of such information should be performed in a
distributed way. Application-related knowledge is embedded
in the application specification and passed down to the cluster
layer after interpreted by the resource management layer. In
addition, the cluster layer distributes the commands issued
from the cluster head for resource management and cluster
control purpose.

Most of the previous efforts on clustering WSNs, such as
LEACH [18], tend to statically partition the network into mul-
tiple clusters a priori. However, our middleware is designed to
dynamically form and manage clusters around the phenomena
of interest. The challenges involve cluster adaptation and inter-
cluster coordination, which will be discussed later.
Resource Management Layer: As the key component of the
middleware, the resource management layer commands the
allocation and adaptation of resources, such that the QoS re-
quirements specified by the applications can be met. Resource
allocation focuses on generating an initial solution when the
cluster is formed, while resource adaptation controls the run-
time behavior of the cluster. Both of these steps need to solve
the problem of determining the scheduling of applications onto
corresponding resources and the adjustment of system knobs.



4

In general, such problems turn out to be computationally hard.
Thus, heuristics providing near-optimal solutions are needed.

It is crucial to ensure the robustness of the system. Sys-
tem and environmental variations may cause deterioration
of the node capabilities and the quality of communication
channels, or even node failure. Therefore this information
needs to be periodically gathered through the cluster control
protocol and updated at the cluster head. The cluster head is
then responsible for taking adaptation actions at the sight of
possible failure of the functionality or QoS requirements of
applications. Directions from applications will be necessary
in selecting the right adaptation actions, especially when
the resource availability is tight. From one hand, adaptive
fidelity algorithms are extremely useful in trading the quality
of a single application for its resource usage. On the other
hand, inter-application coordinations are necessary to perform
system-wide tradeoffs and achieve optimized and balanced
resource utilization among multiple applications. For instance,
different priorities associated with applications will affect the
fidelity adaptation of individual application.

We note that the routing mechanisms are not shown in the
architecture as we assume that the proposed middleware is
positioned upon existing network stacks. In fact, protocols
such as Directed Diffusion [22] can be used to route infor-
mation from a specific cluster to the base station or other
destinations in the network. Nevertheless, further optimization
for intra-cluster routing is possible given the cluster structure
and connectivity available at the cluster head.

IV. DESIGN ISSUES AND CHALLENGES

To implement the cluster-based architecture described in
Section III still requires significant amount of work. In this
section, we outline several concrete issues involved in the
design and development of the architecture. Some related
challenges and tradeoffs are also addressed.
Cluster Control: Due to the dynamic nature of the phenomena
being monitored, and the need for collaborative signal pro-
cessing, it is necessary to develop on-the-fly self-configuring
distributed clustering mechanisms in WSNs. More specifically,
such clustering mechanisms are responsible for forming the
initial cluster and performing the follow-on cluster adaptation.

Initially, the guarding nodes that detect the phenomena send
out signals (through an ultra-low power paging channel) to
activate sleeping nodes. Daemons running on sensor nodes
then start the cluster forming protocol to form an initial cluster.
The cluster is formed based on a combination of several
metrics of sensor nodes, including data accessibility, node
capacity, and network connectivity. The most cost-effective
node for performing tasks in the resource management layer
will be elected as the cluster head. To perform the above
procedure requires distributed and energy-aware protocols
for exchanging and comparing the information from multiple
sensor nodes in the network. For instance, it may be necessary
to select ten nodes that have the most remaining energy from
a pool of hundred nodes (e.g., using techniques proposed
in [23]).

A cluster needs to incrementally adapt its location so
that moving phenomena can be tracked. The key problem

is to dynamically determine the membership of nodes in the
cluster as the phenomena moves. In [24], an information-
driven approach is studied that makes the decision based on
information constraints as well as constraints on cost and
resource consumption. When the target object is beyond the
sensing range of the cluster head, another round of head
election is necessary to find a new cluster head.

In both stages, it is crucial to design efficient mechanisms
for maintaining the cluster information at the cluster head
and disseminating control messages from the head to cluster
members. Several mature algorithms, such as the minimal
spanning tree, can be used to establish intra-cluster routing
paths to organize the transmission of packets within the cluster.
Resource Management: The prerequisite of performing re-
source management is to periodically gather and update the
cluster information at the cluster head, including the CCS
capabilities and the remaining energy of sensor nodes and
the network connectivity. Different policies can be used to
determine the style and frequency of the gathering and update
procedure such that a reasonable tradeoff between the incurred
overhead and the system response time can be achieved. For
example, the cluster head may initiate the gathering procedure
across the entire cluster every ten seconds, or, a sensor node
may send the information to the head if it detects that its
remaining energy is lower than some threshold.

Inputs from the application include application structure,
data/control flow, resource requirements, and performance
constraints. It may also include policies for fidelity adaptation
and tradeoff with other applications. A critical open problem
is the development of a formalized general specification for
representing the above information.

To translate the application level performance requirements
into system level parameters, one of the key issues is to
establish accurate time/energy cost models for various CCS
operations. Such cost models should be parameterizable by
the workload of the operations, settings of the system knobs,
and conditions of the operating region. The soundness and
accuracy of the cost models are essential for the design of
energy-efficient mechanisms [25].

Further, it is important to identify appropriate optimization
metrics for resource allocation and adaptation. Tradeoffs
need to be explored between deliverable QoS and the power
consumption; total energy dissipation and the energy balance-
ness across the system; system fairness and the ability to
ensure mission-critical applications. Application specification
and performance requirements provide necessary guidance
and constraints for such tradeoffs. Furthermore, collaborative
processing needs to explore the spatial or temporal correlation
of input data. Thus, geographical placement or sensor density
requirements of the application need to be considered.

One of the most challenging problems in middleware de-
sign is the development of fast, near-optimal algorithms for
resource allocation and adaptation. Based on the above cluster
information, cost models, and optimization metrics, the algo-
rithms need to determine necessary hardware resources for
the upper-level applications and the schedule of applications
onto the resources. Consequently, the cluster head sends out
control messages regarding the state of sensor nodes, the



5

setting of system knobs, and the application schedule. In case
that the application code is not uniformly distributed in the
cluster, code duplication and/or movement [7], [13] might be
necessary to carry out the planned schedule.

Numerous efforts have been conducted to study resource
management in traditional distributed (real-time) systems.
However, to adapt traditional techniques into the context
of WSNs needs careful reconsideration of the complexity,
scalability, and flexibility of the techniques. The stringent
energy constraint and the availability of various system knobs
necessitate new mechanisms to efficiently explore the tradeoffs
between multiple QoS dimensions among concurrent appli-
cations. Further, the underlying wireless network demands
new mechanisms for scheduling communication requests, but
also provides new opportunities for performance tradeoffs.
We illustrate a simple but efficient technique for resource
allocation in a single-hop cluster in Section V.

One important way to provide standardized system services
to the application is through energy-aware APIs. Performance
requirements on latency, reliability, and energy can be explic-
itly expressed as parameters at function-level. Such fine-grain
control complements application-level performance specifica-
tion in directing the resource manager to fully explore the
tradeoffs between energy and application performance.
Inter-Cluster Coordination: In the proposed middleware,
information exchange between clusters is necessary for both
information sharing and coordination. For instance, data gath-
ered at one cluster can be requested by either the base station
or other clusters across the network. Regarding each cluster
head as an information source, existing routing protocols such
as Directed Diffusion paradigm [22] are still applicable in such
scenarios.

The tradeoffs of energy against application fidelity is also
important for inter-cluster routing. For instance, an energy-
efficient packet scheduling scheme over an existing data gath-
ering substrate is described in [26]. Similar techniques can be
applied for information dissemination among clusters.

Another issue arises when multiple clusters overlap with
each other. For instance, two separated objects initially tracked
by two different clusters may move across or eventually move
together, which leads to the overlap of the two clusters. In
such a case, multiple clusters may compete for resources. It
is therefore important to establish necessary mechanisms for
detecting the existence of overlapped clusters and coordinating
between clusters to avoid unfairness, starvation or deadlock
during resource competition.

It is sometimes helpful to perform cluster combination if
two clusters overlap on a large portion of geographical area
and will co-exist for a long time period. Cluster combination
can be used to achieve reduced coordination overhead and
increased resource utilization, while necessitating high scala-
bility of the cluster control protocol and resource management
algorithms. The counterpart of cluster combination is cluster
splitting. Cluster splitting is needed when two close objects
tracked by a single cluster begin to move toward opposite
directions. However, cluster splitting can also be regarded as
the procedure of reducing the application load on the original
cluster that tracks one object and forming another cluster for

tracking the other object.
Note that the capability of distinguishing multiple and close

objects within a cluster is a research issue of application-level
signal processing and thus beyond the scope of this article.

V. AN ILLUSTRATIVE TECHNIQUE FOR

ENERGY-EFFICIENT RESOURCE ALLOCATION

As outlined in Section IV, much work remains to be done to
develop key techniques for both the clustering and resource-
management layers. Toward such a goal, we discuss one of the
key components in the resource management layer and present
our technique from [27]. More specifically, we consider the
problem of allocating a real-time application onto a single-
hop cluster such that the system lifetime of the cluster is
maximized. This technique confirms the importance of the
utilization of system knobs to achieve energy-efficiency. More-
over, it serves as the basis for the development of dynamic
resource adaptation techniques.

A. Problem Description

We consider a set of homogeneous sensor nodes con-
nected by a single-hop wireless network. Each sensor node
is equipped with discrete dynamic voltage scaling [3] and
modulation scaling [4]. These two techniques are widely
used for efficient exploration of the energy-latency tradeoffs
for computation and wireless communication activities, re-
spectively. That is, we can reduce the energy dissipation of
performing a specific computation or communication activity
at the cost of increased latency.

For the sake of illustration, a real-time application that
consists of a set of communicating tasks is considered. More
precisely, an instance of the application is periodically ac-
tivated and must be completed before the next application
instance is activated. Such an application model is also used
in the recently proposed epoch-based system [28], where the
period is instantiated by the length of each epoch.

The application is represented as a directed acyclic graph,
with the workload of tasks (in terms of CPU cycles), and
the workload of communication activities (in terms of packet
size) known a priori. The capabilities and cost models of the
embedded processors and radios are assumed to be known.
Hence, the time and energy costs of both tasks (under different
voltage settings) and communication activities (under different
modulation settings) can be calculated accordingly.

We are interested in determining an energy-efficient re-
source allocation of the cluster, including the assignment of
tasks onto sensor nodes, the voltage/modulation setting for ex-
ecuting each task/communication activity, and the scheduling
of tasks and communication activities. The goal is to maximize
the lifetime of the cluster till the first node fails due to depleted
battery, while the real-time constraint of the application is
satisfied. Hence, an intuitive objective function is to minimize
the maximal energy dissipation among all sensor nodes during
each application period.



6

B. A 3-Phase Heuristic

The above problem can be formulated using integer linear
programming, from which optimal solutions can be obtained
by using commercial tools such as LINDO [29]. However, the
time cost for solving an integer linear programming problem is
prohibitive for large systems. To efficiently solve the problem,
a 3-phase heuristic is proposed in [27].

In Phase 1, we assume an unlimited number of sensor nodes
in the cluster. The tasks are partitioned into task-groups, which
is a group of tasks to be assigned onto the same sensor node
with a specific execution order among them. The goal is to
minimize the overall execution time of the application. A key
challenge is to schedule the communication activities in a
single-hop wireless cluster. We use a simple first-come-first-
serve policy in this heuristic.

In Phase 2, we use a greedy policy to find an assignment
of the task-groups obtained in Phase 1 onto the actual sen-
sor nodes within the cluster, such that the maximal energy
dissipation among all sensor nodes is minimized. Note that
multiple task-groups can be assigned to the same node, due
to the limited number of sensor nodes.

In Phase 3, the voltage and modulation settings of tasks or
communication activities are adjusted. An iterative approach
is used. In each iteration, we find the task (or communication
activity) that by lowering its current voltage (or modulation)
settings to the next level, the system lifetime can be increased
the most without violating the real-time constraint.

C. Simulation Results

Detailed simulation results on the above 3-phase heuristic
are presented in [27]. We study two important system pa-
rameters. The first one is called system utilization (�), which
indicates the tightness of the real-time constraint. The second
one is called communication to computation ratio (CCR),
which signifies the relative heaviness of computation against
communication activities, in terms of the time cost.

The simulation results show that the heuristic can result in
solutions that are within 60% of the optimal. In Figure 2,
we show that a lifetime improvement up to a factor of 8 can
be achieved by our heuristic, compared with the case when no
voltage and modulation scaling is used. It is also observed that
the improvement increases as the system utilization decreases
(� approaches 0), which leads to more latency laxity to trade
for energy. Moreover, by using modulation scaling, much more
improvements can be achieved when CCR is large.

VI. CONCLUDING REMARKS

Due to the continuing advances in network and applica-
tion design in WSNs, the development of an appropriate
middleware for WSNs is becoming necessary and possible.
A cluster-based middleware architecture to provide a virtual
machine model for diverse applications on WSNs has been
presented in this article. Application knowledge is required
to direct the operations of the middleware. Distributed al-
gorithms are needed to self-configure and adapt clusters for
monitoring the target phenomena. To maintain the robustness
of the system under stringent resource constraints and high

0 5 10 15 20
0

50

100

150

200

250

300

350

400

communication to computation ratio (CCR)

lif
et

im
e 

im
pr

ov
em

en
t (

%
)

u=0.0
u=0.2
u=0.5
u=0.8
u=1.0

(a) Use dynamic voltage scaling only

0 5 10 15 20
0

200

400

600

800

1000

1200

communication to computation ratio (CCR)

lif
et

im
e 

im
pr

ov
em

en
t (

%
)

u=0.0
u=0.2
u=0.5
u=0.8
u=1.0

(b) Use both dynamic voltage and modulation scaling

Fig. 2. Lifetime improvements achieved by our heuristic

dynamics, the key is to provide flexible and adaptive resource
management mechanisms to effect efficient tradeoffs between
multi-dimensional performance of multiple applications. Inter-
cluster coordination mechanisms are also needed to avoid un-
fairness, starvation, and deadlock when two clusters compete
for the same resource pool in terms of sensor nodes.

However, to implement a successful middleware still needs
significant work to resolve a set of technical issues, as outlined
in Section IV. The middleware architecture also needs to
adapt to newly emerging applications, such as mobile robot-
based network [30]. The mobility of sensor nodes would
impose additional challenges in both cluster control and re-
source management. Further, an open problem is the validation
and evaluation of the design concept and implementation
techniques of the middleware in real WSN environments.
The performance of the middleware could be enhanced by
identifying proper system parameters for a wide range of
environments and application scenarios.



7

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Computer Networks, 2002.

[2] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes,” in Design Automation
Conference (DAC), June 1999, pp. 555–561.

[3] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” in USENIX Symposium on Operating Systems
Design and Implementation, Nov. 1994, pp. 13–23.

[4] B. Prabhakar, E. Uysal-Biyikoglu, and A. E. Gamal, “Energy-efficient
transmission over a wireless link via lazy packet scheduling,” in IEEE
InfoCom, 2001.

[5] K. Römer, O. Kasten, and F. Mattern, “Middleware challenges for
wireless sensor networks,” ACM SIGMOBILE Mobile Communication
and Communications Review, vol. 6, no. 2, 2002.

[6] A Network Virtual Machine for Real-Time Coordination Services.
[Online]. Available: http://www.cs.virginia.edu/nest

[7] Smart Message Projet. [Online]. Available: http://discolab.rutgers.edu/
sm

[8] P. Ramanathan, K.-C. Wang, K. K. Saluja, and T. Clouqueur, “Commu-
nication support for location-centric collaborative signal processing in
sensor networks,” in DIMACS Workshop on Pervasive Networks, May
2002.

[9] X. Yu, K. Niyogi, S. Mehrotra, and N. Venkatasubramanian, “Adaptive
middleware for distributed sensor networks,” IEEE Distributed Systems
Online, May 2003.

[10] A. Murphy and W. Heinzelman, “MiLan: Middleware linking applica-
tions and networks,” University of Rochester, Tech. Rep. TR-795, 2002.

[11] Cougar Project. [Online]. Available: http://www.cs.cornell.edu/database/
cougar

[12] TinyOS website. [Online]. Available: http://webs.cs.berkeley.edu/tos/
[13] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor

networks,” in 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2002.

[14] G. Coulson, S. Baichoo, and O. Moonian, “A retrospective on the design
of the gopi middleware platform,” ACM Multimedia Journal, vol. 8,
no. 5, pp. 340–352, Dec. 2002.

[15] S. S. Yau and F. Karim, “Reconfigurable context-sensitive middleware
for ADS applications in mobile ad-hoc network environments,” in 5th
IEEE International Symposium on Autonomous Decentralized Systems,
May 2001.

[16] S. Maffeis, “Communication middleware for mobile applications
- a comparison,” http://www.softwired-inc.com/people/maffeis/articles/
softwired/corba vs jms.pdf.

[17] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in ACM/IEEE
International Conference on Mobile Computing and Networking (Mobi-
Com), 1999, pp. 263–270.

[18] W. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An appli-
cation specific protocol architecture for wireless microsensor networks,”
IEEE Trans. on Wireless Networking, 2002.

[19] M. Singh and V. K. Prasanna, “A hierarchical model for distributed
collaborative computation in wirelss sensor networks,” in 5th Workshop
on Advances in Parallel and Distributed Computational Models, 2003.

[20] M. Younis, M. Youssef, and K. Arisha, “Energy-aware routing in cluster-
based sensor networks,” in International Symposium on Modeling,
Anaysis and Simulationof Computer and Telecommunication Systems,
Oct. 2002.

[21] C. E. Perkins, Ed., Ad Hoc Networking. Addison-Wesley, 2001, ch.
Cluster-Based Networks.

[22] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
in ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), 2000.

[23] M. Singh and V. K. Prasanna, “Optimal energy-balanced algorithm
for selection in a single hop sensor network,” in IEEE International
Workshop on Sensor Network Protocols and Applications (SNPA), May
2003.

[24] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor col-
laboration for tracking applications,” IEEE Signal Processing Magazine,
Mar. 2002.

[25] R. Min and A. P. Chandrakasan, “Top five myths about the energy
consumption of wireless communication,” ACM SIGMOBILE Mobile
Communication and Communications Review, vol. 6, no. 4, 2002.

[26] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs
for data gathering in wireless sensor networks,” to appear in IEEE
InfoCom 2004.

[27] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation for collab-
orative processing in wireless sensor networks,” accepted by MONET
special issue on Algorithmic Solutions for Wireless, Mobile, Ad Hoc
and Sensor Networks.

[28] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny AGgregation service for Ad-Hoc sensor networks,,” in Symposium
on Operating Systems Design and Implementation (OSDI), Dec. 2002.

[29] L. Schrage, Linear, Integer, and Quadratic Programming with LINDO.
Redwood city, CA: The Scientific Press, 1986.

[30] A. Howard, M. J. Mataricié, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable so-
lution to the area coverage problem,” in 6th International Symposium
on Distributed Autonomous Robotics Systems, June 2002.


