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Abstract—We consider opportunistic spectrum access under
design constraints imposed at both node and link levels. First,
hardware and energy limitations at node level may prevent a
secondary user from sensing all the channels in the spectrum
simultaneously. A channel selection strategy is thus necessary to
track the time-varying spectrum opportunities. Second, sensing
errors are inevitable. A secondary user needs to decide, based
on imperfect sensing outcomes, whether to access the sensed
channel and how to update its statistical knowledge of spectrum
dynamics for better tracking in the future. Third, a secondary
transmitter and its intended receiver need to hop synchronously
in the spectrum in order to communicate. When a dynamic
opportunity tracking strategy is used where the channel selection
depends on the sensing history, achieving this synchrony is
nontrivial in the absence of a dedicated control channel and
in the presence of sensing errors. These practical constraints
significantly complicate the design of opportunistic spectrum
access, and the optimal performance requires the joint design of
the spectrum sensor, opportunity tracking strategy, and spectrum
access decisions. The focus of this paper is on developing low-
complexity approaches for opportunistic spectrum access. We
show that under certain conditions on the spectrum dynamics,
simple myopic strategies can provide optimal performance for
the joint design of spectrum sensor, opportunity tracking, and
opportunity exploitation. We also propose an alternate low-
complexity indexing strategy for other conditions that takes into
account the expected time to channel availability.

Index Terms—Opportunistic spectrum access, POMDP, myopic
policy, spectrum opportunity tracking.

I. INTRODUCTION

Various approaches to dynamic spectrum access have been
envisioned to address the under-utilization of the radio spec-
trum as revealed by the measurements of actual spectrum
usage [1]. Opportunistic spectrum access (OSA), also referred
to as spectrum overlay, is perhaps the most compatible with
the current spectrum management policy and the legacy sys-
tems. Built upon a hierarchical access structure, opportunistic
spectrum access allows secondary users to exploit local and
instantaneous spectrum availability provided that the interfer-
ence to primary users is capped below a specified level.

A. Design Constraints in OSA

Several practical constraints at both node and link levels
complicate the design of OSA. First, hardware and energy
limitations at the node level may prevent a secondary user from
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sensing all the channels of interest simultaneously. A sensing
strategy for intelligent channel selection is thus necessary
to track the time-varying spectrum opportunities. The key
to an efficient sensing strategy is the optimal exploitation
of the entire observation history. This is because sensing
outcomes provide statistical knowledge of the dynamics of
spectrum opportunities and can thus guide the secondary user
to channels likely to be idle. Sensing, as a consequence,
has two functions: identifying an opportunity for immediate
access, and gaining statistical information on channel usage
for future use. The optimal sensing strategy needs to balance
both. The design of such a strategy is, in general, a sequential
decision making problem, where the current channel selection
depends on specific realizations of the observation history.
A predetermined channel selection sequence may lead to
significant performance loss.

Second, sensing errors are inevitable in the wireless commu-
nication environment. An idle channel may be sensed as busy
and vice versa. The former gives rise to a false alarm, and the
latter to a miss detection. Given a potentially erroneous sensing
outcome, the secondary user needs to decide whether to access.
The tradeoff here is between minimizing overlooked spectrum
opportunities and complying with the interference constraint.
Clearly, the operating characteristics of the spectrum sensor
(probability of false alarm vs. probability of miss detection)
play an important role in access decision making. Sensing
errors also complicate the extraction of statistical information
on spectrum dynamics from sensing outcomes. Again, the
operating characteristics of the spectrum sensor need to be
taken into consideration.

The third design constraint is at the link level. A sec-
ondary transmitter and its intended receiver need to select
the same channel in order to communicate with each other.
Without a dedicated control channel to coordinate, achieving
synchronous hopping in the spectrum is nontrivial unless a
predetermined sequence of channel selections is used. With a
dynamic sensing strategy, this synchrony requires that channel
selections are based on an observation history common to both
the transmitter and the receiver. Due to the random occurrence
of sensing errors, channel selections at the transmitter and the
receiver cannot be based on their individual sensing outcomes.
A common observation is the history of acknowledgements



immediately following successful transmissions, as considered
in [2], [3]. In this case, an ACK tells unambiguously the
true state of the sensed channel, while the absence of an
ACK (or a NAK) may result from a no-access decision at the
transmitter or a collision with primary users. This asymmetry
has important implications in the access decision making and
the update of spectrum statistical information for tracking
purposes.

B. Scope and Focus

The above discussed constraints dictate the interaction
across the sensing strategy, the spectrum sensor, and the access
strategy. A joint design of these three basic components of
OSA is thus necessary to achieve the optimal performance.
Based on a Markovian model of the primary users’ spectrum
usage, the joint design of OSA has been formulated as
a constrained partially observable Markov decision process
(POMDP) in [3]. While powerful in modeling, POMDP suffers
from the curse of dimensionality and seldom admits tractable
solutions. Constraints on a POMDP further complicate the
problem, often demanding randomized policies to achieve
optimality.

Fortunately, it has been shown in [3] that there exists a
separation principle in the joint design of OSA. Specifically,
the optimal joint design can be carried out in two steps:
first to choose the spectrum sensor and the access strategy
to maximize the instantaneous throughput under a collision
constraint, and then to choose the sensing strategy to maximize
the overall throughput. This separation principle reveals the
optimality of myopic policies for the design of the spectrum
sensor and the access strategy, leading to closed-form optimal
solutions. Furthermore, decoupling the design of the sensing
strategy from that of the spectrum sensor and the access strat-
egy, the separation principle reduces the constrained POMDP
to an unconstrained one, which admits deterministic optimal
policies.

This result shows that the sensing strategy for opportunity
tracking can be designed separately from the spectrum sensor
and the access strategy. In the design of the spectrum sensor
and the access strategy, the myopic approach is optimal, which
reduces a sequential decision making problem to a static
optimization and leads to the optimal solution in closed-form.

The complexity issue in the joint design of OSA is, however,
only partially resolved. Designing the optimal sensing strategy
remains to be a full-blown POMDP. The focus of this paper is
on developing low-complexity sensing strategies and studying
their optimality. Together with the results given in [3], we
hope to provide a more complete picture of the tradeoff
between optimality and complexity in the design of OSA under
practical constraints. Specifically, we show that under certain
conditions on the Markovian model of spectrum occupancy
and the operating statistics of the spectrum sensor, the myopic
approach is also optimal in the design of sensing strategies.
This result complements the separation principle that has
revealed the optimality of the myopic approach in the design of
the spectrum sensor and access strategy. We further show that

the myopic sensing strategy has a simple structure; optimal
channel selections can be reduced to a counting procedure.

We also propose another low-complexity indexing strategy
that takes into account the expected time till a channel be-
comes free. We find that in some cases where the myopic
policy is sub-optimal, this alternate approach can provide
better performance.

This paper builds upon our previous results on the optimality
of myopic sensing in the absence of sensing errors [4]. Sensing
errors, however, significantly complicate opportunity tracking
due to the constraint on transceiver synchrony.

C. Related Work

The literature on dynamic spectrum access is fast growing.
An overview of challenges and recent developments can be
found in [1]. In the context of networking protocol design
for OSA, many existing results assume perfect full spectrum
sensing. Given the design constraints discussed in Section 1.1,
efficient spectrum opportunity tracking becomes both neces-
sary (due to partial spectrum sensing) and challenging (due to
sensing errors and the need of transceiver synchrony).

OSA with partial yet perfect spectrum sensing has been
addressed in [5], [6]. In [5], MAC protocols are proposed
for an ad hoc secondary network overlaying a GSM cellular
network. It is assumed that the secondary transmitter and re-
ceiver exchange information on which channel to use through
a commonly agreed control channel. In [6], access strategies
for slotted secondary users searching for opportunities in an
un-slotted primary network is considered under a continuous-
time Markovian model of channel occupancy. A round-robin
single-channel sensing scheme is used and is shown to be near
optimal when the interference constraint is strict. The POMDP
framework for the joint design of OSA under partial imperfect
sensing was proposed and studied in [2], [3]. An overview of
this framework can be found in [7].

Crucial to the efficiency of spectrum opportunity tracking
are simple yet sufficiently accurate statistical models of spec-
trum occupancy. Several testbeds have been established to
monitor the actual spectrum usage in different frequency bands
[8]-[10], and Markovian and semi-Markovian models have
been shown to fit well with spectrum usage measurements.
With these active experimental research activities, we can
perhaps foresee a public database of statistical models of
spectrum usage in different bands and at different time and
location. Secondary users can then download the required
model for the design of spectrum sensing and access strategies.

II. THE NETWORK MODEL

Consider a spectrum consisting of N channels, each with
bandwidth B; (i = 1,--- ,N). These N channels are licensed
to a primary network whose users communicate according to a
synchronous slot structure. We model the spectrum occupancy
as a discrete-time homogenous Markov process with 2V
states. A state S(t) 2 [S1(t),...,Sn(t)] denotes the channel
occupancy, where Sy, (t) € {0 (busy), 1 (idle)} is the state of
channel 7 in slot ¢.



We consider a secondary network whose users indepen-
dently and selfishly search for and access spectrum oppor-
tunities in these /N channels. In each slot, a secondary user
chooses one of the IV channels to sense. Based on the sensing
outcome which is subject to errors, the user decides whether
to access the channel. Accessing an idle channel leads to bit
delivery while accessing a busy channel results in a collision
with the primary network. At the end of the slot, the receiver
acknowledges a successful transmission.

The objective is to design jointly the spectrum sensor, the
sensing strategy for channel selection, and the access strategy
determining whether to transmit so that the throughput of the
secondary user is maximized under the constraint that the
probability of colliding with primary users is capped below
¢ in any channel and slot.

We make the following assumptions.

Al: The transition probabilities of the Markovian model
remain unchanged for 7' slots and are known to the
secondary users.

Acknowledgements are received without error (note that
acknowledgements are always transmitted over an avail-
able channel).

A2:

III. OPTIMAL JOINT DESIGN OF OSA

In this section, we review the result obtained in [3], where
the joint design of OSA under partial imperfect sensing is
formulated as a constrained POMDP. A separation principle
was established, decoupling the sensing strategy from the
spectrum sensor and the access strategy in the joint design
and providing a closed-form solution to the optimal design
of the latter two components. The explicit characterization of
the optimal spectrum sensor and access strategy significantly
simplifies the study of low complexity sensing strategies as
addressed in Section 4.

A. Spectrum Sensor

The question we aim to answer in designing the spectrum
sensor is which criterion should be adopted, the Bayes or the
Neyman-Pearson (NP). If the former, how do we choose the
risks? If the latter, how should we set the constraint on the
probability of false alarm?

Suppose that channel n is chosen in slot ¢. The spectrum
sensor detects the presence of primary users in this channel

by performing a binary hypothesis test:
Ho : Sp(t) =1 (idle) vs. Hyp:Sp(t) =0 (busy). (1)

The performance of the spectrum sensor is characterized by
the probability of false alarm (PFA) ¢(¢) and the probability
of miss detection (PM) 4(¢):

Pr{decide H1 | Hy is true},

Pr{decide H | H; is true}.

>l

For a given PFA ¢(t), the largest achievable probability of
detection, denoted as Pp max(€(t)), can be attained by the
optimal NP detector with the constraint that the PFA is no

larger than €(t), or an optimal Bayesian detector with a suitable
set of risks [11, Sec. 2.2.1]. All operating points (¢, ) above
the best ROC curve Pp 1.« are thus infeasible. An illustration
of all feasible operating points is given in Fig. 1. We also
note that every feasible sensor operating point (¢,d) lies on
a line that connects two boundary points and hence can be
achieved by randomizing between two optimal NP detectors
with properly chosen constraints on the PFA [11, Sec. 2.2.2].
Therefore, the design of spectrum sensor is reduced to the
choice of a desired sensor operating point.
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Fig. 1. Tllustration of the set of all feasible sensor operating points (e, 9).

The design of the optimal NP detector is a well-studied
classic problem, which is not the focus here. Our objective
is to define the criterion and the constraint under which the
spectrum sensor should be designed, equivalently, to find the
optimal sensor operating point (e*(t),d*(¢)) to achieve the
best tradeoff between false alarm and miss detection in each
slot ¢.

B. Sensing and Access Strategies

In each slot, a sensing strategy decides which channel in the
spectrum to sense, and an access strategy determines whether
to access given the sensing outcome. Below we illustrate the
sequence of operations in each slot.

At the beginning of slot ¢, the system state transits to
S(t) = [Si(t),...,SNn(t)] according to the transition proba-
bilities of the underlying Markov process. The secondary user
first chooses a channel a(t) to sense and a feasible sensor
operating point (e(t), d(¢)). It then decides whether to access

D, (t) € {0 (no access), 1 (access)}

by taking into account the sensing outcome provided by the
spectrum sensor that is designed according to the chosen
operating point. A collision with primary users happens when
the secondary user accesses a busy channel. At the end of

this slot, the receiver acknowledges a successful transmission
K,(t) € {0 (no ACK), 1 (ACK)}.



C. Constrained POMDP Formulation

Due to partial spectrum monitoring and sensing errors, the
internal state of the underlying Markov process that models
spectrum occupancy cannot be fully observed. Considering the
constraint on the collision probability, we can formulate the
joint design of OSA as a constrained POMDP over a finite
horizon of length 7T'.

Reward The reward can be defined as the number of bits
delivered, which is assumed to be proportional to the channel
bandwidth. Given sensing action a(t) and access action ®, (),
the immediate reward R(t) in slot ¢ is given by

R(t) = Sa(t)®4(t)B,. @)

Hence, the expected total reward of the POMDP represents
overall throughput, the expected total number of bits that can
be delivered by the secondary user in 7' slots.

Belief Vector Due to partial spectrum monitoring and
sensing errors, a secondary user cannot directly observe the
true system state. It can, however, infer the SOS from its
decision and observation history. As shown in [12], the
statistical information on the system state provided by the
entire decision and observation history can be encapsulated

in a belief vector A(t) é{)\S(t)}s, where Ag(t) denotes the
conditional probability (given the decision and observation
history) that the system state is s at the beginning of slot
t prior to the state transition.

To ensure synchronous hopping in the spectrum without
introducing extra control message exchange, the secondary
user and its desired receiver must have the same history of
observations so that they make the same channel selection
decisions. Since sensing errors may cause different sensing
outcomes at the transmitter and the receiver, the acknowl-
edgement K,(t) € {0,1} should be used as the common
observation in each slot.

Policy A joint design of OSA is given by policies of the
above POMDP. Specifically, a sensing policy 75 specifies a
sequence of functions, each mapping a belief vector A(t) at
the beginning of slot ¢ to a channel a(t) to be sensed in this
slot. For a finite-horizon POMDP, the optimal mapping is, in
general, time-varying, i.e., the optimal policy is non-stationary.
Similarly, a sensor operating policy 75 specifies, in each slot
t, a spectrum sensor design (e(t),d(¢)) based on the current
belief vector A(t). An access policy 7. specifies an access
decision ®,(t) based on the current belief vector A(t) and
the sensing outcome.

The above defined policies are deterministic. For con-
strained POMDPs, we may need to resort to randomized
policies to achieve optimality. In this case, what needs to be
chosen is not specific actions, but the probability of taken each
possible action. Due to the uncountable space of probability
distributions, randomized policies are usually computationally
prohibitive.

Optimal Joint Design ~ The optimal joint design of OSA is

then given by the following constrained POMDP.

T
{m5, 75, m.}y =arg max B 1 ZR(t) A1)
s, s, Te o
s.t. Py(t) = Pr{®,(t) =1]S,(t) =0} <, Va,t,
3)

where E¢-. - -y represents the expectation given that poli-
cies {ms, 75, 7.} are employed, P,(t) is the probability of
collision perceived by the primary network in chosen channel
a(t) and slot ¢, and A(1) is the initial belief vector, which
can be set to the stationary distribution of the underlying
Markov process if no information on the initial system state
is available.

D. The Separation Principle

A separation principle for the joint design of OSA has been
established in [3]. It is shown that the joint design can be
carried out in two steps without losing optimality: (i) obtain
the optimal sensor operating policy 75 and the optimal access
policy 7 by maximizing the instantaneous reward R(t) in
the current slot under the collision constraint; (ii) obtain the
optimal sensing policy 7} to maximize the overall throughput
using 75 and 7} obtained in the first step.

The separation principle decouples the design of the sensing
policy from that of the spectrum sensor and access policy. As
a consequence, the design of the sensing policy is reduced to
an unconstrained POMDP, where optimality is achieved with
deterministic policies. Furthermore, it reveals that the optimal
sensor operating policy 7§ and the optimal access policy 7,
can be obtained from a myopic approach that focuses solely
on the instantaneous reward and ignores the impact of the
current actions on the future reward. The joint design of
and 7} is thus reduced to a static optimization problem with a
simple, time-invariant, and closed-form solution. Specifically,
the optimal sensor should adopt the optimal NP detector
with constraint 07 = ¢ on the probability of miss detection.
Correspondingly, the optimal access policy is to trust the
sensing outcome given by the spectrum sensor, i.e., access
if and only if the channel is sensed to be idle.

What remains to be derived are low complexity sensing
strategies in order to achieve tractable solutions to the joint
design of OSA. This is the focus of the subsequent sections,
where we study simple index policies and identify conditions
under which they offer optimal performance.

IV. INDEX SENSING PoLICY: THE MYOPIC APPROACH

Using the optimal sensor operating policy 73 and the
optimal access policy 7, we can obtain the optimal sensing
policy 7%, we can obtain the optimal sensing policy by solving
an unconstrained POMDP.

T

> R()

*
Ty = argmax B y
e t=1

Am] |

Let V;(A(t)) denote the maximum expected remaining reward
that can be accrued starting from slot ¢ when the current belief



vector is A(t). We have the following optimality equation.
ViA() = max B[Ry(1) + Vs (T(A(1)|a, Ka(1))],
o “

where R, (t) is the immediate reward in slot ¢ for action a,
and A(t+1) = T (A(t)|a, K, (t)) is the updated belief vector
based on the action a and observation K,(t), which can be
obtained via the Bayes rule as shown in Section 4.1.

Solving for the optimal policy from (4) has a complexity
that grows exponentially with the horizon length 7T'. Next, we
seek low complexity sensing policies. We show that under
certain conditions, low complexity policies with a simple
structure can achieve the optimal performance.

A. Index Policy and Myopic Sensing

One family of low complexity policies for POMDPs is
based on indexing the actions. Specifically, we assign an index
~i(A(t)) to each action ¢ and choose the action with the largest
index determined by the current belief vector A (¢). This family
of policies are stationary: the mapping from the belief vector
to the chosen action is the same for all slots. The only design
parameter is the index function, which maps the belief vector
to a real number.

The myopic policy is an index policy where the index of an
action is the immediate reward obtainable through that action.
Consider the spectrum opportunity tracking problem. Let P
denote the transition matrix of the underlying Markov process.
The distribution of the system state S(¢) in slot ¢ is then given
by

A (t) = A(t)P.

Note that A(t) denotes the distribution of system state prior
to the state transition at the beginning of slot ¢, a conventional
definition in the literature of POMDP. From A’(t), we can
then obtain the marginal probability wj(¢) that channel 7 is
available in slot ¢. The index of the myopic sensing policy is
thus simply

(A®) = (1) Bi. 5)

At the end of slot ¢, we obtain the updated belief vector
A(t + 1) from the chosen action a = arg max; v;(A(t)) and
the observation K, (t) using Bayes’ rule as follows.

> Ay (1) Per sUs i (a)

AS(t * 1) B Zs Zs’ As/ (t)PS’,SUs,k(a)’ ©

where Py ¢ is the transition probability from state s’ to s, and
Us k(a) = Pr{K, = k|S = s} is the conditional distribution
of the acknowledgement given current state s and action a.
Recall that the optimal sensor operating point is (¢*,0* = ()
and the optimal access strategy is to transmit if and only if
the channel is sensed to be idle. We can obtain Us ;(a) as
follows.

Usi(a)2 Pr{K, =1|S = s} = s,(1 — ¢*),
Uso(a) = 1 — Us1(a),

(72)
(7b)

where s, is the state of channel a (the ath component of s).
It is thus clear that the belief update for spectrum opportunity

tracking depends on the sensor operating point and the access
strategy. An explicite characterization of their optimal design
simplifies the study of spectrum sensing strategies.

We show next that under certain conditions on the Marko-
vian model and the false alarm probability ¢*, the myopic
sensing policy has a simple structure and achieves the optimal
performance. In this case, we do not even need to update the
belief vector as given in (6) and (7). The optimal channel
selection is reduced to a simple counting procedure, and low
complexity is achieved without sacrificing performance.

B. The Structure and Optimality of Myopic Sensing for i.i.d.
Channels

We consider the case that the channels evolve according
to N independent and identical Markov processes. The state
diagram and transition probabilities {p; ;} of each channel are
illustrated in Figure 2. We show in this section that for i.i.d.
channels, the myopic sensing policy has a simple structure.
We further prove that the myopic sensing policy is optimal
when N = 2. For N > 2, extensive numerical results have
demonstrated the optimality of the myopic policy.

Po,1

Po,o0 P11

P10
Fig. 2.

The Markov channel model
Proposition I: Consider N i.i.d. channels with pg 1 > p1 1.
Assume that the false alarm probability € of the spectrum

sensor satisfies
* o Po,oP1,1

€ .
Po,1P1,0

In slot ¢, let 7;(t) € {1,2,---,t — 1,00} denote the time
difference between ¢ and the last visit to channel <. If channel
i has never been visited, then 7;(t) = oo. Define the following
sets.

A (t)
Ac(t)

{7s(t) : 7:(t) is even},
{7:(t) : 7;(¢) is odd or co}.

e >

Given the action a(t — 1) and observation K,_1)(t — 1)
(acknowledgement) in slot ¢ — 1, the myopic action a.(t) in
slot ¢ that maximizes the expected immediate reward is as
follows.

a(t - 1) if Ka(t—l)(t — 1) =0
ax(t) = ¢ argmin Ac(t) if Kooyt —1)=1,A.(t) #0
argmax A,(t) if Koyt —1) =1,A.(t) =0
(8)

Proposition 1 shows that for i.i.d. channels with pg 1 > p1 1,
the optimal action under myopic sensing is to stay in the same
channel after a NAK and switch to another channel after an



ACK, provided that the false alarm probability of the spectrum
sensor is below a certain value. When a channel switch is
needed, the user chooses, among those channels to which the
last visit occurred an even number of slots ago, the one most
recently visited. If there are no such channels, the user chooses
the channel that has not been visited for the longest time,
which can be any of the channels that have never been visited
if such channels exist. For the case of N = 2, the myopic
policy is simply to stay in the same channel after a NAK and
switch to the other channel after an ACK.

The structure of myopic sensing for i.i.d. channels with
Po,1 < p1,1 can be similarly obtained, where the condition
on the false alarm probability is given by

& < p1,0p0,1.
P1,1Po,0
In this case, the optimal action under myopic sensing is to stay
in the same channel after an ACK and switch to the channel
visited the longest time ago after a NAK.

We have assumed that no initial information on the system
state is available in the first slot, i.e., the initial distribution of
the Markov chains is the stationary distribution. The myopic
action in the first slot is to choose an arbitrary channel. It
is straightforward to modify Proposition 1 when the initial
distribution is not the stationary distribution.

The above proposition reveals that obtaining the myopic
actions for i.i.d. channels is reduced to a simple counting
procedure: the secondary user only needs to set up 4 pointers
indicating the channels to which the last visits occurred most
recently or the longest time ago (considering even and odd
time differences separately). The complexity of obtaining the
optimal myopic sensing policy is O(NT), linear in both N
and T'. We show in Theorem 1 below that the myopic sensing
policy with such a simple structure is, in fact, optimal when
N =2

Theorem 1: For two i.i.d. channels with po1 > p11, the
myopic sensing policy is optimal when the false alarm prob-
ability e of the spectrum sensor satisfies

& < p0,0p1,1.
Po,1P1,0

Proof: The proof is based on the following lemma which
applies to any POMDP over a finite horizon [4]. Details are
given in Appendix II.

Lemma 1: Consider a general POMDP with a finite horizon
of length 7. A sufficient condition for the optimality of the
myopic policy is given below.

CO: Among all actions in slot ¢ (t = 1,---,T — 1), the
myopic action maximizes the total expected remaining
reward obtained by taking myopic actions in each of the
remaining slots ¢t +1,--- 7.

The optimality for two i.i.d. channels with po;1 < p11
can be similarly proven. Numerical results have demonstrated
the optimality of the myopic sensing policy for N > 2.
We are currently extending the proof of Theorem 1 to the
general case. One numerical example is given in Figure 3,

where we compare the throughput performance of the myopic
sensing and the optimal policy. We consider 3 independent
channels. In the upper figure, these channels are identical,
while in the lower figures, channels have different transition
matrixes. For spectrum opportunity detection, we assume that
the background noise and the signal of primary users can be
modeled as white Gaussian processes as considered in [2]. The
maximum allowable collision probability is set to ¢ = 0.05.
Based on the separation principle, the spectrum sensor operates
at § = 0.05, which leads to a false alarm probability of
€ = 0.0274 for the chosen detection scenario. We observe that
for i.i.d. channels, the performance of myopic sensing matches
with the optimal performance. For nonidentical channels, there
is performance loss. We point out that with both myopic
sensing and the optimal sensing strategies, the throughput of
the secondary user increases over time, which results from
the improved information on the system state drawn from
accumulating observations. This demonstrates the cognitive
nature of these sensing strategies developed under the POMDP
formulation: learning from and adapting to the communication
environment for improved performance. The performance of
the random channel selection scheme, however, remains the
same over time.

o
@
a

o
@
T

Optimal
—#— Myopic 4
Random

Throughput(bits per slot)
o
o
&

Fd
@
T
L

Time Slot

0.54
0.53

*———%7***”’*’77* T
052 "

051} e —— Optimal | ]
—#— Myopic 4

Random

Throughput(bits per slot)

Time Slot

Fig. 3. Performance of myopic sensing.

V. A SUBOPTIMAL STRATEGY FOR NON-I.1.D. CHANNELS

Figure 3 shows that for non-i.i.d. channels, myopic sensing
results in performance loss as compared to the optimal policy.
In this section, we consider other choices of the index func-
tion that may offer improved performance over the myopic
approach for non-i.i.d. channels.

We define the index of a channel as the ratio of its
bandwidth to the expected time until it becomes idle for the
first time:

B;
E[O;(A)]

where O;(A) denote the time until the first availability of
channel 7 given the current belief vector A. In other words, this
index policy chooses the channel that will become available
most frequently (weighted by channel bandwidths).

Yi(A) =



We show next that the expected time until the first avail-
ability E[O;(A)] can be easily obtained. Consider first that
channels are independent but not necessarily identical. In this
case, the marginal conditional distribution of channel states is
a sufficient statistic [2], i.e., we can consider the following
belief vector

Q) = wi(t), -+, wn (D]

where w;(t) denotes the conditional probability that channel
1 is available at the beginning of slot ¢ prior to the state
transition. Note that the dimension of the belief vector is
reduced from 2V to N when channels are independent. Let
w) = wipl) + (1 = wi)pg)

denote the probability that channel 7 is available after the
state transition at the beginning of the slot, where {p%)n}
are the transition probabilities of channel 7. We can obtain the
distribution of O;(2) as follows.

Pr0; — k] { w} ifk=1
r|; = k| = Dk—o (1) -
(1= w) (o) 2p i k> 2
The index of channel i can then be obtained in closed-form:
Bip(()i)l
W)=
1+pp1 —w;

When channels are identical, the index is reduced to ~;(§2) =
Bjw!, which is the myopic approach. When channels are cor-
related, the expected time until the first availability E[O;(A)]
can be obtained by calculating the absorbing time of a Markov
process.

Shown in Figure 4 is a simulation example where we
compare the performance of this approach (MTTA: minimum
time to availability) with the myopic policy. We observe that
this index policy can offer improved performance over the
myopic approach.
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Fig. 4. Performance of an index policy based on the expected time to the

first availability (/N = 7).

We point out that when there are a small number of channels
and the channels change state infrequently (for example, small

po,1 and p;o for independent channels), this index policy
may perform worse than the myopic approach. It is perhaps
not surprising that the optimal choice of the index function
depends on the Markovian model, and certainly interesting to
study the relationship between the Markovian statistics and the
optimal index policy for spectrum opportunity tracking.

VI. CONCLUSION AND FUTURE WORK

We have shown in this work that for the case of i.i.d.
channels, the myopic sensing strategy has a simple structure.
Furthermore, we have proven that for two i.i.d. channels,
even in the presence of sensing errors, the myopic strategy
provides optimal performance for the problem of spectrum
opportunity tracking. This is a non-trivial extension of our
previous results pertaining to the case of error-free sensing [4],
as sensing errors make it challenging to maintain transmitter-
receiver synchronization. Simulations indicate that this result
holds generally for arbitrarily many channels. We are working
to prove this analytically.

We also presented another index scheme, which ranks the
channels at each step using the ratio of their bandwidth
to the expected time to availability. In the case of non-
ii.d. channels, particularly when there are a large number of
channels, this strategy appears to be a promising alternative to
the myopic scheme. An interesting direction for future work
is to identify the best indexing strategy for non-i.i.d. channels
and characterize its performance with respect to the optimal.

ACKNOWLEDGEMENT

This work was supported by the Army Research Laboratory
CTA on Communication and Networks under Grant DAAD19-
01-2-0011 and by the National Science Foundation under
Grants CNS-0627090 and ECS-0622200.

APPENDIX I: PROOF OF PROPOSITION 1

Consider first N = 2. Without loss of generality, assume a(t —
1) = 1. Consider first K:1(t — 1) = 1. In this case, we know that
S1(t — 1) = 1. The immediate reward for staying in channel 1 in
slot ¢ is p1,1 B, while the immediate reward for switching to channel
2 in slot ¢ is

(w2 (t)p1,1 + (1 —wa(t))po,1)B > p11B, Vwa(t) € [0,1],

where the inequality follows from po 1 > pi,1. Hence, the myopic
action in slot ¢ is to switch to channel 2.

We now consider K1(t — 1) = 0. In this case, S1(t — 1) can
be either 0 or 1 due to sensing errors. Let [w1(¢), w2(t)] denote the
belief vector at the beginning of slot ¢, i.e., w;(t) is the probability
that channel ¢ is available at the beginning of slot ¢ prior to the
state transition, which is equivalent to the a posterior probability of
Si(t — 1) = 1 after incorporating the observation obtained in slot
t — 1. Let wj(t) be the probability that S;(¢) = 1, i.e.,

wi(t) = wi(t)pra + (1 = wi(t))pos = po,1 +wi(t)(pr1 — po).
We show below that wi(t) > ws(t) when Ki(t — 1) = 0, which

implies that the myopic action in slot ¢ is to stay in channel 1.
Since po,1 > p1,1, it suffices to show w1 () < wa(t) (see the above



equation), where

wit) 2 Pr[Si(t—1)=1|Ki(t—1) =0]
PEA(t—1) = 0[Sy (t — 1) = 1] PrlSa(t — 1) = 1]
Pr[K1(t —1) = 0]
_ ewi(t—1)
ewit—1)+ (1 —wi(t—1))’
wa(t) = wh(t—1).

Considering the condition on € and the lower and upper bounds on
wj(t — 1) obtained from po1 > p1,1:

p11 <wi(t—1) < poa,

we arrive at wi(t) < wa(t).

Applying the above arguments to N > 2, we know that the myopic
action is to stay after observing K = 0 and switch after observing
K = 1. The only question to address is which channel to switch
to. The myopic action in slot ¢ is to choose the channel that is most
likely to be idle in slot t. Since we only switch channel after observing
K =1, the last known state of every channel is 1 (error free). The
choice of channel is thus the same as in the perfect sensing case. The
proof can be found in [4]

APPENDIX II: PROOF OF THEOREM 1

We first establish the following two lemmas.

Lemma 2: Under the conditions of Theorem 1, the expected total
remaining reward starting from slot ¢ under the myopic sensing policy
is determined by the action a(t — 1) and the system state S(¢ — 1)
in slot ¢ — 1, hence independent of the belief vector Q(t) at the
beginning of slot ¢. Let Vi(a(t — 1), S(t — 1)) denote the expected
total remaining reward starting from slot ¢ under the myopic sensing
policy for given a(t — 1) and S(t — 1). We further have

%(17[0’0]) = %(27 [070])
%(17[1’1]) = ‘/t(27 [171])
%(17[0’ 1]) = ‘4(27 [170])
%(17[170]) = ‘4(27 [071]) )

Proof: Given a(t — 1) and S(t — 1), the myopic actions in slots ¢
to T, governed by Proposition 1, are fixed for each sample path of
system state and observation, independent of 2(¢). As a consequence,
the total reward obtained in slots ¢ to 7' for each sample path
is independent of €(t), so is the expected total reward. The four
equalities can also be shown by considering each sample path of the
system state and observations.

0od

Note that Lemma 2 does not hold for a general POMDP, where
the value function V; of a given policy (expected total remaining
reward starting from slot ¢) is determined by the belief vector Q(¢).
For fixed action and observation in slot ¢t — 1, 2(¢) may be different
for different (¢ — 1). In general, we should have

Vi(a(t —1),S(t—1),Q(t — 1))
= X, Prfla(t —1),8(t — DIVi(T(Qt — 1)]a(t — 1),0)),

where Prf|a(t—1),S(t—1)] is the probability of observing 6 in slot
t—1givena(t—1) and S(t—1), and 7 (Q(t—1)|a(t—1),0) = Q(¢)
is the updated belief vector in slot ¢ after incorporating a(t — 1) and
6.

00O
Lemma 3: Under the conditions of Theorem 1, we have, Vt, a,

I‘/t(a7 [170]) - Vt(a7 [07 1])| < (1 - e)B'

Proof: Based on the third and forth equalities in Lemma 2, we only
need to consider a(t — 1) = 1. We prove by reverse induction. The
inequality holds for ¢ = T since (1 — €)B is the maximum reward
(averaged over the sensing outcome) that can be obtained in one
slot. Assume that the inequality holds for ¢ + 1. We show that the
result for ¢ follows. Consider first V;(1, [1, 0]). With probability 1—e,
the users observe K(t — 1) = 1 and choose a(t) = 2 according
to Proposition 1. The expected immediate reward in slot ¢ is thus
po,1(1 — €)B. With probability e, we have K (¢t — 1) = 0, which
leads to a(¢) = 1 and an expected immediate reward po,1 (1 —€)B in
slot ¢. We thus obtain V;(1, [1, 0]), similarly, V;(1, [0, 1]) as given in
(10) and (11) on the next page (note that for V;(1, [0, 1]), we always
have K(t —1) =0 and a(t) = 1).

Applying the equalities in Lemma 2 and the upper bound on e,
we have

IVi(lf [07 1]) - Vt(L [17 O])‘
= (1 — 6)Bp071 — (1 — 6)B(6p1,1 + (1 — 6)[)071)
+€[Vit1(1, [1,0]) = Vira (1, [0, 1]|(p1,0P0,1 — P1,1P0,0)

< 2(1—¢€)Be(po1 — p1,1)
< 201-BRPLL gy )
P0,1P1,0
< (1-¢)B,
where the last inequality follows from (po,1 — p1,1)5e- < ; and
P00 1. ’
p1

Based on the above lemmas, we prove Theorem 1 by showing that
Condition CO in Lemma 1 holds. Let Q(t) = [w1(t),w2(t)] denote
the belief vector at the beginning of slot ¢ prior to state transition.
Let wj(t) denote the probability that S;(t) = 1, i.e.,

wi(t) = wi(t)pr1 + (1 — wi(t))po.1-

Assume that w () > w(t), i.e., the myopic action in slot ¢ is a(t) =
1. We show below that V;*" 71(Q(t)) > VAO=2(Q(1)).

Let g;,; denote the probability that S(t) = [4, j]. Since wi(t) >
wy(t), we have

q1,0 = wi(£)(1 —wh(t) > go1 = (1 — wi(t))ws(t).

We now compute \/ta(t>(Q(t)) by averaging over all possible values
of S(¢).

(12)

VO = go0Vira (1,00,0)) + qra{(1 — €)B + Vi (1, [1,1])}
= 01 Vi+1(1,[0,1]) + qr0{(1 — €) B + Vi41(1,[1,0])}
VIO = 00Ves1(2,]0,0]) + qra{(1 — B + Vi (2,[1,1))}
= qo,1{(1 —€)B+Vit1(2,[0,1])} + q1,0V2+1(2, [1,0])
Applying the equalities in Lemma 2, we obtain
VO Qe) - v Q)
= (q1,0—qo,1){(1— E)B + Vit1(1,[1,0]) — Vi (1, [0, 1]) }
> 0, (13)

where the last inequality follows from (12) and Lemma 3.
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