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ABSTRACT
We consider opportunistic spectrum access for secondary users
over multiple channels whose occupancy by primary users is
modeled as discrete-time Markov processes. Due to hard-
ware limitations and energy constraints, a secondary user can
choose, in each slot, one channel to sense and decide whether
to access based on the sensing outcome. The design of sens-
ing strategies that govern channel selections in each slot for
optimal throughput performance of the secondary user can
be formulated as a partially observable Markov decision pro-
cess (POMDP). We exploit the structure of this problem when
channels are independently and identically distributed. We
reveal that the myopic sensing policy has a simple structure:
channel selection is reduced to a counting process with little
complexity. Further, for the two-channel case, we prove that
the myopic sensing policy is in fact the optimal policy. Nu-
merical results have also demonstrated the optimality of the
myopic sensing policy when there are more than two chan-
nels.

Index Terms: Opportunistic spectrum access, POMDP, my-
opic policy.

1. INTRODUCTION

Opportunistic spectrum access (OSA), where secondary users
identify and exploit local and instantaneous spectrum avail-
ability while limiting interference to primary users (licensees),
is one of the approaches envisioned for dynamic spectrum
management [1, 2]. A basic component of OSA is a sensing
strategy at the MAC layer. Due to hardware limitations and
energy constraints, a secondary user may not be able to sense
all channels in the spectrum simultaneously. In this case a
sensing strategy for intelligent channel selection is necessary
to track the rapidly varying spectrum opportunities.

The purpose of a sensing strategy is twofold: catch a spec-
trum opportunity for immediate access and obtain statistical
information on spectrum occupancy so that more rewarding
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sensing decisions can be made in the future. A tradeoff has
to be reached between these two often conflicting objectives,
and the design of optimal sensing strategies is, in general, a
sequential decision making problem.

By modeling primary users’ channel occupancy as Markov
processes, the design of sensing strategies can be formulated
as a partially observable Markov decision process (POMDP).
Unfortunately, obtaining the optimal policy for a general POMDP
is often intractable. For the OSA problem, the complexity
of obtaining the optimal sensing policy can be shown to be
O(NT ), where N is the number of channels in the spectrum
of interest and T is the time horizon length [3].

A common approach of trading performance for tractable
solutions is to consider myopic policies. A myopic policy
aims solely at maximizing the immediate reward, ignoring the
impact of the current action on the future reward. Obtaining
myopic policies is thus a static optimization problem instead
of a sequential decision making problem. As a consequence,
the complexity is significantly reduced, often at the price of
considerable performance loss.

In this paper, we show that for designing sensing strate-
gies in OSA, low complexity does not necessarily imply sub-
optimal performance. The myopic sensing policy with a sim-
ple structure achieves the optimal performance when channels
are independently and identically distributed (i.i.d.).

The contribution of this paper is twofold. First, we reveal
a simple structure of the myopic sensing policy for i.i.d. chan-
nels. Specifically, selecting channels in each slot is reduced to
a simple counting procedure: a secondary user only needs to
set up pointers indicating the channels to which the last vis-
its occurred most recently or the longest time ago. Second,
we prove that for the two-channel case, this myopic sensing
policy with such a simple structure is actually optimal. The
optimality of the myopic sensing policy in cases with more
than two channels has also been demonstrated via extensive
numerical examples.

Related Work The majority of existing work on OSA
focuses on the spatial domain where spectrum opportunities
are considered static or slowly varying in time. As a con-



sequence, real-time opportunity identification and tracking is
not as critical a component in this class of applications, and
the prevailing approach tackles network design in two sepa-
rate steps: (i) opportunity identification assuming continuous
full-spectrum sensing; (ii) opportunity allocation among sec-
ondary users assuming perfect knowledge of spectrum oppor-
tunities at any location over the entire spectrum. Opportu-
nity identification in the presence of fading and noise uncer-
tainty has been studied in [4,5]. Spatial opportunity allocation
among secondary users can be found in [6–8] and references
therein.

Exploiting temporal spectrum opportunities that also vary
in space requires a joint design of spectrum detectors at the
physical layer and spectrum sensing and access strategies at
the MAC layer [9]. Tracking the rapidly varying spectrum
opportunities becomes a critical issue, which is the focus of
this paper. Clearly, a simple yet sufficiently accurate sta-
tistical model of spectrum occupancy is crucial to the effi-
ciency of spectrum opportunity tracking. Measurements ob-
tained from spectrum monitoring test-beds [10] demonstrate
the Markovian transition between busy and idle channel states
in 802.11b, a similar model as used in this paper.

The POMDP framework for OSA was first proposed in
[11]. The goal of this paper is to investigate the structure and
optimality of myopic sensing. An overview of challenges and
recent developments in OSA can be found in [12].

2. THE NETWORK MODEL

Consider a spectrum consisting of N channels, each with band-
width Bi (i = 1, · · · , N). These N channels are licensed to
a primary network whose users communicate according to a
synchronous slot structure. The traffic statistics of the pri-
mary network are such that the occupancy of these channels
follows N independent discrete-time Markov processes with
2 states. Specifically, the state of channel i in slot t is given
by

Si(t) ∈ {0 (occupied) , 1 (idle) }.

The state diagram and transition probabilities {p(n)
i,j } of chan-

nel n are illustrated in Figure 1. We assume that the spectrum
usage statistics of the primary network remain unchanged for
T slots.
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Fig. 1. The Markov channel model

We consider a secondary network whose users indepen-
dently and selfishly search for and access spectrum opportu-

nities in these N channels. In each slot, a secondary user
chooses one of the N channels to sense. If the channel is
sensed to be idle, the user transmits using carrier sensing.
We assume here that sensing errors are negligible. A sensing
strategy that dynamically selects channels for intelligent spec-
trum opportunity tracking is crucial to the throughput perfor-
mance of the secondary user. The focus of this paper is the
design of spectrum sensing strategies that achieve a favorable
tradeoff between performance and complexity. Details of the
protocol implementation can be found in [13], and have been
omitted in this paper due to space limit.

We assume that the transition probabilities of the Marko-
vian model have been learned by the secondary user. Results
on the robustness to model mismatch can be found in [9]. If
the transition probabilities are unknown, formulations and al-
gorithms for POMDP with an unknown model exist in the
literature [14] and can be applied to this problem.

3. A POMDP FORMULATION

In this section, we present the POMDP formulation of design-
ing spectrum sensing strategies.

3.1. Reward and Design Objective
Let πs denote a sensing policy that decides, sequentially, which
channel to sense in each slot. The design of πs can be formu-
lated as a POMDP as first given in [11]. Specifically, the un-
derlying state space is S = [S1, · · · , SN ] ∈ {0, 1}N , and the
action space is a ∈ {1, · · · , N}. A natural choice of reward
Ra(t) for choosing channel a in slot t is1

Ra(t) = Sa(t)Ba,

which represents the number of bits delivered. We can then
define the objective function as the total number of bits trans-
mitted in T slots:

J
∆
=Eπs

[
T

∑

t=1

Ra(t)], (1)

where Eπs
represents the conditional expectation given that

a sensing policy πs is employed. Note that the reward Ra(t)
obtained in slot t depends on the sensing action (which chan-
nel a to sense) and the state of the underlying Markov process
(channel availability) in slot t.

3.2. Sufficient Statistics
Since the system state S cannot be directly observed, we can
only infer it from partial sensing outcomes. It has been show
in [15] that the a posterior distribution of the system state

1In this paper, we focus on distributed sensing strategies where secondary
users make independent and selfish decisions without coordination. In this
case, a secondary user chooses its spectrum sensing strategies under the as-
sumption that it will receive a reward when the chosen channel is not used by
the primary network.



that exploits the entire sensing and decision history character-
izes our knowledge about the system state and is a sufficient
statistic for optimal decision making. Specifically, at the be-
ginning of slot t, our knowledge of the system state based on
all past decisions and observations can be summarized by a
belief vector

Λ(t) = [λ1(t), · · · , λ2N (t)]

where λj(t) is the conditional probability (given the deci-
sion and observation history) that the system state is j (j =
1, · · · , 2N ) at the beginning of slot t. Note that Λ(t) charac-
terizes the system state in slot t prior to the state transition (a
conventional notation in the literature of POMDP).

For independently evolving channels, it has been shown
in [11,13] that the marginal conditional distribution is a suffi-
cient statistic, i.e., we can consider the following belief vector

Ω(t) = [ω1(t), · · · , ωN (t)]

where ωi(t) denotes the conditional probability that channel
i is available at the beginning of slot t prior to the state tran-
sition. Note that the dimension of the belief vector is reduced
from 2N to N when channels are independent.

3.3. Optimal Sensing Policy
With the concept of belief vector, a sensing policy πs essen-
tially defines the mapping from Ω(t) to the index a of the
channel to be sensed for each slot t:

πs = [µ1, · · · , µT ],

where µt : Ω(t) ∈ [0, 1]N → a ∈ {1, · · · , N}.

The design objective is to choose πs to maximize the through-
put J . Note that for a POMDP over a finite horizon, the opti-
mal policy is generally non-stationary; the mapping from the
belief vector to the optimal action varies over time. Clearly,
the complexity of obtaining the optimal (non-stationary) pol-
icy grows with the horizon length T .

Referred to as the value function, Vt(Ω(t)) denotes the
maximum expected remaining reward that can be accrued start-
ing from slot t when the current belief vector is Ω(t). It has
two parts: (i) the immediate reward Ra(t) obtained in slot t

when the user senses channel a; (ii) the maximum expected
remaining reward Vt+1(Ω(t+1)) starting from slot t+1 given
a belief vector

Ω(t + 1) = T (Ω(t)|a, Sa(t))

which represents the updated knowledge of the system state
after incorporating the action a and the observed channel state
Sa(t) in slot t. Averaging over all possible system states and
observations, we arrive at the following Bellman’s equation

Vt(Ω(t)) = max
a=1,··· ,N

E[Ra(t) + Vt+1(T (Ω(t)|a, Sa(t)))],

(2)

where the updated belief vector Ω(t+1) = T (Ω(t)|a, Sa(t))
can be easily obtained via the Bayes rule.

From (2) we can see that an action chosen at a slot af-
fects the total reward in two ways: it acquires an immediate
reward Ra(t) = Sa(t)B in this slot and transforms the belief
vector to T (Ω|a, Sa(t)) which determines the future reward
Vt+1(T (Ω(t)|a, Sa(t))). The optimal policy strikes a balance
between gaining immediate reward and gaining information
for future use. However, due the impact of the current action
on the future reward, the uncountable belief space, and the
non-stationary nature of the optimal policy, obtaining the op-
timal solution to a general POMDP is often computationally
prohibitive. For the OSA problem, the complexity of obtain-
ing the optimal sensing policy is O(NT ), which grows expo-
nentially with T [3].

4. THE MYOPIC POLICY

For tractable solutions, one often resorts to a myopic policy
that ignores the impact of the current action on the future re-
ward, focusing solely at maximizing the immediate reward.
Myopic policies are thus stationary; the mapping from the be-
lief vector to the myopic action is the same for all slots. For
the spectrum access problem at hand, the action chosen by the
myopic sensing policy is given by [11]

a∗(t) = arg max
a=1,··· ,N

(ωa(t)p
(a)
1,1 + (1 − ωa(t))p

(a)
0,1)Ba, (3)

where (ωa(t)p
(a)
1,1 + (1 − ωa(t))p

(a)
0,1) is the probability that

channel a is available in slot t (note that ωa(t) denotes the
channel availability probability prior to state transition).

At the end of slot t, the belief vector Ω is updated based
on the action a∗(t) and the observed channel state Sa∗

(t) as
in (4) shown on the next page. Note that when a channel is not
sensed, the probability of its availability is updated according
to the Markov chain. If the channel is sensed, the state of this
channel is the sensing outcome.

We show in the next section that for i.i.d. channels, we do
not need to update the belief vector in each slot as given in
(4). Obtaining the optimal myopic action a∗(t) is reduced to
a simple counting process.

5. THE STRUCTURE AND OPTIMALITY OF
MYOPIC SENSING FOR I.I.D. CHANNELS

In this section, we show that when we have N identical chan-
nels (p(n)

i,j ≡ pi,j , Bn ≡ B), the myopic sensing policy has
an interesting structure that leads to further complexity re-
duction. We further prove that the myopic sensing policy is
optimal when N = 2, i.e., the optimal performance can be
achieved at little complexity due to the strong structure and
the optimality of the myopic policy in this case. For N > 2,
extensive numerical results have demonstrated the optimality
of the myopic policy. We are currently extending the opti-



ωi(t + 1) =







1 if a∗(t) = i, Sa∗
(t) = 1

0 if a∗(t) = i, Sa∗
(t) = 0

ωi(t)p
(a)
1,1 + (1 − ωi(t))p

(a)
0,1 if a∗(t) 6= i

. (4)

mality proof for N = 2 to general cases with the aid of the
structure of the myopic policy revealed in Theorem 1 below.

5.1. The Structure of Myopic Sensing
We give in Theorem 1 the structure of the myopic sensing
policy for i.i.d. channels. The structure is given for p0,1 >

p1,1, i.e., a channel is more likely to change from busy (0) to
idle (1) than staying idle. For the case where p0,1 < p1,1, we
can simply switch these two states and replace p0,1 and p1,1

by 1 − p0,1 and 1 − p1,1, respectively. We then go back to
the former case. When p0,1 = p1,1, the dynamics of channel
states degenerate from a Markov process to an i.i.d sequence.
In this case, no information on the current channel state can be
obtained from the sensing and decision history. The optimal
sensing policy is to simply choose any channel in each slot.

Theorem 1 Consider N i.i.d. channels with p0,1 > p1,1. In
slot t, let δi(t) ∈ {1, 2, · · · , t − 1,∞} denote the time differ-
ence between t and the last visit to channel i. If channel i has
never been visited, then δi(t) = ∞. Define the following sets.

∆e(t)
∆
= {τi(t) : τi(t) is even},

∆̄e(t)
∆
= {τi(t) : τi(t) is odd or ∞}.

Given the action a(t−1) and sensing outcome Sa(t−1)(t−1)
in slot t − 1, the myopic action a∗(t) in slot t that maximizes
the expected immediate reward (see (3)) is as follows.

a∗(t) =







a(t − 1) if Sa(t−1)(t − 1) = 0
arg min ∆e(t) if Sa(t−1)(t − 1) = 1,∆e(t) 6= ∅
arg max ∆̄e(t) if Sa(t−1)(t − 1) = 1,∆e(t) = ∅

.

(5)

The proof of Theorem 1 is based on the eigen-decomposition
of the k-step transition matrix P k. Details are given in Ap-
pendix I.

Theorem 1 shows that for i.i.d. channels with p0,1 > p1,1,
the optimal action under myopic sensing is to stay in the same
channel when a 0 is observed in the previous slot and switch to
another channel when a 1 is observed. When a channel switch
is needed, the user chooses, among those channels to which
the last visit occurred an even number of slots ago, the one
most recently visited. If there are no such channels, the user
chooses the channel that has not been visited for the longest
time, which can be any of the channels that have never been
visited if such channels exist. For the special case of N = 2,
the myopic policy is simply to stay in the same channel after
observing 0 and switch to the other channel after observing 1.

We have assumed that no initial information on the system
state is available in the first slot, i.e., the initial distribution of
the Markov chains is the stationary distribution. The myopic
action in the first slot is to choose an arbitrary channel. It is
straightforward to modify Theorem 1 when the initial distri-
bution is not the stationary distribution.

Theorem 1 reveals that obtaining the myopic actions for
i.i.d. channels is reduced to a simple counting procedure: the
secondary user only needs to set up 4 pointers indicating the
channels to which the last visits occurred most recently or the
longest time ago (considering even and odd time differences
separately). The complexity of obtaining the optimal myopic
sensing policy is O(NT ), linear in both N and T .

A natural question that follows is how much performance
has to be sacrificed in order to use a sensing strategy with such
a simple structure, which is addressed next.

5.2. The Optimality of Myopic Sensing

Surprisingly, extensive numerical results have demonstrated
that the myopic sensing policy achieves the optimal perfor-
mance for i.i.d. channels. One example is given in Figure 2,
where we compare the throughput performance of the my-
opic sensing and the optimal policy [13]. We consider 3 in-
dependent channels. In the upper figure, these channels are
identical, while in the lower figures, channels have differ-
ent transition matrixes. We observe that for i.i.d. channels,
the performance of myopic sensing matches with the optimal
performance. For nonidentical channels, there is performance
loss. We point out that with both myopic sensing and the op-
timal sensing strategies, the throughput of the secondary user
increases over time, which results from the improved infor-
mation on the system state drawn from accumulating observa-
tions. This demonstrates the cognitive nature of these sensing
strategies developed under the POMDP formulation: learning
from and adapting to the communication environment for im-
proved performance. The performance of the random channel
selection scheme, however, remains the same over time.

Exploiting the structure of myopic sensing given in Theo-
rem 1, we have proven its optimality for N = 2 i.i.d. channels
as given in Theorem 2. We are currently extending the proof
to general cases with N > 2.

Theorem 2 For two i.i.d. channels, the myopic sensing pol-
icy is optimal.

The proof of Theorem 2 is based on the following lemma
which applies to any POMDP over a finite horizon. Details
are given in Appendix II.
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Fig. 2. Performance of myopic sensing.

Lemma 1 Consider a general POMDP with a finite horizon
of length T . A sufficient condition for the optimality of the
myopic policy is given below.

C0: Among all actions in slot t (t = 1, · · · , T − 1), the
myopic action maximizes the total expected remaining
reward obtained by taking myopic actions in each of the
remaining slots t + 1, · · · , T .

6. CONCLUSION AND FUTURE WORK

In this paper, we address spectrum opportunity tracking within
the framework of POMDP. In particular, we demonstrate the
strong structure and optimal performance of the myopic sens-
ing strategy when channels are i.i.d. On-going work includes
the extension of the optimality proof for the two-channel case
to general cases with more than two channels and in the pres-
ence of sensing errors. Quantitatively characterizing the per-
formance loss of the myopic sensing strategy for non-i.i.d.
channels is also among the future research directions.
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APPENDIX I: PROOF OF THEOREM 1

Consider first N = 2. Without loss of generality, assume
a(t − 1) = 1. Consider first S1(t − 1) = 0. The immediate
reward for staying in channel 1 in slot t is p0,1B, while the
immediate reward for switching to channel 2 in slot t is

(ω2(t)p1,1 + (1 − ω2(t))p0,1)B ≤ p0,1B, ∀ω2(t) ∈ [0, 1],

where the inequality follows from p0,1 > p1,1. Hence, the
myopic action in slot t is to stay in channel 1 when S1(t−1) =
0.

Similarly, when S1(t−1) = 1. The immediate reward for
staying in channel 1 in slot t is p1,1B, while the immediate
reward for switching to channel 2 in slot t is

(ω2(t)p1,1 + (1 − ω2(t))p0,1)B ≥ p1,1B, ∀ω2(t) ∈ [0, 1].

Hence, the myopic action in slot t is to switch to channel 2
when observing 1.

Applying the above arguments to N > 2, we know that
the myopic action is to stay after observing 0 and switch after
observing 1. The only question to address is which channel
to switch to. The myopic action in slot t is to choose the
channel that is most likely to be idle in slot t. Since we only
switch channel after observing 1, the last known state of every
channel is 1. Hence, if Sa(t−1)(t − 1) = 1, we should switch
to channel a∗ given by

a∗ = arg max
i

p
δi(t)
1,1 ,

where p
δi(t)
1,1 denotes the probability of staying in state 1 after

δi(t) slots. Based on the eigen-decomposition of the k-step
transition matrix, we obtain the following expression of pk

1,1

[16].

pk
1,1 =

p0,1 + p1,0(p1,1 − p0,1)
k

p0,1 + p1,0
.

For p1,1 < p0,1, it is easy to see that pk
1,1 is decreasing to

the stationary distribution for even k’s and increasing to the
stationary distribution for odd k’s. Theorem 1 thus follows.

APPENDIX II: PROOF OF THEOREM 2

We first prove Lemma 1 by reverse induction. We will
show that the optimal action in every slot is myopic. For slot
T , the optimal action is clearly myopic. Assume that for slots
t+1, · · · , T , the optimal actions are myopic. Based on Condi-
tion C0, the optimal action in slot t is also myopic. Lemma 1
thus follows by induction.

Next, we prove Theorem 2 by showing that Condition C0
holds. Let V

a(t)
t+1 (S(t)) denote the total expected remaining

reward starting at slot t + 1 under myopic actions for a given
S(t). We will show that V

a(t)
t+1 (S(t)) is completely deter-

mined by S(t), i.e., independent of the action a(t) in slot t,
and

V
a(t)
t+1 ([0, 1]) = V

a(t)
t+1 ([1, 0]).

This is a stronger condition than C0.
Prove by induction. We show first the condition holds for

slot T − 1 and VT (0, 1) = VT (1, 0). Consider first S(T −
1) = [0, 0] or [1, 1]. Due to symmetry in the state and in the
dynamics of the two Markov chains, the two possible actions
a(T − 1) = 1 and a(T − 1) = 2 are indistinguishable; they
lead to the same maximum expected reward in slot T . For
S(T − 1) = [0, 1], with a(T − 1) = 1, the myopic action in
slot T is to stay in channel 1 (see Theorem 1). The resulting
expected reward in slot T is p0,1B. With a(T − 1) = 2, the



myopic action in slot T is to switch to channel 1, resulting in
the same expected reward p0,1B. The same line of arguments
applies to S(T − 1) = [1, 0], and the maximum expected
reward in slot T is also p0,1B, i.e., VT (0, 1) = VT (1, 0).

Assume that the claim holds for slot t where t < T − 1,
i.e., V

a(t)
t+1 (S(t)) is independent of a(t) and Vt+1([0, 1]) =

Vt+1([1, 0]). We show next the condition holds for slot t − 1.
Consider first S(t − 1) = [0, 0]. We obtain Vt(0, 0) under
each action by considering all 4 possible states in slot t.

V a=1
t (0, 0) = p2

0,0(0 + Vt+1(0, 0)) + p2
0,1(B + Vt+1(1, 1))

+ p0,0p0,1(0 + Vt+1(0, 1)) + p0,1p0,0(B + Vt+1(1, 0))

V a=2
t (0, 0) = p2

0,0(0 + Vt+1(0, 0)) + p2
0,1(B + Vt+1(1, 1))

+ p0,0p0,1(B + Vt+1(0, 1)) +0,1 p0,0(0 + Vt+1(1, 0))

Since Vt+1(0, 0), Vt+1(0, 1), Vt+1(1, 0), and Vt+1(1, 1) are
independent of actions taken in slot t and Vt+1(0, 1) = Vt+1(1, 0),
we see that V a=1

t (0, 0) = V a=2
t (0, 0). Similarly, we reach

the same statement for Vt(0, 1), Vt(1, 0), and Vt(1, 1). By
comparing Vt(0, 1) and Vt(1, 0), we also obtain Vt(0, 1) =
Vt(1, 0).
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