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Abstract—We present Autonomous Rssi based RElative poSi-
tioning and Tracking (ARREST), a new robotic sensing system
for tracking and following a moving, RF-emitting object, which
we refer to as the Leader, solely based on signal strength
information. Our proposed tracking agent, which we refer to
as the TrackBot, uses a single rotating, off-the-shelf, directional
antenna, novel angle and relative speed estimation algorithms,
and Kalman filtering to continually estimate the relative position
of the Leader with decimeter level accuracy (which is comparable
to a state-of-the-art multiple access point based RF-localization
system) and the relative speed of the Leader with accuracy on the
order of 1 m/s. The TrackBot feeds the relative position and speed
estimates into a Linear Quadratic Gaussian (LQG) controller to
generate a set of control outputs to control the orientation and the
movement of the TrackBot. We perform an extensive set of real
world experiments with a full-fledged prototype to demonstrate
that the TrackBot is able to stay within Sm of the Leader with:
(1) more than 99% probability in line of sight scenarios, and (2)
more than 75% probability in no line of sight scenarios, when it
moves 1.8X faster than the Leader.

I. INTRODUCTION

Sensing and tracking of a moving object/human by a robot
is an important topic of research in the field of robotics and
automation for enabling collaborative work environments [1],
including applications such as fire fighting and exploration of
unknown terrains [2l]. For example, in disaster managements,
robots can assist by tracking and following first-responders
while the team explores an unknown environment. To achieve
this, staying in proximity to the first-responders is key. In this
paper, we focus on this class of tracking problems where the
term “tracking” refers to the relative position sensing and
control of a robot that is required to stay in proximity to an
uncontrolled moving target such as a Leader robot or human.

Our Contribution: We propose the Autonomous Rssi based
RElative poSitioning and Tracking (ARREST), a purely Radio
Signal Strength Information (RSSI) based single node RF
sensing system for joint location, angle, and speed estimation
and bounded distance tracking of a target moving arbitrarily
in 2-D that can be implemented using commodity hardware.
In our proposed system, the target, which we refer to as
the Leader, carries an RF-emitting device that sends out
periodic beacons. The tracking robot, which we refer to as the
TrackBot, employs an off-the-shelf directional antenna, novel
relative position and speed estimation algorithms, and a Linear
Quadratic Gaussian (LQG) controller to measure the RSSI of
the beacons and control its maneuvers.
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Related Works: The most popular class of existing tracking
architectures employs vision and laser range finder systems [3}
4] which crumbles in effectiveness when visibility deteriorates
or direct line of sight does not exist. Also, the processing of
respective data, namely image processing, increases the form
factor and power consumption of power constrained robots.
As alternatives, the RF Localization related works in wireless
sensor networks [5] where robots are employed for localizing
static nodes, are relevant. Graefenstein er al. [6] employed
a rotating antenna on a mobile robot to map the RSSI of a
region and exploit the map to localize the static nodes. Similar
works have been proposed in the context of locating static
radio sources such as radio tagged fish or wild animals [7, [8].
The works of Zickler and Veloso [9], and Oliveira et al. [10]
on RF-based relative localization are also relevant as we also
employ a RF based relative localization in our system. Vasisht,
Kumar, and Katabi [11]] have applied a MIMO-based system
to relatively localize a single node. Simulation of a RSSI
based constant distance following technique is demonstrated
in [12] where the leader movement path is predetermined
and known to the Follower. However, unlike these works, the
TrackBot in the ARREST system relies solely on RSSI data not
only for the localization of the mobile Leader with unknown
movement pattern, but also for autonomous motion control
with the goal of maintaining a bounded distance. The closest
state-of-the-art related to our work is presented in [13]]. In
this work, the authors developed a system that follows the
bearing of a directional antenna for effective communication.
However, to our knowledge, the maintenance of guaranteed
close proximity to the Leader was not discussed in [13],
which is the most important goal in our work. Moreover,
this work employs both RSSI and sonar to determine the
orientation of the transmitter antenna along with comparatively
costly and high power consuming processing hardware with
larger form factor. On LQG related works, Bertsekas [[14] has
demonstrated that a LQG controller can provide the optimal
control of a robot along a known/pre-calculated path, when the
uncertainty in the motion as well as the noise in observations
are Gaussian. Extending this concept, LQG based robotic path
planning solutions to deal with uncertainties and imperfect
state observations are presented in [[15| [16]]. To the best of our
knowledge, we are the first to combine RSSI-based relative
position, angle, and speed estimation with the LQG controller
for localizing and tracking a moving RF-emitting object.



II. PROBLEM FORMULATION

Let the location of the Leader at time t be represented as
Xr(t) = (zr(t),yr(t)) in a 2D global frame of reference,
Ra. The Leader follows an unknown path, Pr. Similarly,
let the position of the TrackBot at any time instant ¢ be
denoted by X (t) = (zr(t),yr(t)). The maximum speeds of
the Leader and the TrackBot are v7'** and v7**, respectively.
For simplicity, we discretize the time with steps of 6t > 0
and use the notation n to refer to the n'!* time step i.e.,
t = n-dt. Let d[n] = ||Xz[n] — Xr[n]||2 be the distance
between the TrackBot and the Leader at time slot n, where
[|.]|2 denotes the Lo norm. Then, with Dy, denoting the max
distance allowed between the Leader (L) and the TrackBot
(F), the objective of tracking is to plan the TrackBot’s path,
Pr, such that P (d[n] < Dy;,) ~ 1 Vn where P(.) denotes the
probability. However, in real systems all measurements at any
time n by the TrackBot are in the TrackBot’s 2D local frame
of reference, R r[n], with the origin representing the location
of the TrackBot, X r[n]. Let the robot’s forward and backward
movements at any time instant n be aligned with the X-axis of
Rr[n]. Let the position of the Leader in Rp[n]| be X7 [n] =
(x5! [n], y7¢'[n]). Now, to restate the objective of tracking in
terms of the local coordinates: P (d[n] < D) &~ 1 Vn where
din) = X5 [n)ll2 = (a7 [n]” + ' [n]) /2.

III. THE ARREST SYSTEM

In our proposed ARREST system, the Leader is a robot
or a human carrying a device that periodically transmits RF
beacons, and the TrackBot is a robot carrying a directional,
off-the-shelf RF receiver. As shown in Fig. the ARREST
architecture consists of three layers: Communication ANd
Estimation (CANE), Control And STate update (CAST), and
Physical Robotlc ControllEr (PRICE). In order to track the
Leader, the TrackBot needs sufficiently accurate estimations of
both the Leader’s relative position (Xzel) and relative speed
(Urer). Thus, at any time instant [n], we define the state of
the TrackBot as a 3-tuple: S[n] = [d°[n], w5e(n], Giel[n]]T
where the superscript e refers to the estimated values, d°[n] =
|| X7 n]||2 refers to the estimated distance at time-slot 7,
ve,,[n] refers to the relative speed of the TrackBot along the
X-axis of Rp[n] with respect to the Leader, and 6¢_,[n] refers
to the angular orientation (in radians) of the Leader in Rp[n].

CANE: The function of the CANE layer is to measure
RSSI values from the beacons and approximate the Leader’s
position relative to the TrackBot, (i.e., d°[n] and 6¢,,[n]). The
CANE layer is broken down into three modules: Wireless
Communication and Sensing, Rotating Platform Assembly,
and Relative Position Estimation. At the beginning of each
time slot n, the Wireless Communication and Sensing module
and the Rotating Platform Assembly perform a 360° RSSI
sweep by physically rotating the directional antenna while
storing RSSI measurements of successful beacon receptions
into the vector ry[n]. The Relative Position Estimation module
uses ry[n] to approximate the relative position of the Leader
by leveraging pre-estimated directional gains of the antenna,
detailed in Section [Vl

CAST: The functions of the CAST layer is to maintain
the 3-tuple state estimates and to generate control commands
based on current and past observations to send to the PRICE
layer. The CAST layer consists of two different modules: the
Linear Quadratic Gaussian (LQG) Controller and the Strategic
Speed Controller. The Strategic Speed Controller estimates the
relative speed of the Leader by exploiting past and current
state information and generates the speed control signal in
conjunction with the LQG controller according to two different
strategies, Optimistic and Pragmatic (detailed in Section[[V-C).
The LQG controller incorporates past state information, past
control information, and relative position and speed approx-
imations (discussed further in Section to: (1) generate
the system’s instantaneous state, (2) determine how much to
rotate the TrackBot itself, and (3) determine what should be
the TrackBot’s relative speed. The state information generated
by the LQG controller is directly sent to the Strategic Speed
Controller to calculate the absolute speed of the TrackBot.

PRICE: The goal of the PRICE layer is to convert the
control signals from the CAST layer into actual translational
and rotational motions of the TrackBot. It consists of two mod-
ules: Movement Translator and Robot Chassis. The Movement
Translator maps the control signals from the CAST layer to a
series of platform-specific Robot Chassis motor control signals
(detailed in Section [V).

A. Proposed LQG Formulation

In our proposed solution, we formulate the movement
control problem of the TrackBot as a discrete time Linear
Quadratic Gaussian (LQG) control problem [17]. The linear
system equations for a discrete LQG problem can be written
asS[n + 1] = AnS[n] + BrU[n| + Z[n] and O[n| = C,,S[n] + W(n]

(€]
where A,, and B,, are the state transition matrices, U[n] is the
LQG control vector, Z|[n] is the system noise, O[r] is the LQG
system’s observation vector, C,, is the state-to-observation
transformation matrix, and W{n] is the observation noise at
time-slot n. In our case, O[n] = [d™[n], vyn], 67 [n]]T
(the superscript m refers to measured values), the state tran-
sition matrices A,, = A, B,, = B, C,, = C are time invariant,
and the time horizon is infinite as we do not have any control
over the Leader’s movements. For a infinite time horizon LQG
problem [14], the cost flllvnction can be written as:

: 1 T T
J= Jim —E <nz_0 S[n)TQS[n] + Uln) HU[n]) 2
where Q > 0,H > 0 are the weighting matrices. In our
system, the state transition matrix values are as follows:
[1 —5t 0] [0 -5t 0 } [1 0 0]
A=|0 1 o0o/B=|0 1 ofcCc=(0 1 0 3)
0 0 1 0 0 -1 0 0 1

where 6t is the time granularity for the state update. We
assume the system noise, Z[n|, to be Gaussian and the
measurement noise, W[n|, to be approximated as Gaussian.
Furthermore, we tweak the LQG controller to send out a
rotational control signal after a state update and before gener-
ating the LQR control signals, U[n], to align the robot toward
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the estimated direction of the Leader before calculating the
movement speed. A block diagram of our LQG control system
model is presented in Fig.

IV. RSSI BASED RELATIVE POSITION AND SPEED
OBSERVATIONS

In this section, we discuss our methodologies to map the
observed RSSI vector, ry [n], into the observation vector, O[n].

A. Distance Observations

To calculate distance, we employ one the standard equations
used in calculating the received power in a RF channel [18]:

d™[n]
Pr,dBm = Pt,dBm + GdB - £'ref - 1077 10%10 d + w

ref
prel =P Gap — L

r,dBm t,dBm + Gap ref +
(PridBm—Pranm)
~rdBm _LITm

~ n

@

d™[n]

dref
where P, qpm = avg {ry[n]} is the average received power
in our system, P; 4pn, is the transmitter power in dBm, Gyp
is the average antenna gain in dB, L,.s is the path loss at
the known reference distance d,.; in dB, 7 is the path loss
exponent, d™[n] is the distance between the transmitter and
receiver, ¢ is the random shadowing and multipath fading
noise in dB, and P’ Z{Bm is the pre-estimated received power
at the reference distance (dref). More comprehensive details
can be found in [19].

B. Angle Observations

The core of our Angle of Arrival (AoA) observation meth-
ods, called pattern correlation, is to correlate the normalized
vector of RSSI measurements, g, = ry[n]—max(ry[n]), with
another vector representing the different € shifted version of
the antenna’s known, normalized gain pattern, gaps(6):

ry[n] = [r_180,7-178.2, - ,7178.2] = 8m = [T_180, " ,T178.2]

(O]

Sabs(0) = [9(—18040)> ** »9(0+6)s " »9(178.2+0)]

where 74 refers to the RSSI measurement, g, refers to the
antenna gain, and 77, = r4 — max{ry} refers to the observed
gain for the antenna orientation of ¢° with respect to the X-
axis of Rp[n]. Due to our hardware restriction on angular step
size of 1.8°, the possible antenna orientations (¢) are limited to
0 ={-180,---,—1.8,0, --- ,178.2}. Below, we describe three
Ao0A observation methods in increasing order of complexity.
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1) Basic Correlation Method: The first method (originally
demonstrated by [6]) of determining AoA correlates g, with
Eabs(0) VO € O and calculates the respective Lo distances.
The observed AoA is the 8 at which the Lo distance is the
smallest:

07, = arg min Z wie - Irh, — 9geroyllz - L, (6)

9€®  Leo
where the indicator function I, indicates whether the sample
T}, exists or not to account for missing samples in real
experiments, and wy = 1 is a constant.

2) Clustering Method: While the first method works well
if enough uniformly distributed samples (> 100 in our
implementation) are collected within the 360° scan, it fails
in scenarios of sparse, non-uniform sampling due to packet
loss. In real experiments (mainly indoors), the collected RSSI
samples can be uniformly sparse or sometimes batched sparse
(samples form clusters with large gaps (= 30°) between them).

Definition 1. An angular cluster (M) is a set of valid samples
for a contiguous set of angles: A = {k|l,; = 1Vk € {¢f, o7 +
1.8,---, ¢} C O}

To prevent undue bias from large cardinality clusters that can
cause errors in estimating the correlation, we assign a weight
(wg) to each sample (k) and use the pattern correlation method
as in Eqn. (6). In our weighting scheme, we assign wy, = ﬁ
where k € A.

3) Weighted Average Method: Based on real world exper-
iments, we find that the angle observation based on the basic
correlation method, say 6, gives reasonable error perfor-
mance if the average cluster size, denoted by \,, is greater
than the average gap size between clusters, u,. Conversely,
the angle observation based on the clustering method, say 62,
is better if A\, << puo. Thus, as a trade-off between both
the basic correlation method and the clustering method, we
propose a weighted averaging method described below.
- {jﬁ.9}n+(1—23).9‘£ﬂ if Ao < pia

= 7
rel 97177‘ if Ay > ta 7

In the rest of the paper, we use the weighted average method
for angle observations.

C. Speed Observations

In our ARREST architecture, the Strategic Speed Controller
uses the relative position observations (d™[n],67,[n]) from



the CANE layer and the past LQG state estimates to determine
the current relative speed, v)7;[n], as well as the Leader’s
speed, v}*[n]. In this context, we employ two different ob-
servation strategies. The first strategy, which we refer to as
the Optimistic strategy, assumes that the Leader will be static
for the next time slot and determines the relative speed as

follows:

m
Urel

(d™[n] — d®[n] - cos 072, [n])
5t

[n] = v,y fn] - and v [n+ 1] =0

®)

On the other hand, the Pragmatic Strategy assumes that
the Leader will continue traveling at the observed speed,
v*[n]. The strategy determines the relative speed as follows
(illustrated in Fig. [2):
((de [n] — d™[n] - cos 0™, [n])% + (d™[n] - sin 67, [n])Q)
ot

d™[n] - sin 077 [n] _gm

d™[n] - cos 0, [n] — de[n] rel

vf[n+ 1] = v} [n] = vi[n] - cos(0y[n]) and v

1/2

vr[n] =

0y [n] = arctan

[n]

rei[n] = vr[n] — v’ [n]

rel

Next, the LQG controller uses the observation vector O[n]
to decide the next state’s relative speed, vt [n + 1] which is
used by the Speed Controller to generate the TrackBot’s actual
speed for next time step, vp[n+ 1] = v{ [n+ 1] +vs,[n+1].
In addition to the different assumptions about the Leader’s
speed, the Optimistic Strategy assumes that the noise in
speed observations are uncorrelated with the noise in distance
observations, whereas the Pragmatic strategy assumes strong

correlation between distance and speed estimation noise.

V. TRACKBOT PROTOTYPE
A. Hardware

We implemented a TrackBot with our ARREST architecture
inside a real, low-cost robot prototype presented in Fig. [Tal For
a concise description of our prototype, we list the hardware
used for implementation of each of the ARREST components
in Table |Il In the TrackBot prototype, the directional antenna
and the OpenMote are mounted on top of a stepper motor using
a plate. While we use two microprocessors (the OpenMote
and the mbed), the system can be implemented using one
microprocessor. We choose to use two in this prototype to
work around wiring issues and work around the lack of
sufficient GPIO pins on the OpenMote. The OpenMote is
only used for RF sensing. The mbed, programmed using the
mbed Operating System [20], sends control signals to rotate
the stepper motor in precise steps of 1.8°. Each consecutive
360° antenna rotations alternate between clockwise and anti-
clockwise because this: (1) prevents any wire twisting between
the mbed and OpenMote and (2) compensates for the stepper
motor’s movement errors.

In the current prototype, The TrackBot first performs a 360°
RSSI scan in 2s while collecting 200 samples and then moves
the chassis with a maximum speed of 30cm/s. To keep the
movement simple, the TrackBot first rotates to the desired
direction and then moves straight with the desired speed. To
control the wheels, PWM signals are sent from the mbed

Leader at [n]

TrackBot  TrackBot Leader at [n-1] Ve [n]
at [n-1] atn] i ol
d‘[n]

Fig. 2. Illustration of the Relative Speed Observation.

TABLE I
ARREST HARDWARE IMPLEMENTATION

Module Hardware

Wireless Communi- | OpenMote[21]; Rosewill Directional Antenna (Model

cation and Sensing RNX-AD7D with Max Gain: 5dBi, HPBW: 70°)
m . N Nema 17 (4-wire bipolar Stepper Motor with Step
E i:ilr::i Platform size: 1.8 degrees (200 steps/rev)); EasyDriver - Stepper
o y Motor Driver; mbed NXP LPC1768 [22]

Relative Position Es- | oy NxP LPC1768 [22]

timation
CAST mbed NXP LPC1768 [22]
m | Movement Translator | mbed NXP LPC1768 [22]
E Robot Chassis Baron-4WD Mobile Platform, L298N Stepper Motor
o o Driver Controller Board, HC-SR04 Ultrasonic Sensor

to the motors with a period of 2s. We choose a 2s period
here because one 2s pulse width equates to a chassis rotation
amount of ~ 180° in this setup. We also choose the same
period length (2s) for forward movement which caps the speed
of the robot at 60/6 = 10c¢m/s (taking into account the 2s
RSSI scan). The whole system is powered by five AA batteries
which can run for a total of ~ 3 — 4 hours.

The Leader node is currently implemented as an Open-
Mote transmitting beacons with the standard omnidirectional
antenna and a transmit power of 7dBm. For programming
of the OpenMotes, we use the RIOT operating system [23]].
The Leader implementation is capable of transmitting 200
packets/second.

B. ARREST System Parameter Setup

1) Cost Parameters Setup: In the cost function of our LQG
formulation, the matrix Q is a 3 x 3 positive definite diagonal
matrix: Q = diag{Qq, @, Qe }. Our main goal is to keep the
distance as well as the relative angle to be as low as possible
while keeping emphasis on the distance. From this perspective,
we perform a set of experiments to find a good trade-off
between @,, Qg and (Q; where we vary one parameter while
keeping the rest of them fixed. Based on these experiments,
we opt for the following settings: @, = 0.1, Qg = 1 and
Qq = 10 - v7*** where v*** is the maximum speed of the
Leader. With these settings, our system performs better than
any other explored settings. Furthermore, H is chosen to be a
3 x 3 Identity matrix.

2) Noise Covariance Matrix Parameters Setup: In our
implementation, the system noises are assumed to be i.i.d
normal random variables with Y7z being a 3 x 3 identity
matrix. On the other hand, the observation noise covariance
matrix requires separate settings for the different strategies.
For the Optimistic strategy, we assume that the observation



noises are uncorrelated, whereas, for the Pragmatic strategy,
the distance estimation errors and the relative speed estimation
errors are highly correlated with variances proportional to
v7'%*. A set of empirically determined values of Xy for
the Optimistic and the Pragmatic strategies are as follows.

é (2) g sHo, = gz (ubany? 8 10
o o A Tww T ETT g
where Op and Pg refers to the Optimistic and the Pragmatic
strategies, respectively.

Op _
Zyw =

V1. EXPERIMENT RESULTS
A. Baseline Analysis via Emulation

We employ our hardware prototypes to collect an extensive
set of RSSI data in cluttered indoor and outdoor environments
and use the collected samples to perform a set of emulation
experiments as a baseline for our real-world experiments (for
details, refer to [[19]). For these experiments, we choose a value
of 6t = 1s in to match the maximum achievable speed
of our stepper motor. In these experiments, we compare the
performance among the two proposed strategies, Optimistic
and Pragmatic, and a Baseline algorithm. In the Baseline
algorithm, the TrackBot estimates the relative position via
the basic correlation method (discussed in [[V-BI]). Once the
direction is determined, the TrackBot rotates to align itself
toward the estimated direction and then moves with a speed
of min{ve®, d;[t"] }. In these experiments, we vary the max
speed of the TrackBot, v;#**, while keeping the max speed of
the Leader, v7**, fixed and vice versa. We found that Prag-
matic Strategy performs best for 1.6-v*** < vR** < 3. vH*
due to adaptability and accuracy of the speed information.
On the other hand, the Optimistic Strategy performs best
for v{** > 3 - v***. The reason is that the Leader may
constantly change movement directions while the TrackBot
travels in straight lines to catch up with the Leader. Therefore,
the TrackBot does not directly follow the Leader’s path.
This results in oscillations in the movement pattern for the
Pragmatic strategy while the Optimistic strategy avoids oscil-
lations since it assumes the Leader to be static. The Baseline
algorithm performs the worst due to the lack of leveraging
past observations to adapt its speed. We also discovered that
the ARREST system fails to stay with 5m of the Leader
if v*® > 3m/s under all the explored settings (detailed
in [19]). However, for v7*%* < 3m/s and vt = 1.8 0%,
the TrackBot with Pragmatic policy stays within 5m of the
Leader with probability ~ 100%. We opt for vj7** = 1.8-v]***
in the real system due to lesser speed constraints. Furthermore,
we choose the Pragmatic strategy as it performs best among
all three strategies for v ** = 1.8 -v7***. With these settings,
the emulation based error statistics in the the estimation of
distance, angle, and speed can be summarized as follows: []
Absolute distance estimation errors are < 100c¢m with proba-
bility ~ 90% and < 150cm with probability ~ 100% which is
comparable to standard RF based localization methods [5]. O
Absolute angle estimation errors are < 40° with probability
~ 80%. This is justified as the HPBW specification for the

antenna is approx 70°. [J Absolute speed estimation errors
are less than 1m/s with probability ~ 90%.

B. Real Experiment Results

In this section, we analyze the performance of the ARREST
system via a set of real world experiments using the TrackBot
prototype.

1) Method: Based on the valuable insights from the em-
ulation results, we choose TrackBot’s speed to be at least
1.8X the Leader’s speed. The TrackBot makes a decision
every 6s. Between each decision, the TrackBot takes 2s for
both the antenna rotation and RSSI scan, 2s for the chassis
rotation, and 2s for the chassis translation. However, in the
state update equations, 0t = 4s because the actual chassis
movement takes place for only 4s. With this setup, we perform
a set of real tracking experiments in three different environ-
ments for months with individual run lasting for 30 minutes
during different times of the day: (1) A cluttered office space
(=~ 10m x 6m), with a lot of office desks, chairs, cabinets, and
reflecting surfaces (2) A hallway (= 18m long and 3m wide),
with pillars as well as sharp corners, and (3) A VICON camera
localization based robot experiment facility (= 6m x 6m).
For the first two environments, we use manual markings on
the floor to localize both the Leader and the TrackBot. For the
last environment, the VICON facility provides us with camera-
based localization at millimeter scale accuracy.
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Fig. 3. Real Experiment Based Performance: (a) Absolute Distance in Meters,
(b) Absolute Distance Estimation Error in Meters, and (c) Absolute Angle
Estimation Error in Degrees

2) The Optimistic Strategy vs. The Pragmatic Strategy:
Similar to our emulation based analysis, we perform a real
system based comparison of the proposed speed adaptation
strategies as well as the Baseline Algorithm (introduced
in Section [VI-A). However, in this set of experiments we
do not vary the maximum speed of the TrackBot or the
Leader due to prototype hardware limitations. To compare the
proximity maintenance performance, we compare the absolute
distance CDF statistics of these three strategies in Fig.
for v7"** = 10cm/s and vp*® = 1.8 - v}"**. Figure
validates that Pragmatic strategy performs best among all three
strategies when vi2?* = 1.8 - v]"**. Moreover, the baseline
strategy performs the worst due to lack of speed adaptation
as well as lack of history incorporation. In summary, our real

experiment based results concur with the emulation results.



3) Estimation Errors: To analyze the state estimation errors
in our ARREST architecture, we perform a range of prototype
based experiments, where the v7** = 1.8 - v7'** and the
Leader follows a set of random paths. The empirical CDF
of the absolute errors presented in Fig. [3b] clearly illustrates
that the instantaneous absolute errors in our distance estimates
are < 100cm with very high probability (= 90%) and are
bounded by 1.5m. These statistics are also reasonable for pure
RSSI based estimation systems and concur with the emulation
results. Next, in Fig.[3c| we compare the angle estimation error
performance of the TrackBot for all three AoA observation
methods introduced in Section [V-B] where we intentionally
introduce random sparsity in the RSSI measurements. Fig-
ure illustrates that our proposed clustering method and
weighted average method perform significantly better than
the basic correlation method which is expected since the
first two take into account the clustered sparsity (Detailed in
Section [[V-B). The instantaneous absolute angle errors are
less than 40° with high probability (= 90%) for all three
methods which is justified because the HPBW specification
for the antenna is approx 70°. Figure [3c| also illustrates that
the weighted angle observation method slightly outperforms
the clustering method for AoA observation. The apparent
similarity between the performance of the clustering method
and the weighted average method is attributed to the consistent
lower cluster sizes compared to the gap sizes (A, << pg) in
our experiments.
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Fig. 4. Full Path Traces from Real World Experiments

4) Tracking Performance: We also perform a set of tracking
experiments using our prototype in all three scenarios: indoor,
hallway, and VICON system. Our experiments show that our
system performs quite well in the respective scenarios and
stays within ~ 2m from the Leader for the duration of
the experiments. In Fig. ] we present representative traces
from our real experiments in the Hallway and the VICON
system. These results suggest that our system works equally
well in different environments: cluttered and uncluttered. To
verify that further, we perform a set of experiments with a
static Leader not in the line of sight of the TrackBot for
> 50% of the TrackBot’s path. Our TrackBot was able to
find the Leader in 75% of such experiments. The main reason
behind this success lies in the TrackBot’s ability to leverage a
good multipath signal (if exists). In absence of direct line of
sight, the TrackBot first follows the most promising multipath
component and by doing so it eventually comes in line of sight

with the Leader and follows the direct path from that point on.
In most of these experiments (> 90%), the TrackBot travels
a total distance of less than 2X the distance traveled by the
Leader. This implies that our system is efficient in terms of
energy consumption due to robotic maneuvers.

VII. CONCLUSION

In this paper, we propose ARREST, a solely RF based
relative localization and tracking system, for autonomously
following a RF-emitting object, and demonstrate the perfor-
mance and error statistics of our system. However, there
are a lot of research questions that need to be addressed in
our future work. First, we would like to develop a strategy
with a proper trade-off between Optimism and Pragmatism,
which will potentially improve the performance. Second, we
want to perform a thorough evaluation of our system via
a set of large scale experiments. Lastly, we would like to
explore the domains of game theory to see if better or more
robust predictions of the Leader’s motion could improve the
performance.
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