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Abstract—We consider the problem of controlling the motion
of a set of robots to ferry messages between a given set of
statically-placed nodes. The design and analysis of an arrival-
rate unaware throughput-optimal policy for this problem is
challenging because of the coupling between position and link
rate. We propose a fine-grained backpressure message ferrying
algorithm (FBMF) for joint motion and transmission control
of robots. Unlike traditional backpressure settings, because the
controlled motion of the relay nodes changes the channel rates,
it turns out that the conventional approach to prove throughput
optimality does not work in this problem setting. We prove for the
simplest setting (single-flow, single-robot, constant arrival) that
this policy indeed achieves throughput optimality. The analysis
reveals that under feasible traffic, even when queues are highly
over-loaded, the change in the total queue size can be positive over
a time step, nevertheless the system exhibits a limit-cycle behavior
and stability holds because the change in the total queue size is
negative over the cycle for sufficiently large queues. We pose the
design and analysis of a throughput optimal policy for the general
case as a challenging open problem for network theory.

Keywords—Mobile Sensor Networks, Backpressure Algorithm,
Throughput-Optimality.

I. INTRODUCTION

Recently, there have been a number of developments in
the theory and practical realization of distributed multi-agent
robotics. It is becoming increasingly affordable to deploy
teams of robots in an operational environment, in order to
perform desired sensing, communication and other tasks in a
coordinated fashion. These developments open up the possi-
bility of using robotic relays to enhance the performance of
wireless networks.

Over the past two decades, wireless networking research
has largely focused on unpredictable and uncontrollable mo-
bility (typically, due to motion of humans carrying the mobile
devices network), and to a lesser extent on predictable but
uncontrollable mobility (applicable whenever nodes follow a
somewhat predictable schedule such as buses and trains). One
perspective on the novelty and benefit of introducing robotic
relays in the context of wireless networks is that they provide
a new design dimension, that of controllable (and ipso facto,
predictable) mobility, which can be used to enhance data
routing.

In this work, we consider a simple setting where controlled
mobility would be clearly beneficial — to help ferry data
between static wireless nodes that are distant from each other.

Such a scenario could arise, for instance, in the context of
communication in a tactical wireless network (such as for
disaster relief or remote exploration) or sparsely-deployed
sensor networks, where there are a limited number of nodes
distributed over a large field. Applications that may involve
the scenario considered in this paper include sensing and com-
munication in remote environments for planetary exploration,
wildlife monitoring, ocean science, and security/surveillance.

More concretely, in the scenario we consider there are uni-
cast flows consisting of static source-sink pairs, and robots that
may be used to ferry data between them. In a recent work [23],
we show that the throughput capacity region (set of all feasible
arrival rate vectors for which all queues can be stabilized) for
such a system can be characterized in closed form and that any
feasible arrival rate can be served by scheduling a suitably
chosen convex combination of “basis” allocations consisting
of one or two robots ferrying between the source and sink for
each flow. However, if the arrival rate vector is not a priori
known, it turns out to be a harder problem to schedule robots
to ensure stability. In [23], we gave a scheduling algorithm
for coarse-grained backpressure message ferrying (CBMF) in
which robots are allocated to move towards and communicate
with sources and sinks based on a queue-differential max-
weight matching once every epoch, where an epoch consists
of multiple slots.

While the algorithm is conceptually similar to the clas-
sic Backpressure solution first identified by Tassiulas and
Ephremides [1], there is an important wrinkle in the message
ferrying problem — the control at each epoch not only sched-
ules links but also changes the robots’ positions and hence their
communication rates. Traditional proofs of throughput-optimal
scheduling using backpressure assume that any stochasticity in
the channel states / networks topology is independent of the
scheduling decisions made at each step.

It turns out in fact that the CBMF algorithm from [23]
is not throughput optimal for any fixed epoch size; we were
able to show only that for a fixed epoch size, CBMF can
stably serve arrival rates within a well-defined subset of the
capacity region. As the epoch size is increased, the stability
region for increases, asymptotically reaching the full capacity
region. However, this comes at the cost of significantly higher
delay for lower-rate traffic. This motivates us to identify a more
effective solution for scheduling message ferrying robots.

In this paper, we identify such a solution, which we



refer to as fine-grained backpressure based message ferry-
ing (FBMF). In this algorithm, which is also conceptually
similar to traditional backpressure, the matching of robots to
source/sink is done at each time slot based on the current
queue conditions and the current link rates. What we find
empirically is that the fine-grained backpressure policy results
in the robots eventually settling down to a limit cycle such that
for sufficiently loaded queues the drift in total queue size is
negative over the whole period of the limit cycle. Although,
because actions affect channel rates in this problem, we find
it difficult to analyze the general case, we present a detailed
analysis for the simplest setting of a single robot serving a
single flow, under constant-rate arrivals.

To summarize, the key contributions of this work are:

• A further investigation of the novel problem of joint
motion and transmission control for robotic message
ferrying, significantly going beyond our prior work
in [23].

• Proposal of the novel fine-grained backpressure-
based message ferrying (FBMF) algorithm for arrival-
unaware scheduling of robot motion and transmission.

• Mathematical proof for the single-flow, single-robot
setting that the proposed algorithm is throughput op-
timal. The proof is novel, as it shows the existence of
periodic motion when queues are sufficiently loaded,
such that the robot automatically moves from the
source to the sink and back, resting at each end just
long enough to ensure stability.

• Numerical simulations of FBMF indicating its
throughput optimality and its superiority to the Coarse
grained CBMF algorithm proposed in [23].

The rest of the paper is organized as follows. In Section II
relate work is reviewed. In Section III the problem formulation
is provided. In Section IV the prior work we developed for this
problem setting is briefly reviewed. In Section V the proposed
fine-grained backpressure-based message ferrying algorithm
is described and the proof of throughput optimality for the
simplest setting of a single-flow, single-robot is given. In
Section VII simulations results to corroborate the theoretical
finding are described, and finally in Section VIII conclusions
are drawn and future work is discussed.

II. RELATED WORK

The original paper on queue backpressure-based max
weight scheduling by Tassiulas and Ephremides [1] showed
that it stabilize any arrival rate vector in the capacity region of
a general network. Later, a number of works showed how the
method of Tassiulas and Ephremides can also be incorporated
with utility maximization in networks [2], [4], [3].

Many recent works on backpressure scheduling have fo-
cused on enhancing delay performance. Backpressure schedul-
ing and routing has been improved using shadow queues to
handle multicast sessions [6] and improve scalability by re-
ducing the number of queues to be maintained [6], [7]. Recent
work has also shown how to use a cumulative time packet age
queue formulation to reduce delay substantially [9]. Backpres-
sure using LIFO service has been shown to offer better delay

performance [10]. The framework has been extended to handle
finite buffer sizes [8]. Other researchers have focused on how
to make backpressure scheduling more distributed so that it can
be implemented more easily [13]. More recently, there have
been several reductions of backpressure theory to practice,
in the form of practically implemented and experimentally
evaluated distributed protocols [14], [15], [16].

A common theme to nearly all the theoretical papers on
backpressure theory to date, going back to the original paper by
Tassiulas and Ephremides is that the policy is typically derived
by the minimization of a bound on the drift of the Lyapunov
function [5]. However, all the prior approaches assume that
the channel states evolve stochastically independently of the
scheduling actions. In this work, this is no longer the case, as
the motion control decisions for the robot (which are part of
the scheduling actions) directly affect the rates to the source
and sink nodes for the robot, and hence affect the channel
state.

With respect to mobility, the original backpressure algo-
rithm also applies to networks with stochastic, uncontrolled
mobility. But researchers have explored how to improve its
delay performance. In [11], a backpressure plus source routing
approach is used for reducing the delay for intermittently
connected mobile networks. And a novel adaptive redundancy
technique is presented in [12] to improve the low-rate delay
performance of backpressure in intermittently connected mo-
bile networks. However, these prior works again do not address
the improvement of delay in settings with controlled mobility,
the focus of this work.

The integration of robotics and wireless networking is an
emerging domain. Researchers have previously investigated
deploying mobile nodes to provide sensor coverage in wireless
sensor networks [17], [18]. In [21], [19], [22], the authors
present techiques to control a teams of wireless relays to ensure
connectivity and optimize network goals such as minimizing
routing costs. Going beyond connectivity, recently, research
has also addressed how to control a team of robots to maintain
certain desired end-to-end rates while moving robots to do
other tasks, referred to as the problem of maintaining network
integrity [20]. In [20], the authors interleave a primal-dual-
based rate allocation algorithm with potential-based robotic
motion control.

To our knowledge, the only prior work on queue-aware
joint robotic control and transmission scheduling is our own
recent workshop submission [23]. In [23] we consider the
same problem of scheduling message ferrying robots between
a given set of sources and sinks. The focus of that work is to in-
troduce, analyze, and evaluate a coarse-grained backpressure-
based message ferrying scheme in which time slots are grouped
into epochs of a fixed size T , and for the entire epoch duration
robots are committed either to moving towards and filling-up
from a source, or moving towards and draining to a given
sink (by a schedule that aims to maximize queue-diffential
weight). We showed that for any fixed T , CBMF is not
throughput optimal, and can only stabilize arrival rates within
a strict subset of the capacity region. As T is increased, the
servicable region grows asymptotically towards the capacity
region, however, the delay even for low rates gets arbitrarily
bad (scaling linearly with T ). This has motivated us to propose



and investigate the novel fine-grained backpressure (FBMF)
algorithm in this paper.

III. PROBLEM FORMULATION AND MODELING

Time is divided into unit increments. We also discretize
and represent the operational area by a connected graph
G = (V,E) where nodes represent possible locations and
edges between them represent the possibility of moving be-
tween these positions in a unit time step. There are K unicast
flow pairs of static source and destination nodes. The sources
are labelled as src1 . . . srcK , and the sink corresponding to
source i is labelled as sinki. The sources and sinks are each
located on different vertices of the graph. There is a rate λi at
which packets arrive at source i, and the arrival rate vector is
λ = (λ1, . . . λK).

There is a set of N ≤ 2K mobile robotic nodes that act
as message ferries. These may move to any vertex on the
graph (including those labelled with source or sink positions
or those where other robots are present), but are only allowed
to move from one vertex to the neighboring node on the
graph in a unit time. They are able to communicate using
radios with each of the source and sink nodes in the network
at different throughput rates 1 depending on their location.
Let Rsrcij (t), Rsinkij (t) represent the position-dependent rate
obtained between a robot j and source i, and between robot j
and sink i respectively, at time t. We assume that the rate
is strictly positive, monotonically decreasing with distance,
with a maximum value of Rmax obtained when the robot
is at the same vertex as the corresponding source/sink. We
assume simple half-duplex radios at each node so that each
node can either send or receive at any time, and communicate
with only one node at a time. Each robot maintains K queues,
one for each flow, labelled Qij(t). Each robot is capable of
communicating to any source or sink on an orthogonal channel
(e.g. frequency channel or spread spectrum code) from the
other robots so that there is no interference between them; at
any time at most one robot can be in communication with any
source or sink.

We now review the concept of throughput optimality, a
fundamental property of backpressure based scheduling rout-
ing policies. The reader is referred to [5] for a comprehensive
treatment of the topic.

Definition 1 (Throughput Optimality): A routing policy is
said to be throughput optimal if it stabilizes the network for all
arrival rate matrices that belong to the interior of the stability
region.

We reiterate that our goal in this paper is to introduce the
fine-grained backpressure message ferrying algorithm (FBMF)
for joint motion and transmission control of robots described
in Section V and prove that it indeed achieves throughput
optimality for the simplest setting (single-flow, single-robot,
constant arrival). The analysis reveals that under feasible
traffic, even when queues are highly over-loaded, the change
in the total queue size can be positive over a time step,
nevertheless the system exhibits a limit-cycle behavior and

1We use the terms throughput and rate interchangeably in this paper. We
are agnostic to how these rates are made to vary at different location; e.g., via
adaptive modulation schemes, or variable rate codes or simply due to differing
link loss rates in case of fixed-transmission rate radios.

stability holds because the change in the total queue size is
negative over the cycle for sufficiently large queues.

IV. SUMMARY OF PRIOR WORK

In [23] we have shown the following result, which we sum-
marize briefly in this section only for the sake of completeness
(all content after this section is unique to this paper):

Theorem 1: Define Λ as the following set of arrival rates:

Λ =

{
λ|0 ≤ λi < Rmax, ∀ i,

K∑
i=1

λi <
RmaxN

2

}
Λ is the capacity region of the network for the robotic message
ferrying problem. In other words, any arrival rate in this region
can be stably served.

Specifically, we showed that this arrival rate region Λ can
be served by a convex combination of configurations in which
robots are allocated to serve distinct flows.

Let Γ̃ be a finite set of vectors defined as:

Γ̃ =

{
γ|γi =

aiRmax

2
, ∀ i, ai ∈ {0, 1, 2},

K∑
i=1

ai ≤ N

}
.

For each element of this set Γ̃ the corresponding integer
vector a corresponds to a “basis” ideal allocation of robots
(ignoring transmit time) to distinct sources and sinks that can
service each flow at rate γi. Specifically, ai refers to the
number of robots allocated to service flow i. Let us refer to
the convex hull of Γ̃ as H(Γ̃) or, for readability, simply H.
The set H describes all possible robot service rates that can be
obtained by a convex combination of these basis allocations.
It has been shown in [23] that H is the closure of Λ. Taking
into account the non-zero finite transit time of robots, in fact
any rate vector in the interior of H (i.e., any rate vector in Λ)
can be served, if it is known.

A. An Illustrative Example

See figure 1, which shows the capacity region when K =
2, N = 3. The labels such as (x, y) are given to the basis
allocations on the Pareto boundary to denote that they can be
achieved by allocating an integer number of robots x to flow 1
and y to flow 2. Note in particular that the point (Rmax, Rmax)
is outside the region because the only way to serve that rate is
to allocate two robots full time to each of the two flows, and
we have only 3 robots. The vertices on the boundary of the
region, which represent basis allocations, are all in the set Γ̃.

B. Coarse-Grained Backpressure Control

The above discussion shows the capacity region for the
message ferrying problem and argues that any arrival rate
vector in this region can be stably served by a centralized allo-
cation of robots if the rate vector is known. We also presented
in [23] a coarse-grained backpressure control scheme called
CBMF for queue-based rate-unaware scheduling, however, we
found that it was neither throughput optimal nor delay efficient.
In the following we present our new contribution, a fine-
grained backpressure scheme which is better in both regards.



Fig. 1. Capacity region for a problem with 3 robots and 2 flows

V. FINE-GRAINED BACKPRESSURE CONTROL

Let Qsrci (t) represent the queue size for source i, and let
Qij(t) represent the queue size for the ith flow at robot j. Let
Rsrcij (t) represent the rate between robot j and source i, and
Rsinkij (t) represent the rate between robot j and sink i. We
define link weights between each robot and each source or
sink as follows:

wsrcij (t) = (Qsrci −Qij(t))Rsrcij (t)

wsinkij (t) = (Qij(t))R
sink
ij (t)

Consider the weighted Bipartite graph consisting of all
robots on one side and all sources and sinks on the other,
with edges from each robot to each source and sink, with
edges labelled with the above weights. The maximum weight
matching of robots to sources/sinks can be computed in
polynomial time (such as via the Hungarian algorithm).

The Fine-Grained Backpressure-based message ferrying
algorithm (FBMF) can be described quite simply as follows:
at each time slot perform the maximum weight matching.
If a robot i is matched to a particular source or sink, to a
neighboring node on the graph that is one step closer to the
matched source/sink. If it is already at the position of that
source/sink, keep it there. If it is matched to a source, schedule
packets to be moved from that source to the the corresponding
queue of the robot. If it is matched to a sink, schedule packets
to be moved from the robot to that sink.

Although it is inspired by traditional Backpressure schedul-
ing for wireless networks, the standard proof of throughput
optimality cannot be directly applied to derive or analyze
FBMF. This is because, unlike the traditional formulations of
Backpressure, the link rate is no longer independent of the
action (which consists not only of link activations but also
position change of robots, affecting their rates to all source
/ sink pairs). For the simplest setting of a single robot, and
a single source-sink pair, however, its queue and position
dynamics can be analyzed in closed form and used to prove
throughput optimality.

VI. SINGLE-FLOW SINGLE-ROBOT ANALYSIS OF FBMF

The following Theorem establishes throughput optimality
for the simplest setting of a single robot, and a single source-
sink pair.

Theorem 2: Given a single source-sink pair and a single
robot, assuming constant arrival of data to the source with rate
λ < Rmax/2, FBMF ensures stability.

We will prove this theorem in two steps. First we show
that when queues are sufficiently loaded the robot will make a
full cycle (from sink to source and back). Then, we show that
so long as the arrival rate is within the capacity region, over
each cycle the change in the total queue size of the system
(the sum of the source and robot queue values) is negative for
sufficiently large queues.

A. Limit Cycle

Proposition 1: The robot will execute a full cycle moving
to a source, then the sink, then the source again, if the source
queue is sufficiently loaded initially.

Proof of Proposition 1: Say the robot is at position
k ∈ [0, 1, 2, . . . d], where 0 is the source node and d is the sink
node location. Let R(k) represent the rate function (which is
a decreasing monotone function of distance) with respect to
the source at this position, and R(d − k) represent the rate
function with respect to the sink at this position.

Consider the line lk that is defined by the equation:

(Q1 −Q2)R(k) = Q2R(d− k)

For notational convenience, let y = lk(x) be the functional
representation of this line.

By definition of the controller, if above (or at) this line the
robot moves to the sink and below this line the robot moves
towards the source.

Define now the regions ρk ∀ k ∈ [1, . . . d] as the set of
queue pairs {(Q1, Q2)} such that:

Q2 ≥ lk(Q1) AND Q2 < lk−1(Q1),

denote ρ0 as the set {(Q1, Q2)such that Q2 ≥ l0(Q1) and
ρd+1 as {(Q1, Q2)such that Q2 < ld(Q1)} .

These lines and regions are illustrated in figure 2, for the
case when d = 8.

Lemma 1: ∀ρi ∈ [ρ0, . . . ρd], if current robot position
k ≥ i and (Q1(t), Q2(t)) ∈ ρi, the robot will move towards
the sink. If it is already at the sink, it will stay there until the
queue conditions change to cause a movement to the source.

Proof: Since the queues are Q1, Q2 ∈ ρi, it follows that:

(Q1 −Q2)R(i) ≤ Q2R(d− i)

(Q1 −Q2)R(i− 1) > Q2R(d− i+ 1)

Recall that the robot is in position k ≥ i, it follows that:

(Q1 −Q2)R(k) ≤ (Q1 −Q2)R(i)

Q2R(d− k) ≥ Q2R(d− i)
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Fig. 2. Linear regions defining movement direction for the robot

This implies that:

(Q1 −Q2)R(k) ≤ Q2R(d− k)

thus the robot will be moving toward the sink.

Lemma 2: ∀ρi ∈ [ρ1 . . . ρd+1] if the current robot position
k < i and (Q1(t), Q2(t)) ∈ ρi, the robot will move towards
the source. If it is already at the source, it will stay there until
the queue conditions change to cause a movement to the sink.

Proof: Since the queues are Q1, Q2 ∈ ρi, it follows that:

(Q1 −Q2)R(i) ≤ Q2R(d− i)

(Q1 −Q2)R(i− 1) > Q2R(d− i+ 1)

Recall that the robot is in position k < i, which can be
written as k ≤ i− 1 it follows that:

(Q1 −Q2)R(k) ≥ (Q1 −Q2)R(i− 1)

Q2R(d− k) ≤ Q2R(d− i+ 1)

This implies that:

(Q1 −Q2)R(k) ≥ Q2R(d− k)

thus the robot will be moving toward the source.

Now, it is easy to see that if at each time t, if it is true
that the robot’s queue sizes do not evolve so drastically that
their values at the next time step cross two of these lines, the
robot will move all the way from the source to the sink, and
vice versa (i.e., it will not turn back).

Consider that robot is currently at position k and region
ρi, for some i < d.

Case 1: k ≥ i

Q2(n) > li(Q1(n)) (1)

This in turn implies that

Q2(n) >
R(i)

R(i) +R(d− i)
Q1(n) (2)

By Lemma 1, it will move towards the sink.

Assuming unit time steps, the two queues will evolve as
follows:

Q2(n+ 1) = Q2(n)−R(d− k)

Q1(n+ 1) = Q1(n) + λ

From the above, we will have that

Q2(n+ 1) >
R(i)

R(i) +R(d− i)
Q1(n)−R(d− k)

and the new position will be k + 1.

We now wish to make sure that the new queue pair
(Q1(n+ 1), Q2(n+ 1)) should not be in region ρi+2.

In order to achieve that, we wish to ensure that
Q2(n+ 1) < li+2(Q1(n+ 1)) as this implies that:

(Q1(n+ 1)−Q2(n+ 1))R(i+ 2) < Q2(n+ 1)R(d− i− 2)

This can be written as:

Q2(n+ 1) >
R(i+ 2)

R(i+ 2) +R(d− i− 2)
Q1(n+ 1)

> H(i+ 2)Q1(n+ 1)

with H(x) defines as:

H(x) =
R(x)

R(x) +R(d− x)

By substituting with respect to the queues at time n we
obtain:

Q2(n)−R(d− k) > H(i+ 2)Q1(n) + λ (3)

At this point, by recalling the inequality on eq. (2), we
have:

Q2(n)−R(d− k) > Q1(n)−R(d− k)

> H(i+ 2)Q1(n) + λ∆t

Thus we can impose a constraint on the Q1(n) so that the
eq. (3) is enforced, that is:

Q1(n)−R(d− k) > H(i+ 2)Q1(n) + λ

⇒ Q1(n) >
λ+R(d− k)

1−H(i+ 2)

The above analysis can be extended to all i, k ≥ i to yield
a queue size Q1 such that the robot will always move to the
sink, so long as Q2 satisfies the relationship (1).

Case 2: k < i

Repeating the above arguments, using Lemma 2 will yield
another large enough Q1 such that the robot will always move
to the source.

Putting these two together, we have that there is a queue
Q1(n) large enough (can take the bigger of the two cases) that
the robot will, no matter its initial position, in finite time find
its way to the sink (possibly after first visiting the source). It
will then monotonically move from the sink to the source and
from the source to the sink, completing a full cycle.

This concludes the proof of Proposition 1. 2



B. Negative Drift Over Cycle

Proposition 2: If the robot moves cyclically between the
source and sink, there exists a lower bound on queue-sizes
such that the change in the total queue size over a full cycle
(referred to as the queue drift) is negative.

Proof of Proposition 2: Let us consider a scenario where
there is a pair of sink/sources and a robot moving back and
forth. Let us denote with Q1 and Q2 the queue of the source
and robot, respectively. Furthermore, let us denote with λ
the arrival rate, R and rm are the maximum and minimum
throughput, respectively. Finally, let us denote with x and y
the time spent by the robot at the source and sink, respectively,
and let d be the time taken to move directly between the two
during which time the robot obtains an average throughput of
ra with respect to whichever node it is moving towards.

Let us suppose the robot to be at the sink and ready to
head back to the source at time t1. Successively, let us denote
by t2 the robot is done collecting data from the source and
ready to head back to the sink and finally the time t3 when
it is done delivering data to the sink and ready to head back
to the source again. We investigate under what conditions the
total queue drift is ensured to be negative over a full round
trip, that is:

∆Q(t1, t3) =
(
Q1(t3) +Q2(t3)

)
−
(
Q1(t1) +Q2(t1)

)
< 0

The algorithm FBMF ensures that the following inequali-
ties hold: (

Q1(t1)−Q2(t1)
)
rm > Q2(t1)R(

Q1(t2)−Q2(t2)
)
R < Q2(t2) rm(

Q1(t3)−Q2(t3)
)
rm > Q2(t3)R

The queues at the different time steps can be worked out
as follows:

Q1(t2) = Q1(t1) + (λ−R)x+ d (λ− ra)

Q2(t2) = Q2(t1) +Rx+ d ra
Q1(t3) = Q1(t2) + λ (y + d)

Q2(t3) = Q2(t2)−Ry − d ra

In the following, for simplicity, we drop the common time
index t1 on Q1 and Q2 unless it is needed for clarity. In
particular, the following hold:

I :

Q1 >
R+ rm
rm

Q2

II :

Q1 <
rm +R

R
Q2 + rm x− λx+ 2Rx+ dra(

rm
R

+ 1)− λd

III :

Q1 >
R+ rm
rm

Q2+
R2

rm
(x−y)−λ(x+y)+R (2x−y)−2λd+dra

Let us now include also as a fourth inequality the condition
by which the total drift is negative, that is:(

Q1(t3) +Q2(t3)
)
−
(
Q1(t1) +Q2(t1)

)
< 0

Algebraic manipulations based on the definition of queues
at each time yield that this is equivalent to:

IV :
(R− λ) y − λx+ d (ra − 2λ) > 0

Let us now denote the following constant quantities:

α =
R+ rm
rm

β =
rm +R

R
γ = (rm − λ+ 2R)

η =

(
R2

rm
+ 2R− λ

)
χ =

(
R2

rm
+ λ+R

)
φ = (R− λ)

b1 = dra(
rm
R

+ 1)− λd

b2 = −2λd+ dra

The above four inequalities (I through IV) can then be
expressed in a simpler form as follows:

Q1 > αQ2

γ x > Q1 − βQ2 + b1
χy > η x+ αQ2 −Q1 + b2
φ y > λx− b2

It can be noticed that we have 4 inequalities and 4
unknowns, namely Q1, Q2, x, y. The first inequality implies
that:

Q2 <
Q1

α

Taking this into account in the second inequality, we have:

x >
1

γ

[
Q1

(
1− β

α

)
+ b1

]
(4)

Let us now work out the third and fourth inequalities:

y >
η x+ b2

χ
(5)

y >
λx− b2

φ

Now we want impose a condition on x such that if the
third condition holds the fourth is implied, that is:

η x+ b2
χ

>
λx− b2

φ

From which it follows that:

x >
−b2 (φ+ χ)

φ η − λχ
(6)



We now show that:

φ η − λχ > 0 ⇐⇒ λ < R/2

The left term can be rewritten as:
η

χ
>

λ

φ

⇒ R2/rm + 2R− λ
R2/rm + λ+R

>
λ

R− λ

Straightforward algebraic manipulations yield that the
above is equivalent to the arrival rate being less than the
maximum possible throughput: λ < R/2, which is the right
term.

Let us now go back to the inequality (6). It should be
noticed that if b2 > 0 the right hand side would be negative
making the inequality trivially satisfied (since the duration x is
non-negative). In particular, b2 > 0 implies that λ < ra

2 , which
in turn implies that there is no loss of efficiency in transfer due
to transit.

In this case, the queue drift is negative if the inequalities (4)
and (5) hold. Note that for any value of Q1 > 0 such a x
and y to satisfy these inqualities can be easily determined. In
particular, the controller will pick the smallest x such that

x >
1

γ
[Q1 − βQ2 + b1] ,

similarly it will pick the smallest y such that

y >
η x+ αQ2 −Q1 + b2

χ
,

which will obviously satisfy the above condition.

Let us next consider the case in which b2 < 0 which
implies λ > ra

2 . This now implies that the condition in (6)
is not trivially satisfied any longer, but rather it depends upon
the value of Q1. As Q1 is increased the second inequality
holds for larger and larger x, eventually, for a large enough
Q1, it will be large enough to imply the above condition. Just
as in the above case, also in this case the controller will pick
the smallest x such that

x >
1

γ
[q − βQ2 + b1] ,

similarly it will pick the smallest y such that

y >
η x+ αQ2 −Q1 + b2

χ
,

which will satisfy all the inequalities, resulting in negative drift
over the cycle. This concludes the proof of Proposition 2. 2

Proof of Theorem 2: Together, Propositions 1 and 2 imply
that so long as the arrival rates in the throughput region, for all
source queue values beyond a certain bound, the total queue
drift over a cycle is always negative. Note that with FBMF
there is no way for the robot queue to grow unboundedly while
keeping the source queue bounded, since for a sufficiently
high difference between the robot and source queues, it will
communicate with the sink long enough to bring that difference
to within a constant; thus the above statement is equivalent to
stating that for all total queue values beyond a certain bound
the drift will be negative. This boundedness criterion ensures
stability. 2

VII. SIMULATIONS

We now turn to simulation results to evaluate the per-
formance of FBMF. In our simulations, for the single
source/single sink setting, we assume that sources and sinks
are placed in a linear graph at locations 1 and 10. The rate as
a function of distance is chosen to be

R = log

(
1 +

c

1 + dη

)
, η = 2,

so that Rmax = log(1 + c).

A. 1 Robot - 1 Flow

Figure 3 shows how the source and robot queues evolves
when the arrival rate is within the maximum throughput of
Rmax/2. In this case, the queues are initially overloaded, and
the robot spends sufficient time at the sources and sinks and
cycles between them to bring down the load. Eventually it
settles down to a cyclic pattern going between the source and
sink and spending just enough time at both ends to make the
total queue change over a cycle to be 0.
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Fig. 3. 1 Robot - 1 Flow - Stable arrival rate within 10% of maximum
throughput

If the arrival rate is higher than the throughput, then, as
shown in Figure 4, despite the robot’s best efforts of going
back and forth between the source and sink, the queue sizes
spiral outwards increasing without bound, due to instability.

For this case, we also compare with the performance of the
CBMF algorithm proposed in [23]. Figure 5 shows how the
sum of the queues (robot+source) varies with time for different
arrival rates (expressed as percentage of maximum possible
throughput Rmax/2) for the CBMF algorithm for a fixed epoch
size of 500 iterations.

It can be seen that for this setting, the system is not stable
when arrival rates are sufficiently high (99 %) revealing that
CBMF is not throughput-optimal. On the other FBMF is stable
at all these rates. CBMF can be stabilized for higher rates by
increasing epoch size, but this has an adverse effect on the
average queue sizes (and hence on the average delay) for lower
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Fig. 4. 1 Robot - 1 Flow - Unstable arrival rate exceeding maximum
throughput by 10%
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50% 93% 96% 99%
CBMF T = 500 296 368 372 ∞

CBFM T = 5000 2921 3638 3689 3738
FBMF 52 159 281 2160

TABLE I. AVERAGE END-TO-END DELAY OF PACKETS FROM SOURCE
TO SINK COMPARISON. ARRIVAL RATES EXPRESSED AS PERCENTAGE OF

MAXIMUM THROUGHPUT.

rates. This is shown in Table I which compares the average
end-to-end delay of packets from source to sink (in units of
time) for different arrival rates for CBMF with two different
epoch sizes, and FBMF. As noted, for CBMF with T = 500,
the algorithm is unstable (infinite average delay) at 99% of
the maximum throughput. With T = 5000 it is now stable, but
in this case the average delay is extremely high at all rates.
FBMF offers both throughput optimality (provably in this case)
as well as relatively low average delay at all rates, without any
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Fig. 6. 1 Robot - 1 Flow - FBMF

parameter setting.

B. 2 Robots - 1 Flow

We illustrate what happens with 2 robots and 1 flow. We
find that particularly as arrival rates get close to the theoretical
limit (Rmax in this case), the movements of the two robots start
to mirror each other automatically, that is when one reaches
the source, the other reaches the sink, and vice versa. This
is shown in Figure 7. Even for arrival rates very close to the
maximum rate we observe that the queues remain stable, as
seen in figure 8.
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VIII. CONCLUSIONS

In this work, we addressed the motion control problem
for a set of robots which move to ferry messages between
a given set of statically-places nodes. A novel fine-grained
backpressure message ferrying algorithm has been proposed. A
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theoretical analysis of throughput optimality has been provided
for the simplest setting, that is single-flow, single-robot, deter-
ministic arrival. Numerical results indicate that the algorithm
outperforms our prior work on a coarse-grained algorithm
for this problem. The design and analysis of a throughput
optimal policy for the general case is posed as a challenging
open problem for network theory. Finally, in this work we
have assumed an interference free scheduling is possible (for
example, via frequency/time/code allocation) In future work
we plan to also consider interference between communications
involving different robots.
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