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Abstract—Dedicated Short Range Communication is attract-
ing a lot of interest these days due to its utility in vehicular safety
applications, intelligent transportation system and infotainment
applications. Such vehicular networks are characterized by the
highly dynamic changes in topology, no significant power con-
straints and ephemeral links. Considering an interaction between
the client and server nodes that last for a random duration of
time, an important question is to maximize the amount of useful
content downloaded by the client, either in a single request phase,
or iteratively in multiple phases. The aim of this work is to
propose and investigate a multiphase request model using Markov
Decision Process and compare its efficiency against a single phase
version. We show that a multiphase request protocol performs
better than single phase protocol.

Keywords—Mobile Networks, link layer, optimization, down-
loads.

I. INTRODUCTION

The tremendous advancements in the IEEE 802.11p, to
provide Wireless Access in Vehicular Environment [1] and
the increasing use of Dedicated Short Range Communications
(DSRC), has led to a growing interest in the field of Inter-
vehicular Networking. This emerging technology not only
finds use in safety applications, but also provides various other
services [2], [3] like email, audio or video sharing between
vehicles etc.

Managing efficient communication between vehicles is one
of the most fundamental problems in this domain. Maxi-
mizing the files downloaded by the client from the server
requires optimization at the link layer while utilizing the
statistical information about the duration of encounter be-
tween the vehicles. Owing to the high switching cost for the
client to make multiple requests, a pull based single phase
request protocol—MERLIN (Maximum Expected download
over Random LINks) [4] was proposed and proved to be
optimal. However there are scenarios where such switching
costs are considerably low, in which cases generating multiple
requests by iterating over a sequence of optimal single phase
requests lead to an overall improvement in the performance.
The main contribution of our work is the formulation of this
problem as a Markov Decision Process (MDP) and show an
increased performance over a single phase request version of
the protocol.
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Consider the problem of optimizing downloads in an
iterative manner. Given the percentage of files already available
at the client, it is time consuming and inefficient to enumerate
all the possible client vectors and derive an optimal request
plan for each vector composition. Hence the idea is to solve
the problem using a Reinforcement Learning approach. Re-
inforcement learning [5] is learning what to do and how to
map situations to actions, in any given environment so as to
maximize a numerical reward. The learner is not told which
actions to take, but instead must discover which actions yield
the most reward by trying them.

One of the important assumptions in this work is that,
the server does not necessarily possess all the files in the
repository at the start of encounter, because the server itself
is obtaining content through intermittent downloads as in the
MERLIN protocol [4]. Similarly, we also assume that the client
has downloaded a subset of files from its previous encounters.
As assumed in the MERLIN protocol, the distribution of en-
counter duration is assumed to be known or estimated a priori
based on historical as well as real-time measurements [4].

In this work, we model each state using parameters like
ranges yet to be requested, time remaining till the encounter
ends and percentage of files present at the server. While the
number of ranges requested at each state specifies the action,
a reward equalling the amount of effective data transferred is
received. The goal is to find an optimal sequence of ranges to
be requested by the client, such that the reward-effective data
transfer is maximized. The choice of such a reinforcement
learning approach is justified by the fact that, it is impractical
to enumerate all possible permutations of files at the client
and server and search exhaustively for the best sequence of
ranges to be requested, as it turns out to be an exponentially
large set that would be computationally intractable for a large
repository.

The rest of this paper is organized as follows. Section II
discusses some related work. In section III, we provide a brief
insight into the MERLIN protocol and the optimization goal
for our problem. In section IV, we model a MDP for the
problem statement and in section V, we illustrate this model
using a simple example. Section VI presents the results in
comparison with the single phase protocol from [4] and the
baseline push-based approach. The conclusion and possible
future work has been described in section VII.



II. RELATED WORKS

Content sharing in intermittently connected mobile net-
works [6] has received quite of lot of attention in the recent
times. Several techniques like collaborative content sharing [7]
and popularity aware content distribution [8] have been ex-
plored. Recent works have also investigated various strategies
for content dissemination in such networks including the use of
network coding [9] which effectively reduces the file download
time and coded storage [10] wherein the use of erasure codes
in distributed storage for file sharing speeds up the download
of large files.

Such works on content dissemination in mobile networks
assume the existence of an efficient link layer which can
effectively transfer packets within the short encounters but less
attention has been given to the design of such a link transfer
mechanism. The MERLIN protocol [4], an efficient single-
phase download request protocol for random short-duration
communication links, addresses this issue. In this paper we
relax the assumptions made by the MERLIN protocol, mainly
that the requests take place in a single phase and show how a
multi-phase request protocol performs better.

There has been interest in applying reinforcement learning
techniques for optimization problems in the area of mobile
networking to improve network performance. Reinforcement
learning methods have also been used in cellular networks,
to find dynamic channel allocation policies that are better
than heuristic solutions [11]. Some prior work that uses
Reinforcement learning in routing protocols include, the use
of Q-Learning algorithm [12] in AODV which makes it
more responsive to network topology changes, and the use
of collaborative reinforcement learning for MANET routing.
Such an approach allows the system to manage higher loads
and we use this idea to formulate an iterative request pattern
for content downloads in mobile networks.

Having investigated the single phase file request proto-
col [4] which performs with around 70% efficiency, this work
investigates the performance of multiphase model using a
reinforcement learning approach.

III. PROTOCOL OVERVIEW AND OPTIMIZATION GOAL

The MERLIN protocol [4] is a provably optimal, single
phase file request protocol that takes into account, the dis-
tribution of encounter duration between the client and server
nodes (Fr), the number of files available at the server (ng)
and the vector denoting the available and unavailable files at
the client (V).

A brief overview of how MERLIN protocol works is
provided in Figure 1.

1)  The server periodically broadcasts a beacon message
containing the number of files it contains (ng), which
the prospective client uses to identify its potential
server.

2)  The client sorts the contiguous ranges of unavailable
files in decreasing order—call it the utility function
Uy,.. The client must request R, continuous ranges
of needed files, which is the variable to be optimized.
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Fig. 1. Communication flow in MERLIN protocol

If d,; is the data received when the client receives
all of the files within the R; requested ranges which
the server has, and d,. is the amount of data received
when only a part of the requested files are received,
either because the encounter ends during the request
or response phase, then R, is calculated as the
maximum expected value of data transferred, as in
equation (1)

rr}%axE [min(d,1, dr2)] ()

b

3)  The client requests 7 ranges of files from the server.

4)  The server responds with the available files in the R,
requested ranges and the communication ends here.

The performance of MERLIN protocol can be considerably
improved if we allow multiple requests by the client. Once the
download is completed as described by the MERLIN protocol
above, if there is time remaining, the client can again request
for another optimized subset of ranges. We associate a penalty
with each request phase, which corresponds to the overhead
involved in receiving and processing the requests at the server.
Given only the percentage of files at the client, it is impractical
to enumerate all possible permutations of files at the client and
server and search exhaustively for the best solution. Hence we
use a reinforcement learning approach towards this problem to
find an optimal request policy. Thus the output of the learning
algorithm is now the number of ranges to be requested for
each request phase.

IV. THE SOLUTION : MARKOV DECISION PROCESS

In the Reinforcement learning problem, the agent is the
learner and decision maker—in this problem, the client mobile
node which has to learn over time, the optimal sequence of
ranges of file to request. All the other components which
affect the decision making and with which the agent interacts
comprises the environment. The probability distribution of
meeting times of the mobile nodes, the composition and
availability percentage of files at the server and client, the
client vector, the ranges of files to request from, and the
repository size—all of these determine the environment. The
agent interacts continually with the environment, selecting
appropriate actions which subsequently change the state of



the environment accompanied by a numerical reward, which
in our case is the effective data transfer that has resulted.

The interaction between the agent and the environment
takes place in discrete time steps, t. At each instance of time,
the agent receives the representation of the environment’s state
S¢ € 5, where S represents the set of all possible states the
environment could be in. On this basis, the agent then selects
an action A; € A(S:), where A(S;) is the set of possible
actions that could be taken at state .Sy, consequently rewarding
the agent by R; 1 and pushing it to a state S;11. The mapping
from states to the probability of selecting each possible action
at a given time step, denotes the policy of the agent m;, where
m(als) is the probability that A; = a and S; = s. The agent’s
goal is to maximize the total reward in the long run.

A. Formulation of MDP for the Problem Statement

In our problem, no information about the state of the
environment is lost. It is retained and sensed with each action.
Since the reinforcement learning task exhibits this Markov
Property, we formulate it as a Markov Decision Process
(MDP).

1)  Policy () : Ideal sequence of ranges the Client node
must request, so as to maximize rewards in the long
run.

2)  Goal : To find the optimal policy 7*

3)  State (S) : The state of the environment is described
by the following parameters:

e Residual meeting time of client and server

e  Residual ranges of files to select from

e Percentage availability of files at the server

e  Repository size
It is important to note that, only the time remaining,
ranges to request and percentage of files at the server
vary with every state, while the other determinants
stay constant throughout the interaction. Hence the
total possible number of states, Sy, 18 given by (2)

Snum = tmaz - Bmaz - P )

®  tq represents the maximum time duration
for which the mobile nodes interact

e R4, indicates the maximum range from
which the client can request files.

e sp is the percentage of files available at the
server.

4)  Action (A(s)) : From any given state s, the number of
ranges requested by the client, represents the action.

5)  Reward ([%%g/): A numeric value equal to D¢g,,
which is the data received by the client, from the
server, on transition from state S to S’ upon an
action a.

6) Discount () : v € [0,1] is the discount factor, which
represents the difference in importance between fu-
ture rewards and present rewards. 7y is usually fixed
to 0.95.

7)  Transition Probability (P§g ) : Equation (3) is the
probability that an action a in state s at time ¢ will
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Fig. 2. A sample client and server vector

lead to state s’ at time ¢t + 1.
Pég = Pr(sip1 = §'|st = s,a; = a) 3)

This probability can be calculated by estimating the
number of hits among the ranges requested by the
client, given the repository size. Let N be the number
of files present in the ranges requested by the partic-
ular action a, and p be the percentage availability of
files at the server, then the transition probability can
be computed as follows:

Assuming independence in the request of each file,
the transition probability for k hits in a given phase,
is simply given by a binomial probability distribution
as described in equation (4)

P=@)p"-(1-pN*F 4)

However, the percentage availability of files at the
server p changes with every request phase because
our range of files of interest keeps narrowing down
after each request phase.

8)  Penalty (P) : A penalty in terms of time is imposed,
due to the processing overhead involved in each phase
of request.

Having described each component of the MDP, goal is
reached when we maximize the expected discounted sum over
a potentially infinite horizon given by equation (5) and in
the optimized equation, the solution i.e optimal sequence of
actions is as in equation (6)

> A'R¢s,., (5)
t=0
ay = T (St) (6)

V. ILLUSTRATIVE EXAMPLE

Consider the following example that illustrates the optimal
policy derivation for a small problem. The parameters used in
this problem are

e Repository size= 20 files

e  Meeting time = 7 units

e  Client availability = 25% i.e 5 files
e  Server availability = 60% i.e 12 files

e  Penalty = 1 time unit per phase
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Fig. 3. A sample illustrative example

Figure 2 represents the client and server vector composition
before the start of file transfer. The regions marked in blue
are the files available and the unshaded regions represent the
unavailable files. We can see that the server has files 4-11 and
17-20.

In order to facilitate the requests, we consider contiguous
ranges of files that are unavailable at the client and consider a
utility vector R, sorted in the decreasing order of size as shown
in Figure 3. The reason for requesting ranges in decreasing
order has been explained in [4].

The state is represented by three variables, the first being
the number of ranges requested so far, the second is the
server percentage and the third is the time remaining for
interaction.The initial state is represented by the parameters
(0,60%, 7) meaning, 0 ranges are requested at a 60% server
availability, with 7 units of time remaining. At this state, the
possible actions are :

1)  Request 1 range i.e 7 files

2)  Request 2 ranges i.e 7+5=12 files

3) Request 3 ranges i.e 7+5+2=14 files
4)  Request 4 ranges i.e 7+5+2+1=15 files

We can see that for actions (3) and (4) the expected values
are 8 and 9 respectively, which are greater than the interaction
time of 7 units. Hence we can exclude exploring these actions.

Action (1) can lead to 8 possible states as any number of
files between 0—7 can be received. The probability of transition
to each of these states is given by the probability of number
of hits k among the 7 requested files i.e ([)-(0.6)*-(0.4)7*,
where k € [0,7]. Out of these possible transitions, we see that
the probability of transition to the state where 4 files are re-
ceived is maximum—~0.2903. Hence this path is taken. On the
other hand if action (2) is performed, then computing transition
probabilities in the same way, we see that 7 files are expected
to be received. Given these two possible actions in phase 1, the
action that yields maximum expected number of files is chosen,
and hence action 2 is performed. Performing action (1) instead
could lead to the same output (expected reward) eventually, but

requires more number of phases, thereby potentially shortening
the encounter time due to the penalty imposed on each phase.

Though we expect to receive 7 files by performing action
(2), due the server vector composition, we receive only 4 files
as the other 3 requested files are unavailable at the server,
thereby resulting in a idle time of 3 time units and changing
the server percentage to (12 — 4)/(20 — 4) = 50%. After
imposing a penalty of 1 time unit, we effectively have 2 units
of encounter duration left to utilize in the second phase. Thus
the second phase starts with a state (2,50%,2) and the paths
are explored in the same way. At the end of phase 2, we
exhaust the meeting time, having received 6 files in place of
4, which would have been the result of a single phase request.
This action tree is illustrated in Figure 3.

VI. SIMULATION BASED EVALUATION

We carried out simulations with the following parameters,
using value iteration, to analyze how better the multiphase
model works in comparison with a single phase version. The
parameters for simulation are as follows

e  Mean encounter duration = 50 units

e  Overhead to process each file = 1 unit
e Repository size = 100 files

e  Client Percentage = 25%

e  Penalty per phase = 0.05 unit

When simulated over 100 times for each server availability
percentage, for different client vector compositions, Figure 4
illustrates the number of files transferred when multi-phase
and single-phase protocols are employed. At lower server
percentages, the files transferred are almost similar because
at a lower server percentage, higher number of ranges are
requested in order to receive the expected number of files.
Hence it is possible that there would be no more ranges to
request from, even when there is some time remaining. The
request for ranges in the decreasing order of size maximizes
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their total utility within a given request period [4] and hence
this pattern of range selection leads to optimal policy.

A. Comparison over Real Trace Simulation

We consider two empirical real trace distributions, one
from Beijing taxis and the other from Chicago bus dataset
[13], which have an exponential structure as shown in Figure 5.
In the simulations below, we compare the performance of
multi-phase request protocol with two other methods described
below:

1) Single phase MERLIN protocol: This is a pull based
protocol in which the request-response takes place in a single
phase [4].

2) Push: This algorithm has no request phase from the
client and the server sequentially sends out the available files.

=}
)

[=}
@

=}
-

=]
=3

0.5

Cumulative Distribution Function

02t & Beiing Dataset

Chicago Dataset

0.1
10° 10’ 102 10° 104
Time (in seconds)
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In our simulations, the following are the default set of
values

e  Repository = 500 files

e 30% client availability

e 200 mean encounter duration in time units (default
distribution: exponential)

e 10 file size (in time units)
e 2 header size (time units)
e 2 time needed to describe each range

e Penalty = 5 time units
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Fig. 6. Comparison of performance of multiphase version versus single phase
and server push methods for Beijing vehicular trace
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As can be seen from Figure 6 and Figure 7, the effi-
ciency of multi-phase request model is considerably higher
than single phase and server push methods, at moderately
high server availability percentages because the idle time is
utilized effectively in making more requests. However at lower
server availability percentages, multi-phase requests are same
as single phase, mainly because almost all ranges are requested
at lower server percentages, because the expected number of
files transferred is low. And it is not better than server push at
this end of the spectrum, because it is wise to push the minimal
available files rather than wasting resources in pulling them.
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TABLE 1. RANGES REQUESTED PER PHASE

Server Ranges requested Ranges requested Ranges requested
Percent in Phase 1 in Phase 2 in Phase 3

5 22

10 19

15 19

20 25

25 21 3

30 12

35 7

40 11

45 6

50 4

55 7

60 7 9 1
65 3 6 9
70 4

75 3 8 12
80 4

85 5

90 3 5 11
95 3

We try to analyze the impact of penalty associated with
each request phase on the efficiency. The tradeoff between
overhead involved in initiating a new request for each phase
and the goodput is as shown in Figure 8. It is easily seen that,
as penalty increases the efficiency reduces because the useful
time spent in data transfer reduces.

Table I represents an instance from simulation, where the
number of ranges requested per phase and the corresponding
server percentage is shown. It can be seen that multiple re-
quests come into picture only beyond median ranges of server
percentages, for reasons explained previously. The number of
ranges requested in each phase initially increases because,
in the initial phases when the size of ranges is large (it is
sorted) few of them are requested. In the subsequent phases
both the time remaining and size of the ranges decreases, but
the reduction in range sizes dominates the decrease in time,
thereby resulting in the request of higher number of ranges.
However, when the decrease in time dominates the reduction
in range sizes, we see a fall in the number of requested ranges
as in the case of 60% server availability.This request pattern
is dependent on client and server vectors.

VII. CONCLUSION

In this paper we have formulated the problem of optimizing
downloads in a mobile network as a Markov Decision Process,
using Reinforcement learning. We have compared the perfor-
mance of this approach to the baseline methods and shown
that the multi-phase approach leads to a better performance in
comparison to server push and single phase protocols.

One possible direction to investigate further is that, in the
case of a vehicular network where multiple vehicles compete
for resources and the encounter duration is potentially very
short, if a single node keeps requesting for files iteratively
over multiple phases, it is blocking access to resources for
other vehicles which could have received a few files in the
duration this vehicle made its second round of request.

Another direction to be explored is to improve the ef-
ficiency at lower server availability, by employing a hybrid
scheme, where push or pull is determined for each phase
depending on the availability percentages at the client/server
respectively.
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