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Abstract—We formulate the problem of delay constrained
energy-efficient broadcast in cooperative multihop wireless net-
works. We show that this important problem is not only NP-
complete, but also o(log(n)) inapproximable. We derive approx-
imation results and an analytical lower-bound for this problem.
We break this NP hard problem into three parts: ordering,
scheduling and power control. We show that when the ordering
is given, the joint scheduling and power-control problem can be
solved in polynomial time by a novel algorithm that combines
dynamic programming and linear programming to yield the min-
imum energy broadcast for a given delay constraint. We further
show empirically that this algorithm used in conjunction with an
ordering derived heuristically using the Dijkstra’s shortest path
algorithm yields near-optimal performance in typical settings.
We use our algorithm to study numerically the trade-off between
delay and power-efficiency in cooperative broadcast and compare
the performance of our cooperative algorithm with a smart non-
cooperative algorithm.

I. INTRODUCTION

In a wireless network, a transmitted packet intended for
one node is received not only by that node but also by other
nodes in the nominal reception range of the transmitter. In
a traditional point-to-point system, where there is only one
intended recipient, this innate property of the wireless medium
can be a hurdle, as the remaining neighboring nodes must treat
that received packet as undesired interference. Nonetheless,
broadcast and multicast systems can be designed to work co-
operatively and thereby achieving potential performance gains
by taking advantage of this property. As such, cooperative
transmission in wireless networks has attracted a lot of interest
not only from the research community in recent years [1], [2],
[3], [4], [5], [6], [8] but also from industry in the form of the
first practical cooperative mobile ad-hoc network system [10].

We focus on the problem of cooperative broadcast in this
work, where a single node is sending a packet to the entire
network. We consider a time-slotted system, in which the
nodes that have received and decoded the packet are allowed
to transmit it in future slots. Nodes are allowed to choose
their transmit power dynamically. We assume that receiving
nodes cooperatively combine the signal power received from
multiple sources in an additive fashion. As discussed in prior
work [2], [4], [3], [5], cooperative communication with such
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energy accumulation can be implemented at receivers using
maximal ratio combining (MRC) of orthogonal signals from
source nodes that use orthogonal time/frequency channels, or
spreading codes, or distributed space-time codes. We consider
a memoryless system in which the MRC at the receiver is
restricted to source transmissions from the present time slot.

A key tradeoff in this problem is between the total energy
consumption1 and the total delay measured in terms of the
number of slots needed for all nodes in the network to receive
the broadcast message. At one extreme, if we wish to minimize
delay, each transmitting node should transmit at the highest
power possible so that the maximum number of receivers can
decode the message at each step (indeed, if there is no power
constraint, then the source node could transmit at a sufficiently
high power to reach all nodes in the first slot itself). On the
other hand, reducing transmit power levels to save energy,
may result in fewer nodes decoding the signal at each step,
and therefore in a longer time to complete the broadcast. We
therefore formulate the problem of performing this broadcast
in such a way that the total transmission energy over all nodes
is minimized, while meeting a desired delay constraint on the
maximum number of slots that may be used to complete the
broadcast. The design variable in this problem is to decide
which nodes should transmit, when, and with what power.

The key contributions of our work are as follows:

• We formulate the problem of delay-constrained minimum
energy broadcast in cooperative networks, going beyond
the prior work in the literature on cooperative broadcast
which has focused either on minimizing energy without
delay constraints [2], [5], or on delay analysis without
energy minimization [7]. Our extended problem formula-
tion allows us to expose and investigate the energy-delay
tradeoffs inherent in cooperative networking.

• We not only prove that the delay constrained mini-
mum energy cooperative broadcast (DMECB) problem
is NP-complete, but also that it is in fact o(log(n))-
inapproximable (i.e., unless P = NP , it is not possible
to develop a polynomial time algorithm for this problem
that can obtain a solution that is strictly better than a

1As we consider unit time slot durations, we use the words energy and
power interchangeably in this paper.



logarithmic-factor of the optimal). We are not aware of
prior work on cooperative broadcast that shows such an
inapproximability result.

• However, we are able to show that for any given ordering
of the transmissions (which dictates that a node later in
the ordering may not transmit before the nodes earlier in
the ordering have decoded successfully), then the problem
of joint scheduling and power allocation for DMECB can
in fact be solved optimally in polynomial time using a
combination of Dynamic Programming for the scheduling
and Linear Programming for the power allocation.

• For small network instances, we compute the optimal
solution through exhaustive search, and show empirically
through simulations that our proposed joint scheduling
and power control method works near-optimally when
used in conjunction with an ordering provided by the
Dijkstra tree construction.

• We also show through simulations the delay-energy
tradeoffs and minimum energy performance for larger
networks and demonstrate the significant improvements
that can be achieved by our solution compared to non-
cooperative broadcast.

• In addition to the above, we also present an analytical
lower bound for the minimum energy required for a given
delay constraint, and a polynomial-time algorithm for the
general problem that is provably guaranteed to offer a
O(nε) approximation. This algorithm is based on the
current best-known algorithm for the bounded diameter
directed Steiner tree problem [15].

In summary, this paper makes several contributions that
significantly enhance our understanding of complexity and al-
gorithm design for cooperative broadcast in wireless networks,
in the context of energy-delay tradeoffs.

The rest of the paper is organized as follows: section II
places our work in the context of prior related work. Section III
describes the system model. In section IV, we prove the inap-
proximability result by reduction from the set cover problem.
A polynomial time algorithm for optimum delay constrained
scheduling and power allocation is presented in section V, for
the case when the ordering is given. We present an analytical
lower bound for the optimum solution in section VI, and
approximation results are discussed in section VII. Simula-
tion results are presented in section VIII, where we suggest
and evaluate several heuristics for the ordering. Section IX
concludes the paper and suggests directions for future work.

II. RELATED WORK

There are three main approaches for cooperative communi-
cations in networks. One is using coherent signal synchro-

nization, in which a set of transmitters synchronize their
transmissions at the signal level when transmitting to a single
receiver [1]. While the benefits are potentially higher with this
approach for many-to-one communications it can be difficult
to implement such tight synchronization in practical systems,
and the benefits in a broadcast environment where the goal
is to reach multiple nodes are not clear when compared to

the following two approaches that allow for many-to-many
cooperation. The second approach is energy accumulation [2],
[4], [3], [5], in which a receiver can recover the original packet
so long as the total received energy from multiple sources or
successive transmissions exceeds a given threshold. Such an
approach can be implemented using maximal ratio combining
of orthogonal signals from multiple sources, e.g., through a
Rake receiver in CDMA or distributed space-time codes. It has
been shown that one can achieve significant saving in energy
and/or transmission time when using an energy accumulation
protocol, compared to traditional protocols [2], [5], [7]. If
energy accumulation is achieved by transmitting the exact
same packet from different relays or through successive re-
transmissions, the scheme is shown to achieve capacity in
an asymptotically wideband regime [2]. The third approach
is mutual information accumulation, which can be achieved
using rateless codes [8]. The two schemes have been shown
to be equivalent at low signal-to-noise ratios (SNRs) [8]. We
consider the energy accumulation approach in our work, but
we believe the general algorithmic approach may be applicable
to information accumulation protocols as well, though this
remains to be seen in future work. We note that recently a
commercially developed cooperative mobile ad hoc network
system has been developed which utilizes a pragmatic coopera-
tion method requiring minimal information exchange, based on
a combination of phase dithering and turbo codes [9], [10]. It is
shown in [9] that the performance of this pragmatic scheme is
close to that of an ideal energy-accumulation approach based
on space-time coding.

Many network protocols in mobile ad hoc and sensor
networks need to operate in broadcast mode to disseminate
certain control messages to the entire network (for instance,
to initiate route requests, or to propagate a query). The subject
of broadcast transmission in multi-hop wireless networks has
attracted a lot of attention from the research community in both
non-cooperative [11], [12], [14] and cooperative settings [2],
[3], [5], [7], [6]. For traditional non-cooperative wireless
networks, the work by Cagalj et al. shows that the problem
of minimum energy broadcast is NP-hard. In [3], Mergen
et al. show through a continuum analysis the existence of a
phase transition in the behavior of cooperative broadcast: if the
decoding threshold is below a critical value then the broadcast
is successful, else only a fraction of the network is reached.
In [5], Mergen and Scaglione, show that the problem of
scheduling and power control for minimum energy broadcast
is tractably solvable for highly dense (continuum) networks
and show the gains obtained with respect to noncooperative
broadcast. In [7], we examined the delay performance of
cooperative broadcast and show that cooperation can result
in extremely fast message propagation, scaling logarithmically
with respect to the network diameter, unlike the linear scaling
for non-cooperative broadcast.

The work by Maric and Yates [2] is closest in spirit to
our work. They too address the minimum-energy cooperative
broadcast problem under an energy accumulation assumption.
However, in their work the system has memory, in that the



nodes can save soft information from all previous transmis-
sions throughout time and use it to decode data later on. They
prove that the problem is NP-complete in this case. In their
setting, because of the memory, it is shown that it suffices
to have each transmitter transmit only once; therefore there
is no distinction between ordering and scheduling. This is
no longer true in our memoryless setting where the energy
from past transmissions cannot be accumulated. We therefore
decouple the transmission ordering from joint scheduling and
power control in our work and can provide a polynomial
solution for the latter given an ordering. Beyond this, a key
distinction in our work is that we consider delay constraints,
whereas [2] focuses only on the minimum energy cooperative
solution without delay constraints.

One prior work that discusses the power-delay tradeoff in
a cooperative setting is the paper by Cui and Golsmith [13],
however, the focus of that work is on space-time codes used
for unicast forwarding, not broadcast.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a static wireless network with N nodes. Radio
propagation is modeled by a given symmetric N by N channel
matrix, H = {hij}, representing the gain on the channel
between each pair of nodes i and j. Time is assumed to be
discretized into fixed duration slots. We assume cooperative
communication in which the received power at a given receiver
at a time is additive in the attenuated powers received from
each sender at that time. As described in [3], [5], [4], this kind
of additive received power can be achieved via maximal radio

combining under different scenarios including transmission
using TDMA, FDMA channels, as well as with CDMA
spreading codes and space-time codes. We assume appropriate
coding is used so that each receiving node can decode the
message so long as its received signal-to-noise (SNR) ratio is
higher than a given threshold. Assuming the noise power is the
same at all receivers, we can use a normalized received power
threshold τ to model this. We assume a memory-less model
in which nodes do not accumulate energy from transmissions
occurred in previous time slots. Thus the condition for suc-
cessful decoding at some receiver node r at time t when a
set of nodes S(t) is transmitting packets, with transmit power
ps(t)∀s ∈ S(t) is:

prcvr (t) =
∑

s∈S(t)

ps(t)hsr > τ (1)

We consider the minimum-energy broadcast problem in a
time-slotted wireless cooperative network of N nodes. We
assume that the broadcast begins from a single source node.
The aim is to get the message to all the nodes in the
network with the minimum possible total energy within a
time constraint, Tmax (which can vary anywhere from 1 to
N−1). All nodes are assumed to operate in half-duplex mode,
i.e. they cannot transmit and receive simultaneously. If used
in transmission, the nodes operate based on a decode and

forward protocol. Therefore, they are not allowed to take part
in transmission until they have fully decoded their message.

Let Xi(t) be an indicator variable that indicates for all nodes
other than the source node if node i has decoded the message
before time t as per equation (1), and for the source node 1,
let X1(t) = 1, ∀t. In essence, the optimization problem we
have for delay constrained minimum energy broadcast is the
following:

min Ptotal =
∑Tmax

t=1

∑N
i=1 pi(t) (2)

s.t. Xi(Tmax + 1) = 1, ∀i

Xi(t) = 0 ⇒ pi(t) = 0, ∀i

The design variables we have in this optimization are pi(t),
the transmit power for each node i at each time t, with the
second constraint specifying that non-zero powers can only be
allocated to nodes that have previously decoded the packet,
since only these nodes can participate in transmission. (Note,
however, that in the optimal solution, pi(t) might be set to
zero even for nodes such that Xi(t) = 1.) The first constraint
imposes the delay requirement that we wish all nodes to have
decoded the packet by the end of Tmax slots.

The decision version of this problem, which we refer to
in the following as DMECB (delay constrained minimum
energy cooperative broadcast) can be defined correspondingly
as follows: “Given some power bound C, does there exist
an allocation of powers pi(t) satisfying the constraints in 3
such that Ptotal ≤ C?” Note that an instance of the DMECB
problem is defined by giving the symmetric N×N matrix H ,
with a designated source node (vertex), a delay bound Tmax

and a power bound C. (Note: in the following sections we will
also represent DMECB in the form of a graph G = (V,E)
in which edges exist between any pair of nodes for which
hij > 0, and the edges are labeled with a weight wij = h−1

ij

that corresponds to the transmit power needed at node i to
exceed an SNR threshold of τ = 1 at the receiver j.)

IV. HARDNESS

In this section we prove that not only finding an optimal
solution for DMECB problem is NP-hard but finding any
polynomial time algorithm that approximates the optimal
solution within a factor of o(log(n)) is also NP-hard. We do so
by an approximation-preserving reduction from the set cover
problem.

Set cover problem is a classical problem in computer
science. It is stated as follows: Given a universe U of n
elements and a collection of subsets of U , S = S1, S2, ...Sk,
find a minimum subcollection of S that covers all elements of
U . This problem is NP-complete and was shown, in [17], to
be o(log(n)) inapproximable.

The set cover problem can be thought of as a bipartite graph
G(V,E), with |V | = k + n, representing the k sets and n
elements and the edges are used to connect each set to its
elements. This is shown in Figure 1 (a), where we assign a
vertex for each set in the top part of the graph, and assign



a vertex for each element in the bottom part of the graph.
We connect each set to its elements using an edge. Given
an instance, G of the set cover problem, the optimal solution
to the set cover problem OPTsc would find the minimum
subset of vertices in the top part of the graph, so that their
transmission of a message can broadcast the message to all
the vertices in the bottom part of the graph.

Given an instance, G of the set cover problem, with k sets
and n elements, let us construct a new graph G′ as follows:
Assign a root node r, which is the source with the message at
the starting time, call this level 0. Include k nodes in level 1,
representing the k sets in the set cover problem, all connected
to the root node with a small weight (say weight 1), as shown
in Figure 1 (b). This is followed by the bipartite graph of G,
which makes up level 2 and 3 of G′. Connect each of the k
nodes in level 2 to their representative in level 1 and to all
the other nodes in level 2 with low-weight edges. Notice the
nodes in level 2 are also connected to their elements in level 3
of the graph, as shown in the Figure. We make all the weight
on the edges arbitrarily small (say 1), with the exception of
the edges in between the nodes in level 1 and 2. We make
those edges arbitrarily large (say M , to be specified later).

r

Level 0

Level 1

Level 2

Level 3

M M M

G
′

G

Fig. 1: Construction of G′ for a given G, notice that not all
the edges are shown (for clarity).

Assume the the weight on the edges represent the power
needed for the message to be transmitted across that edge. If
we were to run the optimal DMECB algorithm on G′ with
Tmax = 3 the algorithm would have to act as follows, to be
able to cover all the nodes in the given time frame:
Step 1: Root transmits with power 1, turning on all its k
neighbors on level 1.
Step 2: The algorithm picks a subset the k nodes on level 1
to transmit the message. This subset must be chosen to be as
small as possible, given the large weight they have to endure to
pass on the message on to the bipartite graph, and the fact that
DMECB is trying to minimize the total weight. Yet it has to
be large enough so that when the nodes in level 2 transmit, all
the nodes in level 3 would receive the message. The optimal
algorithm must be able to find such a subset.
Step 3: The nodes that receive the message in level 2, transmit
the message in this step, turning on all the nodes in level 3 of
the graph, as well as all the nodes in level 2 of the graph that
were not selected for transmission, thus covering the whole

graph.
Let us call the solution of this optimal algorithm
OPTDMECB .

Lemma IV.1 OPTDMECB ≤ M.OPTSC + 1 +OPTSC

Proof: Consider an instance of SC (with graph G),
whose optimal solution is OPTSC . Construct a graph G′, as
explained and run the DMECB algorithm to get OPTDMECB .
The above inequality holds by construction of the graph.

Lemma IV.2 OPTSC ≤ OPTDMECB

M

Proof: Consider an instance of DMECB on G′ and its
optimal solution OPTDMECB for delay T = 3. Notice that
if T > 3, we add additional single nodes (as virtual roots)
to reduce the problem to the case where T = 3. Looking
at G′, we observe that to meet the delay constraint, by end
of step i, at least one node in level i must have heard the
message - else it is impossible to get the message through to
the rest of the levels in the time frame left. Let’s say the root
is on level 0. Consider the subset of level 1 that has come on
at the end of time 1, s1 and from level 2 consider the set,
s2, that came on at the end of time step 2. We now want to
show that s2 is a feasible solution for set cover. To do so, we
make the following two claims: Claim 1: Nodes responsible
for turning on s2 must be a subset of s1. Claim 2: s2 is
a feasible solution to set cover. Claim 1 holds because only
nodes that have received the message by the end of time 1 can
transmit the message at time 2. Not all of them might transmit
though, so s2 is a subset of corresponding nodes in s1. Claim
2 is true, because if there exists and element in level 3 that is
not a corresponding node to anyone in s2, it cannot come on
by T = 3. Therefore, s2, is a feasible solution to set cover.
OPTDMECB must spend at least M for each element of s2

to come on, so OPTSC ≤ OPTDMECB

M
.

Theorem IV.1 The DMECB problem is o(log(n)) inapprox-

imable, for Tmax ≥ 3.

Proof: For an instance of set cover problem, with k
being the total number of sets, lemma IV.1 can be re-written
as OPTDMECB ≤ M.OPTSC + 1+ k. We also know by
lemma IV.2 that OPTSC ≤ OPTDMECB

M
. Therefore, for a suf-

ficiently large M , we can write OPTSC = OPTDMECB

M +o(1).
Therefore, the reduction used in construction of the graph G′

preserves the approximation factor. That is, if one can find an
α-approximation for DMECB, by extension there must exist
an α-approximation for set cover. We know, by [17], that the
set cover problem is o(log(n)) inapproximable, thus DMECB
must be o(log(n)) inapproximable. In other words, finding a
polynomial time approximation algorithm that approximates
OPTDMECB with a factor of o(log(n)) is NP-hard.

The DMECB problem can be solved in polynomial time
(trivially) for cases when Tmax < 3. It is also trivial to verify
the feasibility of a given power allocation, and verify whether
or not it satisfies the decision version of DMECB given in



section III. Therefore, the problem belongs to the class of NP.
Notice that the inapproximability result, given by Theorem
IV, is stronger than NP-completeness result and implies NP-
completeness. It is also worthy to note that without any delay
constraint, the problem is still NP-complete and the proof can
be obtained by following the approach in [2].

V. OPTIMAL BROADCAST GIVEN ORDERING

In Section IV, we proved that the DMECB is NP-complete
and o(log(n)) innaproximable. In this section, we breakdown
this NP-complete problem into three subproblems, namely or-
dering, scheduling and power allocation, and given an ordering
we propose an optimal polynomial time algorithm for joint
scheduling and power allocation. We evaluate a heuristic for
the ordering in Section VIII.

Definition An ordering, for a vector of n nodes, is an array of
indices from 1 to n; re-arranging the elements of that vector
according to those indices would result in an ordered vector
where each node, that has decoded the message, will only be
allowed to take part in re-transmission when all its previous
nodes have also decoded the message (and are thus allowed
to take part in transmission).

Given an ordering, what remains to be solved is to figure
out which nodes should take part in transmission, how much
power they should transmit with and at what time slots, so
we can achieve the minimum energy within the given delay
constraint.

A. Instantaneous optimal power allocation

If we know which nodes are transmitting the message and
which nodes are receiving it, at any single time-slot, we can
use a linear program (LP) to work out the optimal power
allocation for that time slot. Consider an ordered vector of
n nodes (1, ..., k, ..., i, ..., n), represented by their indices so
that node i is the ith node in the array. Let us assume that by
time slot t, node 1 to i have decoded the message and nodes
i + 1 to n are yet to decode. At time instance t, the optimal
instantaneous power allocation for a set of transmitting nodes
(say S(t) = (k, ..., i)) to turn on a set of receiving nodes
nodes (say R(t) = (k + 1, ..., n)) can be calculated out using
following LP:

min
∑

s∈S(t)

ps(t) (3)

such that
∑

s∈S(t)

ps(t)hsr > τ ∀r ∈ R(t) (4)

We use the notation LP ({[k, ..., i}, {k + 1, ..., n}], τ, H)
to refer to solution of the above LP. As a notation,
LP ([{x, ..., y}, {z, ...,α}], τ, H) = 0, if z ≥ α.

B. Joint Scheduling and power allocation

Knowing the instantaneous optimal power allocation given
the set of senders and receivers at each time slot, all that
remains to be done is to determine these sets at each time
slot, in order to minimize the overall power while meeting the
delay constraint.

Let C(j, t) be the minimum energy needed to cover up to
node j in t steps or less. The total minimum cost for covering
n nodes by time T can be calculated using the following
algorithm:

C(n, T ) = min [C(k, T − 1) + LP ({1, ..., k}, {k+ 1, ..., n}, τ, H)]
(5)

where min is taken over k ∈ (1, .., n), C(k, 1) =
LP (1, {2, ..., i}, τ, H), C(1, t) = 0 ∀t, and C(2, t) = h−1

12 ∀t.
A pseudocode for the algorithm is presented below:

Algorithm 1 Delay constrained minimum energy cooperative
broadcast, given an ordering (DMECB go)

1: INPUT: an ordered array of nodes of size n (where node
i is the ith node in the array), T (delay), H (channel), τ
(threshold).

2: OUTPUT: C (cost matrix)
3: Begin:

4: for i := 2 to n do
5: C(i, 1) := LP ([1, {2, ..., i}], τ, H);
6: end for

7: for t := 1 to T do
8: C(1, t) := 0;
9: C(2, t) := h−1

12

10: end for
11: for t := 2 to T do

12: for i := 1 to n do
13: for k := 1 to i do

14: x(k) := C(k, t − 1) + LP ([{1, ..., k}, {k +
1, ..., i}], τ, H);

15: end for

16: C(i, t) := min x

17: end for
18: end for

The optimal scheduling and power allocation can be ob-
tained by inspection of the above algorithm. Our Dynamic
Programming algorithm invokes O(n2Tmax) calls to the LP
solver, each of which takes polynomial time. Hence the
DMECB go algorithm that does joint scheduling and power-
control is a polynomial time algorithm.

Notice that a requirement for per-node maximum power
can be trivially added to the LP formulation as additional
constraints, we have left that out for simplicity. Should the
maximum power be added, it should be large enough to ensure
a feasible solution exists for the given connectivity and delay
constraint. Also note that the delay constraint T can be made
arbitrarily large, or removed entirely from the formulation, to
allow for a solution to be found assuming there are no delay



constraints. In the latter case, the two-dimensional dynamic
program proposed in (5), will reduce to a one-dimensional
dynamic program:

C(n) = min [C(k) + LP ({1, ..., k}, {k+ 1, ..., n})] , τ, H
(6)

where C(n) is the minimum cost of covering node n using
our cooperative memoryless approach, starting from node 1
and C(1) = 0.

VI. ANALYTICAL LOWER-BOUND

In this section we establish a lower-bound on the optimum
solution to DMECB.

To get a better intuition for this lower-bound, let us start
off by considering a unicast version of DMECB. As before,
we have n nodes and a channel H , but this time the source
s wants to transmit the message to a particular destination d,
using the minimum energy within a given delay constraint
T . The system is cooperative in that other nodes in the
network, may be utilized as memoryless energy accumulating
relays to help achieve the minimum energy goal. Let us call
this problem delay constrained minimum energy cooperative

unicast, DMECU.

Theorem VI.1 In DMECU, there exists a solution consisting

of a simple path between source and destination, which is

optimum.

Proof: Let us prove by induction: Claim: In the DMECU
problem with delay constraint T , there always exists a simple
path from source s to any destination d, which is optimum.
For T = 1, the claim is trivially true, as the optimal solution
is direct transmission from s to d. Let us assume the claim is
true for T = k − 1. To complete the proof, we need to show
the claim holds for T = k. Pick any node in the network as
the desired destination d. If the message can be transmitted
from source s to d with minimum energy in a time frame less
than k, then an optimal simple path exists by the induction
assumption. So consider the case when it takes exactly T = k
steps to turn on d. The system is memoryless, so d must decode
by accumulating the energy transmitted from a set of nodes, v,
at time k. This can be represented as

∑

vi∈v pvi(k)hdvi ≥ τ .
We observe that there must exist a node vo ∈ v whose channel
to d is equal or better than all the other nodes in v. Therefore,
given hdvo ≥ hdvi , ∀vi ∈ v − {vo} then

∑

vi∈v pvi(k)hdvo ≥
∑

vi∈v pvi(k)hdvi ≥ τ . In another words, if we add the power
from all nodes in v and transmit instead from vo, our solution
cannot be worse. vo must have received the message by time
k − 1, to be able to transmit the message to d at time k. We
know by the induction assumption that the optimal simple path
solution exists from source to any node to deliver the message
within k−1 time frame. Thus, for T = k, there exists a simple
path solution between s and d, which is optimum.
Notice that the above theorem holds in the case where there
is no delay constraint as well. The proof follows an straight-
forward modification of the above proof and is omitted for
brevity.

Corollary VI.1 The Dijkstra’s shortest path algorithm pro-

vides the optimal ordering in the case of minimum energy

memoryless cooperative unicast, when there is no delay con-

straint.

Proof: We have already established that an optimal min-
imum energy solution exists between source and destination,
which is a simple path. The well-known Dijkstra’s shortest
path algorithm can find the minimum cost simple path be-
tween source and destination. Therefore, Dijkstra’s algorithm
provides the optimal ordering.

Using theorem VI.1 we know that the optimal unicast solution
from source to any destination is given by a simple path.
To find a lower-bound for the DMECB, we notice that the
source has to cover all the nodes in the network. The cost
paid by optimal DMECB to cover each node, cannot be lower
than the cost paid by the optimal DMECU to cover that
node - otherwise it contradicts the optimality of DMECU
solution. Based on that observation we derive the following
lower-bound, LB(T ), for the OPTDMECB when the delay
constraint is T :

LB(T ) = max
i∈V−{r}

C(i, T ) (7)

where

C(i, T ) = min
x∈Nr(i)

[C(x, T − 1) + w(x → i)] (8)

where V represents the set of all nodes in the network, r is
the root, Nr(i) is the set that contains i and its neighboring
nodes that have a non-zero edge to i, w(x → i) represents
the power it takes for x to turn on i using direct transmission,
C(i, T ) is the minimum cost it takes for r to turn on i, possibly
using relays, within at most T time slots. We set C(i, 1) =
w(r → i). In words, C(i, T ) calculates the minimum cost of
optimal unicast DMECU to cover a given node i, starting from
root under a delay constraint T . LB(T ) takes the maximum
of those costs and use it as lower-bound - since we know
OPTDMECB has to cover the costliest node and cannot do
so any better than the OPTDMECU . Computing this lower-
bound incurs a running time of O(n3).

VII. APPROXIMATION ALGORITHM

In section IV, we proved that DMECB is NP-complete and
o(log(n)) inapproximable, therefore it is hard to approximate
DMECB to a factor better than log(n). It is of theoretical
interest to know how close we can get to the optimal solution,
using a polynomial time algorithm. In this section we show
that existing approximation algorithms for bounded diameter
directed Steiner tree problem can be used to provide O(nε)
approximation for DMECB.

Steiner tree problem is a classic problem in combinatorial
optimization [16]. We focus on a variation of this problem
namely, bounded diameter directed Steiner tree, defined as
follows. Given a directed weighted graph G(V,E), a specified
root r ∈ V , and a set of terminal nodes X ⊆ V (|X | = n),
the objective is to find minimum cost arborescence rooted



in r and spanning all vertices in X , subject to a maximum
diameter T . Diameter refers to the maximum number of
edges on any path in the tree. Notice that the tree may
include vertices not in X as well, these are known as Steiner

nodes. Directed Steiner tree problem is known to be NP -
complete and O(log(n)) inapproximable [16]. In [15], the
authors give the first non-trivial approximation algorithms for
Steiner tree problems and propose approximation algorithms
that can achieve an approximation factor of O(nε) for any
fixed ε > 0 in polynomial time. To the best of our knowledge
this is currently the tightest approximation algorithms known
for this problem.

In order to construct an instance of the Steiner tree problem
from DMECB, we first restrict DMECB by not allowing multi-
transmitter multi-receiver (multi-multi) transmissions. Notice
that in the proof of theorem VI.1, we had establish that
multi-single transmissions, can be replaced with single-single
transmissions without loss of optimality. Therefore, by not
allowing multi-multi transmissions, we are limiting ourselves
to single-single and single-multi transmissions. We call this
an integral version of DMECB, DMECB-int. The integrality
gap of the weighted set cover problem is shown to be log(n)
[16], it is straightforward to extend that result to show that
DMECB-int also loses a factor of log(n), compared to optimal
DMECB.

Consider an instance of DMECB-int, G(V,E), with (|V | =
n) and s ∈ V being the source node. To reduce this problem to
an instance of directed Steiner tree problem, let us construct a
new graph G′, consisting of n clusters, x′, each corresponding
to each node in G. Let each cluster be a bipartite graph, with
n nodes on the left (marked as “ − ”) and n nodes on the
right (marked as “ + ”), as shown in Figure 2. The “ − ”
nodes are intra-connected within a cluster with edges of weight
0. In each cluster, x′ ∈ G′ corresponding to node v ∈ G,
the “ + ” and “ − ” nodes on each level, i, of the bipartite
graph are connected to each other with an edge of weight
wi, representing the power needed by the corresponding node
v ∈ G to turn on its i closest neighbors. The i+ node is then
connected, with edges of weight 0, to to all the “−” nodes in
the corresponding neighbor clusters. We further add a single
root node, r ∈ G′, and connect it via a zero-weight edge to
all the “ − ” nodes in the cluster corresponding to s, x′

s. We
assign the root r and one desired “−” node from each cluster
as terminal nodes and all other nodes in G′ as Steiner nodes.

Let us look at an example of this construction, say node
v1 ∈ G, whose closest 3 neighbors are (v2, v4, v6). We have
an equivalent cluster x′

1 ∈ G′ corresponding to node v1. x′
1

has 2n nodes, arranged in n levels. The weight between the
two nodes in say level 3 is equivalent to the power it takes for
v1 to turn on (v2, v4, v6). Furthermore, the node 3+ in cluster
x′
1 is connected to the “−” nodes in clusters (x′

2, x
′
4, x

′
6) with

edges of weight 0. This construction allows us to find a way
to allow v1 to transmit with different power levels, without
knowing what those powers might be in advance. We first add
a single root node, r, and connect it via a zero-weight edge
to all the “− ” nodes in the cluster corresponding to s.

Fig. 2: A simplified example of how clusters are constructed
in G′.

Run the directed Steiner tree algorithm on G′ to obtain a
solution. The solution must choose at least one node from each
cluster, to meet the mandatory terminal nodes requirement.
Recall that each cluster in G′ corresponds to a node in G and
that multi-multi was not allowed. To convert the solution of
the Steiner tree algorithm on G′ to a solution of DMECB-int
on G, we look at the parent of each cluster, which is a “ + ”
node in another cluster. Let’s say we want to see which node
turns on v6 by looking at G′. We look at the parent of x′

6

and see that it’s 3+ ∈ x′
1. So in G, we figure out that v1

must transmit with enough power to turn on 3 of its closest
neighbor (w3), and it is as a result of this transmission that
v6 comes on. Going through all the clusters and their parents,
we can establish an ordering and transmission power for all
the nodes that should take part in cooperation in G, and thus
we have a solution for DMECB-int.

As mentioned, the directed Steiner tree is o(log(n)) inap-
proximable, and the best approximation algorithm currently
available [15] give an O(nε) approximation on the optimal
solution. We had already lost O(log(n)) to convert DMECB
to its integral form. The approximation algorithm proposed
in [15] can approximate the optimal integral solution within
O(nε). Therefore, using that algorithm we can approximate the
optimal solution to DMECB within O(nε × log(n)), which is
asymptotically O(nε).

Therefore, using the construction given above, approxi-
mation algorithms given in [15] can be used to give an
O(nε) approximation for DMECB. Detailed discussions of
the algorithms in [15] are beyond the scope of this paper.
The running time of these algorithms are a function of ε,
thus the better the tradeoff the worse the running time. It
remains of interest to see if tighter approximation algorithms
can be constructed for DMECB. In the following section,
we use computationally simple heuristics for ordering and
use algorithm proposed in section V to calculate the optimal
scheduling and power allocation given the ordering. We then
compare these results against the lowerbounds given in section
V I .

VIII. PERFORMANCE EVALUATION

For the simulation purposes, we consider a network of N
nodes uniformly distributed on a 15 by 15 square surface.



The transmission starts from a node, arbitrarily located, at
the left center corner of the network, coordination (0, 7). We
consider a static channel, with independent and exponentially
distributed channel gains (corresponding to Rayleigh fading),
where hij denotes the channel gain between node i and j. The
mean value of the channel between two nodes, hij , is chosen to
decay with the distance between the nodes, so that hij = d−η

ij ,
with dij being the distance between nodes i and j and η
being the path loss exponent. The corresponding distribution
for channel gains, is then given by

fhij (hij) =
1

hij

exp

(

hij(k)

hij

)

Based on the intuition developed in Section V I , we use the
Dijkstra’s shortest path algorithm as our ordering heuristic.
Simulations are repeated multiple times and average values
are shown in the graphs. Notice that the minimum power
calculated by different algorithms, shown on the y-axes of
the graphs in this section, are normalized by value of τ .

In Figure 3, we calculate the optimal ordering by brute-force
for small number of nodes and compare the performance of
our algorithm that uses Dijkstra’s shortest path-based ordering
with the optimal performance. As can be seen, Dijkstra’s
algorithm provides a good heuristic for ordering and will be
used throughout this section.
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Fig. 3: Performance with optimal ordering vs Dijkstra’s
algorithm-based heuristic ordering

We next compare the performance of our cooperative al-
gorithm with a smartly designed non-cooperative algorithm.
Notice that in our cooperative algorithm we make use of the
wireless broadcast advantage (WBA), where transmission by
one node can be received by multiple nodes and coopera-

tive advantage, where a node can accumulate power from
multiple transmitters. If an algorithm is using WBA, but not
cooperative it can be thought of as an integral version of
DMECB. This means, each node can receive the message from
one transmitter only (and cannot accumulate from multiple
transmitters), however one transmitter can transmit to multiple
receivers. We had established in Section VII that DMECB-int
is also NP Complete. It is however interesting to note that
DMECB-int needs to solve a weighted set cover problem when

allocating powers as well, we know that set cover problem is
o(log(n)) inapproximable [16], so the non-cooperative case
is o(log(n)) inapproximable, even when ordering is provided.
Greedy algorithms exist [16] that give O(log(n)) approxima-
tion for the weighted set cover problem, and thus providing a
tight polynomial time approximation. Therefore, to simulate a
smart non-cooperative algorithm, we use Dijkstra’s algorithm-
based ordering and the algorithm given in Section V, with
the exception that instead of using an LP we use the greedy
algorithm for power allocation.

The performance comparison between our proposed coop-
erative algorithm and the smart non-cooperative algorithm, for
different values of N is shown in Figure 4 and power-delay
tradeoff for cooperative and non-cooperative algorithms are
presented in 5. As can be seen, the cooperative algorithm
outperforms non-cooperative algorithm, and the advantage is
more pronounced when a delay constraint is imposed.
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Fig. 4: Effect of cooperation in broadcast
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Fig. 5: Power-delay tradeoff in cooperative vs non-cooperative
case

We study the power-delay tradeoff of the cooperative al-
gorithm for different channel conditions and different values
of ρ are given in Figure 6 and Figure 7, respectively, where
ρ is network density (nodes/area). These figures highlight the
sensitivity of the dense networks and those with poor channel
conditions to delay constraints and the importance of having
smart algorithms to minimize the energy consumption.
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Fig. 6: Effect of network density on power-delay tradeoff
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Fig. 7: Power-delay tradeoff for varying channel conditions

IX. CONCLUSIONS

We have formulated the novel problem of delay constrained
minimum energy cooperative broadcast (DMECB) in wireless
networks. We have shown that this problem is o(log n) approx-
imable. For the general problem, we have developed an analyt-
ical lower bound and provable approximation results. Another
key algorithmic contribution has been to show a polynomial
time algorithm that can solve the problem optimally for a fixed
transmission ordering. Our empirical results suggest that for
practical settings, a near-optimal ordering can be obtained by
using Dijkstra’s shortest path algorithm.

There are a number of interesting directions for future work.
In this paper we have focused on the static problem with full
information, which allows for centralized decision making. In
the future, we would like to explore distributed solutions to
this problem which would be particularly suitable for more
dynamic settings. From an analytical perspective, there is room
for improvement in computing tighter lower bounds as well as
further enhancements in the approximation results. Evaluating
the proposed algorithms under more realistic settings (through
more detailed simulations of physical layer implementation
or through direct implementation on software radio platforms,
and the use of more realistic energy models) would certainly
help in moving this work towards practice. Finally, our work,

like most work in this domain of cooperative broadcasts, has
focused on the single flow setting. It is of interest to study
generalizations that allow for multiple simultaneous flows in
the network.
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