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ABSTRACT

A new generation of community-based social networking mo-
bile applications is emerging. In these applications, there is
often a fundamental tension between users’ desire for pre-
serving the privacy of their own data and their need for
fine-grained information about others. Our work is moti-
vated by a community-based mobile application called Aegis,
a personal safety enhancement service based on sharing lo-
cation information with trusted nearby friends. We model
the privacy-participation tradeoffs in this application using a
game theoretic formulation. Users in this game are assumed
to be self-interested. They prefer to obtain more fine-grained
knowledge from others while limiting their own privacy leak
(i.e. their own contributions to the game) as much as pos-
sible. We design a tit-for-tat mechanism to give user in-
centives to contribute to the application. We investigate the
convergence of two best response dynamics to achieve a non-
trivial Nash equilibrium for this game. Further, we propose
an algorithm that yields a Pareto optimal Nash equilibrium.
We show that this algorithm guarantees polynomial time con-
vergence and can be executed in a distributed manner.
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1. INTRODUCTION

In today’s society the penetration of hand-held mobile de-
vices is substantially higher than any other compute or com-
munication device. There are roughly 3.3 billion devices be-
ing used in the world as of November 2007 [1]. Till date
most mobile applications are based on a simple client-server
model, where a mobile device requests for a service from a
single service provider. As mobile devices enter a new era
with high speed connectivity and increasing compute capa-
bilities, a new class of community-based social networking
mobile applications are being showcased as the next revolu-
tion in mobile computing. In this class of applications each
user in a social group contributes their knowledge about
their surrounding environments and the collective knowl-
edge can then be exploited by the community members for
a personal or social benefit. One example of such an appli-
cation has been developed to obtain real time information
about traffic congestion on roads [3].

The primary difference between these new mobile social
networking applications and prior mobile applications is that
the information provided by the service provider is an ag-
gregation of the data provided by multiple users. In their
quest to increase relevancy of information to a specific user
in a social networking scenario, however, mobile applications
are beginning to aggressively collect information pertaining
to a user. As the popularity of mobile social networks in-
creases there is a growing realization that information col-
lected about an individual user can compromise one’s pri-
vacy and potentially security [9] [12] [17]. The information
collected from a user include location and contact logs and
hence when privacy is compromised it may lead to serious
security concerns.

There is therefore a need for technological solutions for
providing privacy in mobile social networking applications.
In these applications there is a fundamental tension between
a user’s desire to protect privacy and their desire to take
advantage of the community knowledge. On the one hand
if everyone shares their information freely, the community
as a whole will get a better experience; on the other hand,
users prefer not to reveal too much personal information to
protect their privacy.

We take a new perspective on this problem that is based
on game theory [15]. Originally developed by economists
to model strategic interactions between rational agents in
market settings, game theory has been applied to many dis-
tributed network settings where users must interact while



pursuing their self-interest. It is in many ways a natural
fit for this domain of community-based mobile applications.
Specifically, this framework will allow one to identify the
Nash Equilibria for particular mechanisms - strategy pro-
files where users have no incentive to deviate unilaterally.
It further enables the design of new mechanisms where the
equilibria satisfied desired global performance for the com-
munity of users while allowing users to effect the privacy
tradeoffs that they desire. Finally, it motivates the design
of iterative algorithms that ensure that users can converge to
the desired equilibrium in a distributed manner and main-
tain stable performance in the face of dynamics.

To ground our work, we describe a community-based mo-
bile social networking application called Aegis that can be
envisioned for personal safety enhancement particularly in
high-crime urban areas. The basic idea of the Aegis sys-
tem is that users share their locations with trusted others,
and each can in turn view the locations of near-by individ-
uals within their trusted circle, to enhance their sense of
personal safety.

To our knowledge, this is the first work to quantify the
privacy-service tradeoff central to these emerging mobile so-
cial network applications in a game theoretic setting. The
paper is organized as follows. First, we describe related work
in section 2. After a further description of Aegis in sec-
tion 3, in section 4, we formulate a game played by mobile
users that are interested in getting fine-grained information
about each others locations while wanting to provide only
coarse-grained information about themselves. We design a
system that enforces a tit-for-tat information trade, with
each mobile user getting location information about other
nearby users at a granularity that is no higher than the in-
formation they are willing to share with others about them-
selves. The game that results turns out to have multiple
Nash Equilibria, including trivial solutions where subsets of
users choose not to share any information at all. In sec-
tion 5.5 we show how the selfish best response can be calcu-
lated in a distributed manner by each user and discuss two
simple iterative best-response algorithms. We consider the
most simple simultaneous best response first in section 5.2
and show that it can sometimes fail to converge. However,
in section 5.3 we consider a minor variation, sequential best
response, that provides better performance. But going be-
yond these simple best-response heuristics, we show in sec-
tion 5.4 that it is possible to solve for a Pareto-Optimal Nash
Equilibrium of this game using a Pareto-improvement algo-
rithm that converges in a polynomial number of steps. We
present numerical evaluations comparing the performance of
the sequential best-response with this Pareto-improvement
algorithm in section 6 before our concluding comments in
section 7.

2. RELATED WORK

Privacy and security concerns already pervade most of
the internet application domain. The dramatic rise of social
networking sites, such as Facebook and Bebo, has already
ignited the debate on the effectiveness of legislation and pri-
vacy policies that are either ineffective or prone to human
errors. A recent study by Pew Internet Research Project [2]
shows that one third of US teenagers are subjected to cyber-
bullying due to privacy compromises. However, bringing the
concept of mobility to social networking magnifies these con-
cerns immensely as compromising location privacy may may

lead to serious security concerns. There is a large body of
research in the area of privacy preservation in traditional
internet based social networking applications [4, 12, 31, 24,
10, 7, 35]. However, in traditional internet based application
user’s precise location is not revealed either to application
provider or to other users, unless explicitly disclosed by the
users themselves, such as the city name or zipcode where
they are located. These social networking applications do
not make use of precise location in providing location rele-
vant information. Hence location privacy is primarily rele-
vant in mobile social networking application and as such this
paper focuses on this issue by using game theory to trade
off privacy with user utility function.

Game theory [15] has been recently applied to wireless
networks [27, 25]. In [38], Voorneveld et al. applied game
theory to non cooperative games, also called anonymous
crowding problem, where a user’s value in visiting a location
is inversely proportional to the number of people who have
been already there which is the opposite goal of our safety
application Aegis. Patwardhan et al. [33, 32] introduced the
notion of packs to create a framework for providing privacy,
security in mobile ad-hoc networks. A pack is dynamic set of
individuals that collaborate for achieving a collective goal.
Agah et al. [5] proposed game theory approach to security
in sensor networks where each node in a network achieves
better payoff when the node cooperates and its payoff is de-
creased when misbehavior is detected. To our knowledge,
however, there has been no prior attempt to systematically
apply game theory to the problem of privacy preservation in
community-based mobile applications.

Several software solutions [16, 8, 21, 22, 13, 28] have also
been proposed to protect privacy. Hong et al. [21, 22] pro-
posed Confab, a toolkit for developing mobile application
that allow developers and end users to support a broad spec-
trum of privacy needs. Desmet et al. [13] implemented a
software architecture to allow the secure execution of third
party applications on a Windows Mobile device. In [8] Capra
et al. proposed a middleware architecture for providing pri-
vacy in mobile environments. Tang et al. [36] proposed a dis-
tributed method for storing personal information in mobile
devices where personal information is split between mobile
device and a trusted central server. Several experimental
systems [23, 37, 18] also built location based services where
the location of a mobile device is hidden from the service
provider for protecting privacy. The primary focus of these
researchers is the first generation mobile applications where
a central authority can be trusted to provide accurate infor-
mation. Hence the goal of a mobile device is to protect its
privacy from this central authority. Our proposal focuses on
mobile social networking applications where the data pro-
vided by multiple users with no central authority.

It is only recently that mobile social networking appli-
cations have come to the main stream of mobile comput-
ing [34, 19, 30, 14, 11, 6]. Reddy et al. [34] developed Cam-
paignr framework for creating urban participatory sensing
using mobile devices. Hoh et al. [19] explored temporal and
spatial distortion of location data to protect privacy. An-
navaram et al. [6] developed HangOut a social networking
application that uses a combination of anonymous data ag-
gregation and encryption to show where people with similar
interests are likely to congregate. In Hangout the mobile de-
vice decides on the granularity of its location update based
on how many other users are already seen by the server in a



given area. Furthermore the device identification and loca-
tion update packets are encrypted differently such that the
data link provider can only identify the device but not the
content and the application service provider can only iden-
tify the content but not the device. Hoh et al. [20] proposed
a social network based traffic sensing application using the
concept of spatial sampling with virtual trip lines. Using a
combination of spatial, temporal and speed distortions they
showed how real time traffic can be estimated without loss of
privacy. In these previous studies the focus is primarily on
absolute user privacy rather than trading privacy with util-
ity. This paper specifically focuses on relative privacy where
multiple users can trade their privacy with utility value de-
rived from a community application.

3. AEGIS: A COMMUNITY MOBILE AP-
PLICATION FOR PERSONAL SAFETY

Crime is a serious social malice that has received signifi-
cant attention in social studies. In a recent survey [29] over
80% of people believe that the notion of perceived crime is
an important factor in determining where people will stay
and what places they will visit. Studies like this have also
showed that a person’s perceived notion of safety increases
when they carry a mobile phone since the device provides a
way for instant communication with their friends and fam-
ily, and if needed with law enforcement agencies. While in-
stant communication is an obvious benefit of mobile devices,
we believe that more comprehensive approaches to personal
safety can be achieved by exploiting the rich set of sensors on
mobile devices. In order to explore these rich dimensions to
personal safety, we envision the development of new personal
safety applications on mobile devices that are based on the
notion that a person’s sense of security can be closely corre-
lated to how many people that person can trust within his
surroundings. While personal trust is subjective, it is gener-
ally believed that if there are more people around a user that
he/she has some trusted relationship with (either directly or
indirectly through a social network) then that user’s sense
of security is enhanced. The Aegis system is based on this
idea, displaying the locations of near-by trusted individuals
to a user to enhance their sense of safety.

While practical full-scale implementations of the Aegis ap-
plication are likely to be quite sophisticated (for instance,
taking into account a rich combination of information from
call-logs to determine each individual’s circle of trust), we
treat a bare-bones version of this application in this study.

In this simplified version of Aegis, we assume that all users
belong in each others’ circle of trust. Each device registered
with the system provides the system with its location. All
users with mobile devices within some neighborhood (de-
fined by some physical distance range) of this device can
potentially be notified of its location by the system.

The fundamental tradeoff that we explore in this paper
pertains to the granularity of location provided by and to
the users. On the one hand they all desire to know the
locations of the other users with high accuracy; on the other
hand, they each prefer not to reveal their own location with
accuracy. We try to resolve this conflict by treating each
user as an self-interested entity playing a game.

An important part of defining such a game is modeling
the utilities for each user. Modeling safety perception by
humans realistically is a very challenging task (perhaps best

left to sociologists). Our approach in this work is to pick a
simple, tractable, almost-linear utility model for each user
that has some intuitive features. The utility model has two
components: the gain from knowledge of others’ locations,
and the loss from the revelation of ones’ own location. In
the model we adopt, location accuracy is treated as a tun-
able term — it may be varied in practice by adding zero
mean noise to the true location with different variance, or
by selecting different zoom levels of locations). The gain
term captures the essence that each user is generally more
happy when more other users provide location information,
that each user is generally more happy when each other user
provides more accurate location information, but that there
is a point of saturation beyond which the user can be made
no happier. The loss term is treated to be linear in the
accuracy of the information provided by the user.

4. PROBLEM DEFINITION

Let NV denote the set containing all users in this applica-
tion. After describing a neighborhood range R, user i can
see a set of nearby users N (i) within distance R on a map
on his/her mobile device. Each user is able to specify the
granularity with which their location should be made avail-
able to others. In sparser areas, for reasons of safety, each
user is more interested in knowing the exact location of oth-
ers than in denser areas. Let a; € [@min,amaz] be a real
value that denotes the granularity of location provided by
user i, where higher value of a; corresponds to more accurate
location information. Let us consider a particular concrete
model to quantify the utility U(ai,a—;) (a—; denotes the
strategy vector for all users except user i) for user i:

Ulai,a—;) = min(K, Z aj) — ca; (1)
JEN(9)

Where K is a pre-defined positive real number to indicate
an upper bound on benefits for node i and ¢ is a positive
penalty factor.

With this model, the user’s benefit function is additive in
the information accuracy of its neighbors, but saturates at a
certain point. Notice that this utility function doesn’t give
incentive for nodes to share their location information. A
user’s benefit comes from the actions of others but the cost
depends only on the user’s own action. It can be shown that
the only Nash Equilibrium point in the game by using this
utility function is the trivial outcome: a; = amin,Vi; i.e.,
each user always provides minimum accuracy. While this is
ideal for each user in terms of maximizing privacy, it results
in arbitrarily poor service.

From a game-theoretic point of view, what is missing is a
direct incentive for the users to provide high accuracy data
to others. A simple tit-for-tat mechanism that can imple-
ment such an incentive is to provide information to a user
with download granularity commensurate with the user’s
upload granularity. An authorized system server through
which the users interact can be involved as an information
filter to implement this mechanism. The perceived accuracy
of a neighbor j for ¢ will then be given by a; = min(a;, a;),
so that the utility now becomes:

Ulai,a—;) = min(K, Z min(ai,a;)) —c-a;  (2)
JEN(3)



For ease of exposition, we assume the range of a; is a; €
[0, K] from now on (this is equivalent to assuming that amaz >
K. However, as we will point out, all the results can be
extended in a straight forward fashion to the case when
mas < K). Further, to restrict the utility function to be
non-decreasing in a; before the saturated point, we also as-
sume that the penalty factor ¢ is less than 1 (0 < ¢ < 1).*
We use the word “nodes”, “users”; “players” interchangeably
in the following sections.

The utility function in (2) provides some desired prop-
erties for the application. There exists at least one Nash
equilibrium for any network topology. The trivial Nash equi-
librium is a; = amin = 0. Consider the special case when all
N nodes are within the same vicinity; there exist infinitely
many Nash equilibria. All solutions of the form a; = «,
Vi (where o € [@min, min(amaz, 37— )]) are Nash equilibria.
However, there is a unique Pareto- optimal Nash equilibrium
given by the solution a; = min(amaz, N 1) Vi, which is the
best possible solution from a global (social welfare) point of
view with respect to the utility. This solution is also intu-
itively appealing: since the benefit saturates beyond some
point, it is best to provide more privacy (less accurate coor-
dinates) when there are more neighbors.

S. ALGORITHMS

In this section, we give three different algorithms to find a
non-trivial Nash equilibrium in the game we defined in the
previous section, named as synchronized best response dy-
namic (SYN-BR), sequential best response dynamic (SEQ-
BR) and Pareto improvement path (PI) respectively.

5.1 Calculate Best Response

Before we describe the algorithms, we first describe the
solution for calculating node i’s best response when given all
his neighbors’ strategies in Algorithm 1. Node i’s neighbor
set is denoted as NV (¢), and [N (¢)| denotes the cardinality of
set N'(i). BR(a;,a—;) denotes node i’s best response when
given the other nodes’ strategies in vector a—_;.

We consider the following three cases to calculate the best
response for node :

e When Wilgz)l < mingenya; ( ie., node i’s neighbors
have relative high accuracy than expected), setting
a; = ﬁ will maximize the utility function.

e When 3,y ;ya; < K (ie,, the summation of node
i’s neighbors’ granularity cannot reach K), the best
response of node 7 is to match the maximum of the
accuracy of its neighbors.

e In other cases rather than the two cases discussed above,
node i’s best response is a value between two of his
neighbors’ accuracy value. If we sort all the node
i’s neighbors’ accuracy value, node i’s best response
is between two consecutive accuracy values aj, and
Wy and D2 ar min(ai,a;) = K. To calculate
node #’s best response in this case, we use the following
fact: when ¢ < 1 (as defined in previous section) and
min;en) a5 < ai < Max;enr(i) @i if > enrs min(a;, ai)
< K, the utility function is non-decreasing with a;; on

"When ¢ > 1, there is not enough incentive for the users
with degree less than ¢ to participate in the game. We leave
the discussion of the case where ¢ > 1 to future work.

the ot.her.hand, if ZjEN.(” min(aj,a;) > K, the utility
function is decreasing with a;.

The algorithm to calculate the best response for a node
is presented in Algorithm 1. The best responses can be
calculated in a distributed manner. The complexity of a
node ¢ to compute its best response is O(nlogn) (where n =
|N(7)] is the number of neighbors of node ¢) when choosing
proper sorting algorithm.

Algorithm 1 Calculate Best Response for Player i
BR(ai,a;)

if IN( 57 < minjen(i)a; then
) = W

return BR(a;,a
else
if Z].GN(Z.) a; < K then
return BR(a;,a—;) = max;cn)as;
else
sort a; (Vj € N (7)) in ascending order, denote the
order as aj,,Gjs, ...
find BR(ai,a—;) such that a;, < BR(ai,a—;) <
ajy,, and 10, a5, + (IN()] — @) BR(as, a—i) = K;
return BR(a;,a—;);
end if
end if

RZIOIE

5.2 Synchronized Best Response Dynamic

SYN-BR is the easiest learning dynamic in game theory.
This algorithm assumes that all players take action simulta-
neously and periodically. In each iteration, all players give
their best responses to the other players’ actions in last iter-
ation. Algorithm 2 illustrates the steps to do SYN-BR. Note
that SYN-BR does not guarantee convergence. To avoid in-
finite loops, we set a large number maxlter as an upper
bound for the iterations. However, if the algorithm con-
verges, it will converge to one arbitrary Nash equilibrium.
We also notice that a; = 0 Vi is a trivial Nash equilibrium.
To avoid this trivial Nash equilibrium, we set the initial state
as all nodes at value K.2 Let a! denote player i’s strategy
at iteration t.

Algorithm 2 Synchronized Best Response Dynamic

Initialization: a? = K; t = 1;
while Not-Converged AND (t < mazxlter) do
for Every Node i do
at; =a>
Calculate BR(aﬁ7 aty);
end for
t+ +;
end while

Here we give an example to show that SYN-BR algorithm
does not converge in some cases. In Figure 1, nodes C,D
and E converge after the second iteration and keep stable
from then on, while nodes A and B will never converge. The
values of nodes A and B keep oscillating forever.

2The initial state for player 7 in SYN-BR can be randomized
in the range. Different initial states might lead to different
Nash equilibrium at the end. Different initial states might
also affect the convergence time.



Figure 1: An example to show SYN-BR algorithm
does not always converge

5.3 Sequential Best Response Dynamic

The example in Figure 1 illustrates that the SYN-BR al-
gorithm cannot guarantee convergence. To eliminate the
oscillation of the strategies among players, we propose SEQ-
BR. In SEQ-BR, players update their strategies sequentially
according to some pre-agreed order. The order for updating
is called the sequential index. When a player i calculates his
best response, he considers two sets of his opponents’ strate-
gies. For those players who have lower sequential index (i.e.,
the players who have already updated their strategies before
player i), player ¢ takes their strategies in “current” iteration
into consideration. For the remaining nodes, player i uses
the information from the last iteration. A formal description
of this algorithm is in Algorithm 3.

Algorithm 3 Sequential Best Response Dynamic

Initialization: o = K; t = 1;
while Not-Converged AND (¢ < mazlter) do
for ¢ from 1 to N do
for j € N(i) do

if j <ithen
a} = aj-;
else
aé- = a;_l;
end if
end for
Calculate BR(a},a";);
end for
t+ +;

end while

We have empirically observed that the sequentially best
response dynamic converges in all simulations. However, the
Nash equilibrium it converges to is an arbitrary Nash equi-
librium based on the initial state. In the following section,
we propose a Pareto Improvement algorithm which guaran-
tees convergence and results in a Pareto optimal solution.

5.4 Move the Nash Equilibrium

Before we propose our algorithm, we first introduce the
basic concepts of Pareto improvement and Pareto optimal-
ity.

Given a set of alternative allocations, a movement from
one allocation to another that can make at least one individ-
ual better off without making any other individual worse off
is called a Pareto improvement. Specifically, in this game,
a Pareto improvement strategy vector (@i,ds, ..., ) for
strategy vector (a1,as,...,aj|) satisfies the following two
conditions:

e Ji € N such that U(a;,a—;) > Ula;,a—;)

o Vie N, U(ai,a—;) > Ulai,a_;)

When no further Pareto improvement can be made for a
joint strategy vector, the strategy vector is called Pareto op-
timal or Pareto efficient. For our privacy game, we already
pointed out that there might exist multiple Nash equilib-
ria. In this case, finding a Pareto efficient Nash equilibrium
becomes an interesting problem. We propose a polynomial-
time algorithm to find a Pareto optimal Nash equilibrium
starting from the all-zero trivial Nash Equilibrium in the
following.

We need the following lemmas to hold for the correct-
ness of the Pareto improvement algorithm described in Al-
gorithm 4.

Lemma 1: Given a Nash equilibrium (a1, a2, ..., ajn),
no Pareto Improvement can improve node 4’s utility in this
Nash equilibrium if 3 -,y min(a;,a;) = K. Such a node i
is called a saturated node. Let S denote the set containing
all saturated nodes.?

Proof (by contradiction): Suppose that exists a Pareto Im-
provement PI such that after the PI process, U(aZPI, aljf) >
Ulai,a—;) and Vj € N(i), U(al’,a"t) > U(aj,a—;). Since
U(ai,a—;) = K — ca; and K is the maximal possible value
for the positive part, the only way to increase the node i’s
utility is to decrease a;, i.e.,al’’ < a;. We consider two cases
here.

Case 1: a; < minjenyaj. Since (ai,a—;) is a Nash
equilibrium, we have > .\, min(a;, ai) = |N(i)|ai = K
af! < a; infers that Y ieN @) min(a}’,af") < |N(i)|af
Hence

Ual’,a"]) < IN(D)|al — cal’
= (

V@) = e)ai’”
< (V@) = c)as
= U(ai, 71')

, which is contradictory to the assumption.

Case 2: a; > minjen(;)a;. Since (ai,a—;) is a Nash equi-
librium, a; < maz;epnya;.sort a; (V5 € N(4)) in ascending
order, denote the order as aj,,a;,, ..., aj ;- 3k < [N (i)
such that a;, < a; < aj,,. If none of a;, through a;,

3Notice that in this paper, we assume a; € [Gmin,Gmaaz]
is in the range of [0, K], which is equal to stating that
amax > K. However, all the results in this paper can be
easily adapted to the case where amqz < K. To handle the
case amaz < K, the corresponding change on the definition
of saturated nodes should be that the nodes either satisfy
Zje./\/(i) min(aj,a;) = K or the nodes’ a; = amaz-



increases its accuracy value, since al’? < a;,

aj, + (N(@)] = k)ai" — ca;”!

M=

Uai " aZi) <
1

Q
Il

hE

<D, + (V@] =k —Jai

1
=Ul(ai,a—;)

Q
Il

This contradicts the assumption. Hence, we claim that there
exists a ¢ (1 < ¢ < k) such that a;, < afq[. Now we inves-
tigate the utility for node j,. According to the definition of
Pareto improvement, we have U(aj,,a—j,) < U(ail7 ij-q).
Notice that aj, < aZI, in the previous Nash equilibrium,
node aj, must NOT be a saturated node (otherwise, in-
crease aj, can only decrease the node’s utility). Therefore,
aj, = MATpen(j,)ap = Gi- However, this equation contra-
dicts the previous claim that a;, < aj, <a;. O

Lemma 2: Given a Nash equilibrium (a1, a2, ..., ajn),
no Pareto Improvement can be made for node i in this Nash
equilibrium if Vj € N (), j € S. Such node ¢ is called
a Constrained node. Let C denote the set containing all
constrained nodes.

Proof:(by contradiction) Assume that there exists a node
i that can change its strategy to al’! such that U(as, a_;) <
U(aF’,afl). According to the definition of Nash equilib-
rium, no node is willing to change its strategy unilaterally.
Hence, in this problem, Pareto Improvement needs to involve
at least two neighboring nodes to change strategies simul-
taneously. Without loss of generality, suppose that node i’s
neighbor k changes strategy to af,’ with node i while node #’s
all other neighbors keep the same strategy. Notice that node
k is a saturated node in the given Nash equilibrium. Accord-
ing to the proof of Lemma 1, the only way to keep or in-
crease k’s utility is to decrease ax. That is ax > aj. . In the
given Nash equilibrium, node i is not saturated. Therefore,
@i = MaT;cn(:)Gj > ax. Since in all the neighbors of node 1,
node k decreases its accuracy value and all other nodes keep
same, in order to improve its utility, node ¢ has to increase its
accuracy value. That is, al’? > a;. A contradiction follows,
since aff = mamje/\/(i)afj < maxjeN(i)afI =aqa;. O

Lemma 3: Given a Nash equilibrium (a1, az, ..., ajn), for
node i € N—(SJC), we can infer that 3=\, min(ai, a;) <
K. Furthermore, 35 € N(i) (N — (SUC)) such that a; =
a; = Maxj e (i) Aj-

Proof: From Lemma 1 and the definition of saturated
node, node 7 does not saturated is the same as the condi-
tion K > 3 ;) min(ai,a;). According to the best re-
sponse calculation, if node 7 is not a saturated node, in the
Nash equilibrium, a; = maz;eniya;. From the fact that
node i is not constrained, we can infer that there exists
a node within neighborhood of node ¢ that not saturated,
denote the node as j. We have a; > a;. Since the neighbor-
hood range is symmetric, node j and node ¢ are each other’s
neighbor. Since node ¢ is not saturated, node j is not a
constrained node. That is, 7 € N — (S|JC). Therefore,
a; = MAT;cpG) > a;. These facts allow us to conclude
that a; = a; = maxjen (i) a;- O

Lemma 3 states that if a node i is neither saturated or
constrained, there must exists at least one other node (de-
note as node j) within the neighborhood range of node 4
that is neither saturated nor constrained. Further, such a

node j has the same strategy as node i, which is the largest
granularity among all their neighbors.

Let PN (i) = N@E)NW = (SUC)), lemma 3 suggests
an approach to improve an unsaturated node to a satu-
rated node. The step size of increase for node i and its
improvable neighbors to make node i saturated is Inc(i) =
K=Y en(i) %4

[PN(3)] )

Lemma 4: Given a Nash equilibrium S = (a1, a2, ..., ajn7|),
let set PN contain all the improvable nodes in the network.
Consider a strategy profile S where Vi € PN, @i = a; + Inc
and Vi ¢ PN, a; = a;. S is also a Nash equilibrium if the
non-negative number Inc is such that the following condi-
tion holds:

ViePN, Y & <K
JEN(3)

We omit the proof for this lemma here for brevity. This
lemma can be proved using the previous lemmas and con-
sidering the users’ best responses.

Theorem 1: Starting from a Nash equilibrium, after one
iteration of improvement described in Algorithm 4, the re-
sulting strategy vector is still a Nash equilibrium.

This theorem states the correctness of Algorithm 4 to find
one Pareto optimal Nash equilibrium. It can be directly
derived from the above four lemmas by taking into account
that the initial state of the algorithm is a Nash equilibrium.

Corollary 1: Given a Nash equilibrium, after applying
Algorithm 4, the resulting strategy vector (a1,az, ..., ajn|)
satisfies the condition that S|JC = N/, this strategy vector
is a Pareto optimal Nash equilibrium.

This corollary checks the end state of algorithm 4. When
all nodes are either saturated or constrained (or both) in
a Nash Equilibrium, no Pareto improvement can be made
according to Lemma 1 and Lemma 2. Theorem 1 keeps the
result after each iteration as one Nash equilibrium. There-
fore, if the algorithm converges, it will converge to a Pareto
optimal Nash equilibrium.

We would like to point out that in arbitrary games, there
might not exist a strategy profile that is both Nash equilib-
rium and Pareto optimal. However, we show that a Pareto
optimal Nash equilibrium exists in this game by finding
the strategy vector. We provide Algorithm 4 to obtain a
Parato optimal Nash equilibrium. The algorithm moves a
given Nash equilibrium along a Pareto improvement path
to achieve both Pareto efficiency and stability (i.e., Nash
equilibrium).

Proposition 1: Algorithm 4 guarantees convergence.

Notice that in each PI iteration, we add at least one more
node to saturated nodes set S. Since the saturated nodes will
keep saturated afterwards, the PI algorithm is guaranteed
to converge in [N steps in worst case. The running time of
the PI algorithm is O(JN|?).

We need to point out that there might exist multiple
Pareto optimal solutions. Different initial Nash equilibria
might result in different Pareto optimal solutions. For exam-
ple, in the algorithm description, the initial state is the triv-
ial all-zeroes Nash equilibrium. We can also set the initial
state as the converged result of SEQ-BR algorithm, which

4f ez < K, we just need to change the corresponding part
KX jen(i) %

‘ BAC] ) All

the lemmas and theorems are still hold after the modifica-

tion.

of algorithm 4 as I'nc(i) = min(amaz—as,



Algorithm 4 Pareto Improvement

Initialization: a = 0; t = 1;

while t < |N| do
Check and Flag Saturated Nodes for vector
('™t ab™t, ...,alt;ﬁ), Put in Set S;
Check and Flag Constrained Nodes for vector
('™t ab™t, ...,alt;/‘l), Put in Set C
if |[SUC| = |N| then

return (o' al7t ., alt;,‘l) and report convergence;
end if
for Each Node i € N — (S|UC) do
t—1
Calculate the Improvement Inc(i) = K_Z‘;f#,
where PN (i) = N (@) NN — (SUCQC));
end for

Pick the minimum value among the increment list
minPI = min;en— (s ¢)(Ine(i))
for Each Node i e N — (S|JC) do
al = at™' + minPI
end for
t+ +;
end while

is guaranteed to be one Nash equilibrium. Both cases will
converge to Pareto optimal results after applying the above
algorithm. However, the two Pareto optimal results are not
necessarily identical.

5.5 Distributed Pareto Improvement

Note that in algorithm 4, users need extra message ex-
changes to find out the minimum increasing value among all
the possible increase.

One centralized way to solve this problem is to involve
the base station in selecting the minimum increase value. In
each iteration, each node i € N’ — (S|JC) send a message
to the base station, reporting its increasing value. The base
picks the minimum value and multi-cast the information to
each improvable node.

Another option to get the minimum increase value among
all flexible nodes is to use the FloodMin algorithm [26]. This
algorithm makes the calculation totally distributed at the
cost of more message exchange. In this algorithm, nodes
send messages to their neighbors reporting the increase num-
bers. The minimum number will be chosen after the mes-
sages flooding throughout the network. The details of the
FloodMin algorithm are described in Algorithm 5.

Algorithm 5 FloodMin

Initialization: min_inc = inc(i); t = 1; tmax is the
network diameter;
msgs;:

if t < tmaz then
send min_inc to all j € N(i);
end if
trans;:
t=t+ 1,
let U be the set of increase values that arrive at node i;
min_inc = min({min_inc} |JU);

if ¢t == tmax then
return min — inc;
end if

6. SIMULATION

We conduct the simulations using Matlab. In the simula-
tions, there are 10 sets of different node locations. In each
set of node deployment, 20 nodes are randomly located on a
20x 20 square. A distance based model is used in the simula-
tion to generate network topology. In this model, each node
has same neighborhood range. The benefit upper bound K
is set to be 100 in all the simulations and the penalty factor
c is set to be 0.1.

Figure 2 and Figure 3 show an example of nodes deploying
with nodes’ indexes, network topology when setting neigh-
borhood range R = 5, converged results for SEQ-BR and
PI algorithms respectively. The accuracy value beside each
node in Figure 3 is rounded to integers for the sake of clear
illustration.

From the algorithm results, we observe a property that
the user with more neighbors are likely to have better pri-
vacy preservation (i.e., shared accuracy value is low). For
example, node 20 has maximal degree of 7 and minimal shar-
ing granularity at level 13. This is a desirable property for
the Aegis application. Intuitively, the more neighbors a user
has, the more likely that the user is in a safe place. In this
case, the user does not need to compromise his privacy to
other users to improve his safety.

Another observation is that the two Nash equilibria calcu-
lated by SEQ-BR algorithm and PI algorithm are not nec-
essarily the same. Node 1 and node 17 in the triangle at the
right part of the graph have improved granularity from level
50 to 67. We can verify that the result of SEQ-BR algo-
rithm is a Nash equilibrium. For node 1 and 17, unilaterally
change their strategies will decrease their utility. However,
changing their strategy simultaneously can result in utility
improvement for both nodes and let the system stay in a
new stable state. This improvement is essential for this par-
ticular application. It increases both user 1 and user 17’s
safety level.

Figure 4 illustrates the number of constrained but not
saturated nodes (i.e., the cardinality of set C —S ) in the
network when node’s neighborhood range varies as integers
from 5 to 34. All the statistical results presented below are
averaged over 10 different node deployment for each neigh-
borhood range value. This result shows that the number of
constrained but not saturated nodes decreases with increase
in a node’s neighborhood range R.

Figure 5 plots the social welfare for the Nash equilibria
obtained by the two algorithms. Social welfare is defined
here as the summation of all nodes’ utilities throughout the
network (20 nodes in our simulations). The summation is a
statistic value averaged over 10 different node locations. The
initial state of PI algorithm is the Nash equilibrium output
by sequential best response dynamic. Two facts are observed
from this plot: a) when the graph is relatively sparse, the
percentage of improvement on social welfare is about 10%;
b) the improvement percentage decreases with the increase
of neighborhood range. Overall, PI results in more efficient
Nash equilibrium than SEQ-BR algorithm in terms of social
welfare.

Figure 6 illustrates the number of instances improved by
PI algorithm. In this simulation, we use the output of the
SEQ-BR algorithm as the initial state for PI algorithm. The
plot shows that when the neighborhood range is small or
medium (R < 18), almost every Nash equilibrium obtained
by SEQ-BR algorithm can be improved. SEQ-BR algorithm
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gives Pareto-optimal Nash equilibrium when the topology is
presented as a complete graph. We need to point out that
the initial state of SEQ-BR (initialized as a; = K Vi) ensures
the Pareto-optimal solution for complete graph. Random
initialization will not necessarily lead SEQ-BR algorithm to
this particular Nash equilibrium.

Figure 7 compares the average iterations to achieve con-
vergence for SEQ-BR and PI algorithms with respect to var-
ied neighborhood range R. On average, the PI algorithm
converges faster than SEQ-BR algorithm. For both algo-
rithms, medium density (i.e., 8 < R < 20) requires more
iterations to converge than in a sparse graph (R < 8) or in
a dense graph (R > 20 where the graph is (or close to) a
complete graph).

Together, these simulations lead us to conclude that the PI
algorithm is superior. It offers fast, provable convergence in
polynomial time, and good quality solution in a distributed
manner.

7. CONCLUSION

In this paper, we described a novel community-based mo-
bile application. The application asks the users to share
some location information with neighboring friends to en-
hance security. Considering that the location information
is a privacy information which users prefer to preserve, we

formulate the application as a game. The utility function
gives the users incentives to reveal more accuracy on the
location information while there are a few friends around
and be conservative on the information accuracy when more
friends appear in the neighborhood.

We have illustrated how to calculate the best response for
a particular user when fixing all other users’ strategies. Fur-
thermore, we investigated several learning dynamics in the
system. We point out that the synchronized best response
dynamic does not guarantee convergence. To get more con-
trol on the resulting equilibrium, we propose an algorithm
which can not only guarantee convergence but also is able
to move any Nash equilibrium to a Pareto optimal Nash
equilibrium. The simulations on different network topolo-
gies compare the sequential best response dynamic with the
Pareto improvement algorithm. We find that Pareto im-
provement can give better social welfare in most cases when
the network topology is not a complete graph.

In the future, we plan to investigate more general utility
functions. We are also interested in solving this problem
under dynamic settings when the user configurations change
over time.
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